Subband Coding Techniques

- General coding approach
 - Allocate different bits for coeff. in different frequency bands
 - Encode different bands separately
 - Example: DCT-based JPEG and early wavelet coding

- Some difference between subband coding and early wavelet coding ~ Choices of filters
 - Subband filters aims at (approx.) non-overlapping freq. response
 - Wavelet filters exhibit strong local support, thus preserve local information

- Shortcomings of subband coding
 - Difficult to determine optimal bit allocation for low bit rate applications
 - Not easy to accommodate different bit rates with a single code stream
 - Difficult to encode at an exact target rate

Embedded Zero-Tree Wavelet Coding (EZW)

- “Modern” lossy wavelet coding exploits multi-resolution and self-similar nature of wavelet decomposition
 - Energy is compacted into a small number of coeff.
 - Significant coeff. tend to cluster at the same spatial location in each frequency subband

- Two set of info. to code:
 - Where are the significant coefficients?
 - What values are the significant coefficients?

Key Concepts in EZW

- Parent-children relation among coeff.
 - Each parent coeff at level k spatially correlates with 4 coeff at level (k-1) of same orientation
 - A coeff at lowest band correlates with 3 coeff.

- Coding significance map via zero-tree
 - Encode only high energy coefficients
 - Need to send location info.
 - Large overhead
 - Encode “insignificance map” w/ zero-trees

- Successive approximation quantization
 - Send most-significant-bits first and gradually refine coeff. value
 - “Embedded” nature of coded bit-stream
 - Get higher fidelity image by adding extra refining bits
EZW Algorithm and Example

- **Initial threshold** ~ $2^\lfloor \log_2 x_{max} \rfloor$
 - Put all coeff. in dominant list
- **Dominant Pass** ("zig-zag" across bands)
 - Assign symbol to each coeff. and entropy encode symbols
 - p – positive significance
 - n – negative significance
 - z – isolated zero
 - ztr – zero-tree root
 - Significant coeff. move to subordinate list
 - put zero in dominant list
- **Subordinate Pass**
 - Output one bit for subordinate list
 - According to position in up/down half of quantization interval
 - Repeat with half threshold
 - Until bit budget achieved

Beyond EZW

- **Cons of EZW**
 - Poor error resilience
 - Difficult for selective spatial decoding
- **SPIHT (Set Partitioning in Hierarchical Trees)**
 - Further improvement over EZW to remove redundancy
- **EBCOT (Embedded Block Coding with Optimal Truncation)**
 - Used in JPEG 2000
 - Address the shortcomings of EZW (random access, error resilience, …)
 - Embedded wavelet coding in each block + bit-allocations among blocks
JPEG 2000 Image Compression Standard

JPEG 2000: A Wavelet-Based New Standard

- **Targets and features**
 - Excellent low bit rate performance without sacrifice performance at higher bit rate
 - Progressive decoding to allow from lossy to lossless
 - Region-of-interest (ROI) coding
 - Error resilience

- **For details**
 - JPEG2000 Tutorial by Skrodras @ IEEE Sig. Proc Magazine 9/2001
 - Taubman’s book on JPEG 2000 (on library reserve)
 - Links and tutorials @ http://www.jpeg.org/JPEG2000.htm

Examples

JPEG2K vs. JPEG

Fig. 20: Reconstructed images compressed at 0.25 bpp by means of (a) JPEG and (b) JPEG2000.
DCT vs. Wavelet: Which is Better?

- **3dB improvement?**
 - Wavelet compression was claimed to have 3dB improvement over DCT-based compression
 - Comparison is done on JPEG Baseline

- **Improvement not all due to transforms**
 - Main contribution from better rate allocation, advanced entropy coding, & smarter redundancy reduction via zero-tree
 - DCT coder can be improved to decrease the gap

Summary of Today’s Lecture

- **Wavelet-based coding**
 - Exploring tree-based structure in Wavelet coefficients: EZW
 - JPEG 2000

- **Readings on Wavelet**
 - Gonzalez book: 8.5.3, 8.6.2
 - “A Tutorial on Modern Lossy Wavelet Image Compression” by Usevitch @ IEEE Sig. Proc Magazine 9/2001