

Thansform	Time-Domain	FreqDomain
Forwier-Serves (FS)	cout's periodic $X(t)$ $In = \pm \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} X(t) \tilde{e}^{j2\pi n t/r} dt$ ne ϵ	discrete aperiodic (by Sinusoids at base hurmonic freg.) X(t)=te xn. ej2m
Forwier Transf (FT)	cont's aperiodic $\chi(t)$ $\Sigma(f) = \int_{-\infty}^{+\infty} \chi(t) e^{j2Tft} dt$ (or in $\Omega = 2\pi f$)	Cont's apeniodic $X(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(t) e^{i t} d$
Discrete-Time Formier-Transf. (DTFT)	discrete aperiodic $\chi(n)$ $\chi(w) = \sum_{n=-\infty}^{+\infty} \chi(n) e^{-\frac{1}{2}Wn}$	cout's periodic XCNJ====================================
Discrete Formier Transf. (DFT)	discrete periodic XCAJ X(K) = $\sum_{n=0}^{N-1} X(n) e^{jn k \cdot 2T/N}$	discrete periodic X[n]=N 5 S(K JIK2T/N

Suppressing Noise via Spatial Averaging

- Image with iid noise y(m,n) = x(m,n) + N(m,n)
- Averaged version $v(m,n) = (1/N_w) \Sigma x(m-k, n-l) + (1/N_w) \Sigma N(m-k, n-l)$
- Noise variance reduced by a factor of N_w
 - $N_w \sim \#$ of pixels in the averaging window
- SNR improved by a factor of Nw if *x*(*m*,*n*) is constant in local window
- Window size is limited to avoid blurring

Lec5 – Spatial Filtering

D	irectional Smoothing	
Vu © 2001)	Problems with simple spatial averaging r - Edges get blurred Improvement	mask
	 Restrict smoothing to along edge direction Avoid filtering across edges 	θ
UMCP ENEE631 Slide	 Directional smoothing Compute spatial average along several direct Take the result from the direction giving the before & after filtering 	W_0 • • • • • • • • • • • • • • • • • • •
•	Other solutions Use more explicit edge detection and adapt fill 	ltering accordingly
8	ENEE631 Digital Image Processing (Spring'06)	Lec5 – Spatial Filtering [20]

