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Abstract—In this paper, a binary hypothesis distributed detection
problem in correlated wireless sensor networks with cooperative relays
deployment is considered. In particular, the effect of correlation
between sensor nodes is modeled and analyzed in Rayleigh flat fading
channels in order to explore the natural tradeoffs between the number
of sensor/relay nodes and the detection error performance in the
network. Specifically, two communication protocols are utilized; in
Protocol I, each sensor node communicates its observation directly
to the fusion center while in Protocol II, Amplify-and-Forward (AF)
cooperative relays are deployed and a fewer number of sensors is
used. Based on the theoretical analysis and simulations, it is revealed
that employing less sensor nodes and instead deploying relay nodes
results in significant performance gains under strict network power
constraint. It is concluded that with cooperative distributed detection
and exploitation of spatial diversity, better detection error performance
is achieved as well as reduction in the required number of sensor nodes.

Index Terms—Amplify-and-Forward (AF), cooperation, correlation,
modeling, Rayleigh, relays, sensor networks

I. INTRODUCTION

COOPERATIVE relay networks have recently attracted much
attention in the wireless research literature due to their ability

to combat fading effects and increase system capacity. Motivated
by applications in wireless sensor networks (WSNs) [1]; the idea
of cooperation among spatially distributed sensor nodes has gained
an increasing interest [2][3]. However, due to the limited power,
memory and processing capabilities of such nodes, the design of
cooperative communication protocols taking into account different
network parameters is particularly attractive in order to achieve
efficiency in power consumption and bandwidth utilization and also
for accurate detection [4]. On the other hand, due to the spatial
correlation of sensor nodes, sending all the local observations from
sensors can be inefficient in terms of network resources utilization.
This in turn suggests that correlation among sensors can be exploited
such that correlated sensors can cooperate and share transmission
channels via relays deployment.

In research literature, several variants of the distributed detection
problem of correlated observations have been studied. For instance,
in [5], the optimal constellation size and number of MIMO coop-
erating nodes have been analytically quantified with respect to the
correlation coefficient where it was shown that optimal constellation
size is an increasing function of the correlation coefficient while
the optimal number of MIMO cooperating nodes is a decreasing
function of the correlation coefficient. The authors in [6] considered
the problem of determining whether it is better to use a few high-
cost, high power nodes or to use many low-cost, lower power
nodes in a system, where the correlated observations are obtained
from the nodes distributed uniformly on a straight line. In [7], it
was shown that the distributed detection of deterministic signals in

additive Gaussian noise with a set of identical binary sensors is
asymptotically optimal as the number of observations per sensor
approaches infinity.

In this paper, the problem of distributed detection of correlated
observations with relays deployment in the wireless sensor networks
is considered. The wireless sensor network performance is studied
in Rayleigh fading channels in order to explore the natural tradeoffs
between the total number of sensor/relay nodes, degree of correlation
and detection error performance. In particular, the main question to
be addressed in this paper is: under strict network power constraint,
is it better to employ many spatially correlated sensors or to have a
fewer number of correlated sensors paired with cooperating relays?

Contributions of this paper include proposing a model suitable
for the analysis of wireless sensor networks with correlated obser-
vations, along with the effect of path-loss and inter-sensor separation
on the detection error performance for arbitrary N number of
sensor/relay nodes. Furthermore, the effect of correlation is analyzed
in Rayleigh fading channels through two protocols where it will
be shown that using fewer sensors with relays can improve the
network’s detection performance significantly depending on the
spatial separation/correlation and also reduces the number of sensor
nodes required for the optimal detection performance under strict
network power constraint.

In the remainder of this paper, the system model and network
protocols are presented in Sections II and III, respectively. In Section
IV, the proposed wireless sensor network model is discussed; while
in Section V, the theoretical error performance for each network
protocol in Rayleigh fading channels is derived. Simulation results
and performance evaluation of the network protocols are presented
in Section VI. Finally, conclusions are drawn in Section VII.

II. SYSTEM MODEL

In this section, the distributed detection with correlated observa-
tions problem is described. A wireless sensor network with N sensor
nodes are used to sense a particular phenomenon after which their
observations are communicated to the fusion center for decision-
making. In this work, dumb sensor nodes are assumed (i.e. they do
not perform any local decisions due to their limited capabilities).
In addition, the specific case of correlated spatial data X gathering
is modeled using the Gaussian Random Field model [8] which is
given by the N-dimensional multi-variate normal distribution

f(X) =
1

(2π)N/2|ΦN |1/2
exp

(
−1

2
(X−m)HΦ−1

N (X−m)

)
, (1)

where m ≡ E[X] is the means vector and ΦN , E[(X − m)(X −
m)H ] is the covariance matrix of X. The diagonal elements of
ΦN (symmetric and positive-definite) are the measurement noise
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Fig. 1. Network Protocols

variances of each sensor node ΦN,ii = σ2. The rest of the coeffi-
cients in ΦN (for i 6= j) are expressed as ΦN,i,j = σ2ρi,j , where
ρi,j = exp(−λd2

Si,j
) is the inter-sensor distance dSi,j

dependent
correlation coefficient, and λ is a medium-dependent correlation
decay factor.

The work under consideration is formulated as a binary hypothesis
testing problem where the measured data from the sensor nodes
are based on two hypotheses, namely H1 and H0, in which the
former hypothesis indicates the presence of the phenomenon within
the sensor network while the latter indicates its absence. Thus, the
vector of measured data X under each hypotheses is given by

H0 : X ∼ CN (0, ΦN )
H1 : X ∼ CN (m, ΦN ),

(2)

where X , CN (m,ΦN ) denotes the complex correlated Gaussian
random variables.

III. NETWORK PROTOCOLS

In this section, the network transmission protocols are presented.
In Protocol I, each sensor transmits its sensed observation directly to
the fusion center without employing any intermediate relay nodes;
while in Protocol II, sensor nodes are paired with amplify-and-
forward (AF) relay nodes deployed closer to the fusion center.
The network protocols assume a simple geometric path-loss that
is proportional to 1/dα where α is the path-loss exponent and d is
the distance between the sensor/relay nodes and the fusion center.

A. Protocol I

In Protocol I (shown in Fig. 1a), each sensor directly transmits
its observations to the fusion center where uncoded transmission
at each sensor node is assumed. The received signals at the fusion
center from two different sensors Si and Sj are expressed as

ysi,f =
√

Psid
−α
si,fhsi,fxi + nsi,f , (3)

and
ysj ,f =

√
Psj d

−α
sj ,fhsj ,fxj + nsj ,f , (4)

respectively; where hsi,f and hsj ,f are the channel coefficients from
the Si and Sj sensor nodes to the fusion center and are modeled as
zero-mean complex Gaussian random variables with variance 1/2
per dimension. In addition, Psi and Psj are the transmission power
assigned to sensors Si and Sj respectively and are selected to satisfy
a total power constraint PT while nsi,f and nsi,f are the additive
white Gaussian noise at the fusion center. In this protocol, all the
N nodes are utilized as sensors for the transmission of observations
(i.e. |S| = N ) (where S is the set of all the sensor nodes in the
network) and it is assumed that sensor node Sj is closer to the
fusion center than sensor node Si (i.e. dsj ,f < dsi,f ).

B. Protocol II

In Protocol II (Fig. 1b), the farther sensor node Si is paired with
a known neighboring cooperative relay node Rk located at drk,f

from the fusion center. In the AF relaying, signal transmissions are
separated into two phases through orthogonal channels by using
either TDMA or FDMA [9]. In Phase 1, sensor node Si transmits
its observation xi with power Psi where the received signals at the
fusion center ysi,F and at the relay node ysi,rk

are

ysi,f =
√

Psid
−α
si,fhsi,fxi + nsi,f , (5)

and
ysi,rk =

√
Psid

−α
si,rkhsi,rkxi + nsi,rk , (6)

respectively; where hsi,f and hsi,fk
are the fading channel coeffi-

cients from sensor Si to the fusion center and to the Rk relay node,
respectively; whereas, dsi,f and dsi,rk

are the distances from Si

to the fusion center and to Rk relay node, respectively and nsi,f

and nsi,rk
are the white Gaussian noise. In Phase 2, the relay node

amplifies the received signal and forwards it to the destination with
transmit power Prk

. The received signal at the fusion center can be
written as

yrk,f =
√

P̃rkd−α
rk,fhrk,fysi,rk + nrk,f

=
√

P̃rkPsid
−α
si,rkd−α

rk,fhrk,fhsi,rkxi + ñrk,f ,
(7)

where ñrk,f =
√

P̃rk
d−α

rk,fhrk,fnsi,rk
+ nrk,f . In addition, P̃rk

rep-
resents the normalized transmit power and is chosen to ensure a
transmit power at the relay node of Prk

and thus is specified as
P̃rk

= (Prk
)/(Psid

−α
si,rk

|hsi,rk
|2σ2 + No). Furthermore, drk,f is the

distance from the relay to the fusion center, hrk,f is the channel
coefficient between the kth relay node to the fusion center and
nrk,f is the additive Gaussian noise. It should be noted that the
noise nsi,f , nsi,rk

and nrk,f are modeled as independent complex
Gaussian random variables with zero means and variance No. In
this protocol the N nodes in the network are split into two sets S
and R representing sensor and relay nodes respectively with equal
cardinality (i.e. |S| = |R| = N/2) since each sensor node is paired
with a cooperating relay node.

IV. WIRELESS SENSOR NETWORK MODEL

In this section, a wireless sensor network model suitable for
correlation analysis amongst sensor nodes is discussed. The sen-
sor/relay nodes are uniformly distributed over a circular area with
three concentric circles with the fusion center at the center as
illustrated in Fig. 2 for N = 4 for both protocols. The two larger
circles of radii dso,f and dse,f contain two sets (SO and SE) of
uniformly distributed odd-numbered (S1, S3, ..., SN−1) and even-
numbered (S2, S4, ..., SN ) sensor nodes respectively. On the other
hand, the smallest circle contains the set of relay nodes R with
radius of dr,f and uniformly deployed (R2, R4, ..., RN ) with even-
numbered indices such that (dso,f > dse,f > dr,f ). That is, the
relays are deployed closer to the fusion center than the two sets
of sensor nodes. Also, every sensor (in the outer circle - set SO)
is separated from its cooperating nodes by a distance dso,r. This
circular model as will be seen in later sections simplifies the analysis
greatly as all the nodes in SO are of equal distance dso,f from the
fusion center and so are the nodes in SE and R with distances dse,f

and dr,f respectively. The proposed model also introduces symmetry
that allows matrix decompositions of covariance matrices and makes
the analysis of a network of N nodes mathematically tractable.
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Fig. 2. Wireless Sensor Network Model

In this model, it is assumed that the sensors, relays and the fusion
center are stationary and each node (sensor/relay) knows its own and
its neighbors distances from the fusion center (on the concentric
circles). In addition, the sensor nodes in each of the sets SO and
SE are allocated a total power of PO and PE , respectively under
Protocol I such that PT = PO + PE . In Protocol II, the relay nodes
in the set R are allocated a total power of PR such that the network
power constraint is PT = PO + PR.

V. PERFORMANCE ANALYSIS

In this section, the probability of detection error Pe expressions
of the two network protocols are derived, which are then compared
as function of the correlation coefficient between the sensor nodes
to determine when Protocol I or Protocol II should be used. To
simplify notation and the analysis, it is assumed (without loss of
generality) for both protocols, that all the nodes in each set have
equal power, i.e. Pso = Psoi for ∀i ∈ SO, Pse = Psej for ∀j ∈ SE
and Pr = Prk

for ∀k ∈ R. Also, let dso,f = dsoi,f , dse,f = dsej ,f

and dr,f = drk,f in each set. Furthermore, it is assumed that all the
measured data have the same mean (i.e. under H1 all sensor nodes
measure the same phenomenon with the same real mean mi = m
for i = 1, ..., N , within an area A).

Given the foregoing system model and protocols, the optimal
likelihood decision rule at fusion center of the received observations
over Rayleigh fading channels can be derived as follows. Let π0 and
π1 denote the prior probabilities for H0 and H1, respectively where
it is assumed for simplicity that π0 = π1 = 1/2. The N-dimensional
received observations vector YN (assuming perfect channel state
information (CSI) at the fusion center) under each hypothesis is
given by

H0 : YN ∼ CN (0, ΣN )
H1 : YN ∼ CN (µN , ΣN ),

(8)

where µN , E[YN] is the means vector and ΣN , E[(YN −
µN )(YN−µN )H ] is the covariance matrix of the received observa-
tions. The optimal test for minimizing the probability of detection
error is the likelihood ratio test (LRT) given by [10]

1

(2π)N/2|ΣN |1/2 exp{− 1
2
(YN − µN )HΣ−1

N (YN − µN )}
1

(2π)N/2|ΣN |1/2 exp{− 1
2
YN

HΣ−1
N YN}

≷
H1

H0
1. (9)

The decision rule can be further simplified and expressed in
terms of the sufficient statistic to T (YN) = 1

2µH
NΣ−1

N YN +
1
2YN

HΣ−1
N µN ≷H1

H0

1
2µH

NΣ−1
N µN where it should be noted that

T (YN) is linear transformation of the Gaussian random vector
YN and it characterizes its distributions under H0 and H1 by

finding its means and variances under each hypothesis as PH0(T ) ∼
CN (0, µH

NΣ−1
N µN ) and PH1(T ) ∼ CN (µH

NΣ−1
N µN , µH

NΣ−1
N µN )

[11]. By defining probabilities of detection error conditioned on
hypotheses H0 and H1 as Pε|H0 and Pε|H1 , respectively; the
conditional probability of detection error is expressed as

Pe = π0Pε|H0 + π1Pε|H1 = E

{
Q

(
1

2

√
µH

NΣ−1
N µN

)}
, (10)

where Q(u) , 1√
2π

∫∞
u

exp
(
− t2

2

)
dt is the Gaussian Q-function

and the expectation is taken with respect to the channel statistics.
It should be noted that finding a closed-form expression for the
expectation in (10) is in general very difficult; thus, it will be
numerically evaluated in the performance evaluation section.

A. Protocol I - A Two Sensors Network

In this section, the probability of error detection of the N = 2
sensors network (shown in Fig. 1a) under Protocol I is derived. The
received observation vector is defined as YI,2 = [ys1,f ys2,f ]T

(see (3) and (4)) which is employed by the fusion center to decide
between the two hypothesis. It can be shown that the data model
under hypothesis H0 is written as YI,2 = CN (0,ΣI,2) while under
H1 is given by YI,2 = CN (µI,(1,2),ΣI,2). The vector of means can

be shown to be µI,(1,2) = [
√

Psod
−α
so,fhs1,fm

√
Psed

−α
se,fhs2,fm]T ,

where hs1,f and hs2,f are the channel coefficients from sensors
S1 and S2, respectively. Furthermore, ΣI,2 is the covariance ma-
trix of the received observations vector YI,2 defined as shown in
(11) (next page), which can be expressed in the matrix form as
ΣI,2 = (Γ(1,2))HΩ2Γ(1,2) + NoI where (.)H is the hermitian of the
parameter matrix, I is the identity matrix of appropriate dimensions
and matrices Γ(1,2) and Ω2 are defined as

Γ(1,2) =




√
Psod−α

so,f σ2h∗s1,f 0

0
√

Psed−α
se,f σ2h∗s2,f


 , (12)

and
Ω2 =

(
1 ρ1,2

ρ1,2 1

)
, (13)

respectively. Hence, the probability of detection error can be ex-
pressed as Pe,I = E

{
Q

(
1
2

√
(µI,(1,2))H(Σ2)−1µI,(1,2)

)}
which

after some manipulation can be written as shown in (14) (next
page). For the case where sensor nodes S1 and S2 have independent
observations (i.e. ρ1,2 = 0), the probability of detection error can
be expressed as

Pe,I = E



Q


1

2

√√√√ Pso|hs1,f |2d−α
so,f m2

Pso|hs1,f |2d−α
so,f σ2 + No

+
Pse|hs2,f |2d−α

se,f m2

Pse|hs2,f |2d−α
se,f σ2 + No






 .

(15)

B. Protocol I - N Sensors Network

The analysis is extended to the case of arbitrary large N number
of sensors in the network (where N is even). The N nodes are
split into two sets SO and SE of equal cardinality. Due to the
symmetry of the model, the N − dimensional vector of received
observations is YI,N =

[
ys1,f ys2,f · · · ysN−1,f ysN ,f

]T
for

which the covariance matrix ΣI,N can be expressed as ΣI,N =
(ΓN )HΩNΓN + NoI and matrices ΩN and ΓN are given by

ΩN =




1 ρ1,2 · · · ρ1,N

ρ1,2 1 · · · ρ2,N

...
...

. . .
...

ρ1,N ρ2,N · · · 1


 , (16)
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ΣI,2 =


 Psod−α

so,f |hs1,f |2σ2 + No

√
PsoPsed−α

so,f d−α
se,f hs1,f h∗s2,f σ2ρ1,2√

PsoPsed−α
so,f d−α

se,f h∗s1,f hs2,f σ2ρ1,2 Psed−α
se,f |hs2,f |2σ2 + No


 (11)

Pe,I = E



Q


1

2

√√√√ 2PsoPse|hs1,f |2|hs2,f |2(d−α
so,f d−α

se,f )m2σ2(1− ρ1,2) + Nom2(Pso|hs1,f |2d−α
so,f + Pse|hs2,f |2d−α

se,f )

PsoPse|hs1,f |2|hs2,f |2(d−α
so,f d−α

se,f )σ4(1− ρ2
1,2) + Noσ2(Pso|hs1,f |2d−α

so,f + Pse|hs2,f |2d−α
se,f ) + N2

o






 (14)

Pe,I = E



Q


1

2

√√√√ ∑

i∈SO

Pso|hsi,f |2d−α
so,f m2

Pso|hsi,f |2d−α
so,f σ2 + No

+
∑

j∈SE

Pse|hsj ,f |2d−α
se,f m2

Pse|hsj ,f |2d−α
se,f σ2 + No






 (21)

ΣII,2 =


 Psod−α

so,f |hs1,f |2σ2 + No

√
P̃(1,2)PsoPrd−α

so,f d−α
r,f hs1,f h∗r2,f h∗s1,r2

σ2

√
P̃(1,2)PsoPrd−α

so,f d−α
r,f h∗s1,f hr2,f hs1,r2σ2 Prd−α

r,f |hr2,f |2 + No


 (22)

Pe,II = E



Q


1

2

√√√√m2No(Psod−α
so,f |hs1,f |2 + P̃(1,2)Prd−α

r,f |hr2,f |2|hs1,r2 |2) + PsoPr|hs1,f |2|hr2,f |2d−α
so,f d−α

r,f m2(1− P̃(1,2)σ
2)

PsoPr|hs1,f |2|hr2,f |2d−α
so,f d−α

r,f σ2(1− P̃(1,2)|hs1,r2 |2σ2) + No(Psod−α
so,f |hs1,f |2σ2 + Prd−α

r,f |hr2,f |2) + N2
o






 (25)

and

ΓN =




Γ(1,2) 0 · · · 0
0 Γ(3,4) · · · 0

...
...

. . .
...

0 0 · · · Γ(N−1,N)


 , (17)

respectively; where in general

Γ(i,j) =




√
Psod−α

so,f σ2h∗si,f 0

0
√

Psed−α
se,f σ2h∗sj ,f


 . (18)

Furthermore, the vector of means µI,N can expressed as

µI,N =
[
µI,(1,2) µI,(3,4) · · · µI,(N−1,N)

]T
, (19)

where; µI,(i,j) = [
√

Psod
−α
so,fhsi,fm

√
Psed

−α
se,fhsj ,fm]T . There-

fore, the probability of detection error is given by

Pe,I = E

{
Q

(
1

2

√
(µI,N )H(ΣI,N )−1µI,N

)}
. (20)

Since it is difficult to specify an arbitrary correlation matrix ΩN

that allows fair comparison between the protocols and due to the
fact that the aim of this investigation is to characterize the effect
”degree” of correlation and the optimum error performance; two
extreme scenarios are considered, namely the Equally-Correlated
Scenario (ECS) and the Mutually-Independent Scenario (MIS) [12].

In the Equally-Correlated Scenario, it is assumed that the N
sensors are distributed in the wireless network such that every pair
of sensor nodes are equi-correlated (i.e. ρi,j = ρ for i 6= j in ΩN ).
In this case, the probability of detection error is evaluated by (20).

In the Mutually-Independent Scenario, the N sensors in the two
sets SE and SO are spatially separated far enough from each other
such that ρi,j ≈ 0 for i 6= j. Therefore, due to the symmetry of the
model, it can be easily shown that the probability of detection error
is expressed as shown in (21). It should also be noted that under
MIS, the optimal lower bound error performance is achieved.

C. Protocol II - A Sensor with a Relay Network

The probability of detection error of Protocol II (shown in Fig.
1b) is analyzed in this section. It is noteworthy that in this case,
there is no correlation between the sensor and the relay nodes since
the former node takes measurements of the phenomenon while the

latter node only amplifies and forwards the received signals from
the source sensor node (see (5-7)). Under protocol II, the received
signal vector YII,2 = [ys1,f yr2,f ]T and the data model under
hypotheses H0 and H1 are given by YII,2 = CN (0, ΣII,2) and
YII,2 = CN (µII,(1,2),ΣII,2), respectively. The covariance matrix
ΣII,2 is shown in (22) which can be expressed in matrix form as
ΣII,2 = (Υ(1,2))HΩ(1,2)Υ(1,2) + NoI where

Υ(1,2) =




√
Psod−α

so,f σ2h∗s1,f 0

0
√

Prd−α
r,f h∗r2,f


 , (23)

Ω(1,2) =


 1

√
P̃(1,2)σ

2h∗s1,r2√
P̃(1,2)σ

2hs1,r2 1


 , (24)

and P̃(1,2) = (Psod
−α
so,r)/(Psod

−α
so,r|hs1,r2 |2σ2 + No).

The vector of means can be expressed as,
µII,(1,2) = [

√
Psod

−α
so,fhs1,fm

√
P̃(1,2)Prd

−α
r,f hr2,fhs1,r2m]T .

In this case, the probability of detection error can be written as
shown in (25).

D. Protocol II - N Nodes Network

In this case, the N nodes in the network are split into two
sets; SO and R. However, it should be noted that in this case,
the measurements obtained from each of the sensors in the set
SO can be correlated. For example, for (N = |R|+ |SO| = 4), the
observations from sensors S1 and S3 (paired with relays R2 and
R4, respectively) are correlated by ρ1,3 that is a function of the
distance ds1,3 between them. For a network with arbitrary N nodes,
the N − dimensional vector of received observations is YII,N =[
ys1,f yr2,f · · · ysN−1,f yrN ,f

]T where the covariance ma-
trix can be shown to have the form ΣII,N = (ΥN )HΩNΥN +NoI.
In addition, every pair of sensors in SO can be correlated depending
on their inter-sensor separation. In general, it can be easily shown
that for (N ≥ 4), the matrix ΥN can be expressed as

ΥN =




Υ(1,2) 0 · · · 0
0 Υ(3,4) · · · 0

...
...

. . .
...

0 0 · · · Υ(N−1,N)


 (26)
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ΩN =




Ω(1,2) ρ1,3Θ(1,2),(3,4) · · · ρ1,N/2−1Θ(1,2),(N−1,N)

ρ1,3Θ(3,4),(1,2) Ω(3,4) . . . ρ3,N/2−1Θ(3,4),(N−1,N)

...
...

. . .
...

ρ1,N/2−1Θ(N−1,N),(1,2) ρ3,N/2−1Θ(N−1,N),(3,4) · · · Ω(N−1,N)




(28)

Pe,II = E





Q


1

2

√√√√√
∑

(i,k)∈(SO,R)

m2No(Psod−α
so,f |hsi,f |2 + P̃(i,k)Prd−α

r,f |hrk,f |2|hsi,rk |2) + PsoPr|hsi,f |2|hrk,f |2d−α
so,f d−α

r,f m2(1− P̃(i,k)σ
2)

PsoPr|hsi,f |2|hrk,f |2d−α
so,f d−α

r,f σ2(1− P̃(i,k)|hsi,rk |2σ2) + No(Psod−α
so,f |hsi,f |2σ2 + Prd−α

r,f |hrk,f |2) + N2
o








(32)

where in general Υ(i,k) is defined as

Υ(i,k) =




√
Psod−α

so,f σ2h∗si,f 0

0
√

Prd−α
r,f h∗rk,f


 . (27)

The matrix ΩN has the structure shown in (28) where

Ω(i,k) =


 1

√
P̃(i,k)σ

2h∗si,rk√
P̃(i,k)σ

2hsi,rk 1


 , (29)

for P̃(i,k) = (Psod
−α
so,r)/(Psod

−α
so,r|hsi,rk

|2σ2 + No) and Θ(i,j),(k,l)

can be expressed as

Θ(i,j),(k,l) =


 1

√
P̃(k,l)σ

2h∗sk,rl√
P̃(i,j)σ

2hsi,rj

√
P̃(i,j)P̃(k,l)σ

2hsi,rj h∗sk,rl


 . (30)

In addition, the vector of means is given by

µII,N =
[
µII,(1,2) µII,(3,4) · · · µII,(N−1,N)

]T
, (31)

where; µII,(i,k) = [
√

Psod
−α
so,fhsi,fm

√
P̃(i,k)Prd

−α
r,f hrk,fhsi,rk

m]T .
Under the Equally-Correlated Scenario, the proba-
bility of detection error can be determined using,
Pe,II = E

{
Q

(
1
2

√
(µII,N )H(ΣII,N )−1µII,N

)}
while for

the mutually independent scenario, the probability of detection
error is given by (32).

VI. PERFORMANCE EVALUATION OF NETWORK PROTOCOLS

In this section, performance evaluation of both protocols under
consideration in Rayleigh fading channels are compared in terms
of the derived probability of detection error Pe. To allow a fair
comparison between the performance of the network protocols, it
is assumed that within a particular area A, the total network power
constraint PT of N nodes is equally distributed amongst all nodes.
That is, under protocol I, Pso = Pse = PT /N for all the sensor
nodes while under protocol II, Pso = Pr = PT /N for all sensor
and relay nodes. This in turn implies that the power allocation per
each node decreases linearly with the increase in the total number
of nodes in the network area A. The simulation parameters of the
network protocols are as follows. The measurement noise variance
is σ2 = 0.01 while the mean of measurements is m = 1. In addition,
the path-loss exponent is α = 3 and the correlation decay factor is
λ = 0.05. The distance from the sensors in SO and SE and the relays
in R are dso,f = 4.5, dse,f = 3.5 and dr,f = 2.5, respectively.

Fig. 3 illustrates the Pe for Protocol I with N = 2. As explained in
the proposed model, different inter-sensor separations result in dif-
ferent correlation coefficients since ρ1,2 = exp(−λd2

s1,2
). Therefore,

it is clear that as the inter-sensor separation increases, the correlation
coefficient decreases and the error performance improves. This is
to be expected since the lower the correlation, the more statistically
independent the observations become; hence more information is fed
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Channel for different ρ values (as a function of ds1,2 )
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Fig. 4. Protocol II - Probability of Detection Error for N = 2 in Rayleigh Fading
Channel for different values of inter-sensor/relay separation dso,r

to the fusion center which in turn results in better error detection
performance. Also shown, the case where both sensors S1 and S2

are far away from each other since that their correlation coefficient
ρ1,2 = 0 (i.e. uncorrelated) and this achieves the optimal (lower
bound) error performance of Protocol I as a function of ρ1,2.

Under Protocol II for N = 2 (Fig. 4), it can also be seen that as
the inter-sensor/relay distance dso,r increases, the error performance
degrades. This is due to the fact that farther apart the sensor and the
relay become, the weaker the received signal and hence the worse the
performance. Hence, the closer the sensor to the cooperating relay,
the better the performance, and in this case, the closest the sensor
to the cooperating relay node is when dso,r = 2 (since dso,f = 4.5
and dr,f = 2.5 and hence the relay node is on a straight line and in
the middle between the sensor and the fusion center).

In order to determine when it is better to use Protocol I (as a
function of ds1,2 ) or Protocol II (as a function of dso,r) for the
simple N = 2 network, the error performance at PT /No = 40dB is
plotted in Fig. 5. It can be seen that for inter-sensor/relay distances
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Fig. 6. Protocol I vs. Protocol II - Equally-Correlated Scenario in the Rayleigh
Fading Channel for PT /No = 40dB

less than 3, Protocol II outperforms Protocol I. In other words, if
two sensors S1 and S2 have inter-sensor separation ds1,2 < 3, then
it would be better to not use S2 for transmission but instead pair
sensor node S1 with the cooperating relay R2 (closer to the fusion
center) to amplify-and-forward the transmitted observations of S1

with inter-sensor/relay separation dso,r < 3. It is also evident from
Figs. (4 and 5) that the sensor/relay separation when dso,r = 2 gives
the best performance for Protocol II. Thus, it will be assumed in the
subsequent simulation results.

In Fig. 6, the performance of Protocol I and Protocol II for
N ≥ 4 (under the ECS) as a function of ρ is evaluated. As noticed
earlier, when the correlation amongst the observations increases,
the performance of the network degrades. It is also clear that the
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Fig. 7. Protocol I vs. Protocol II - Mutually Independent Scenario in the Rayleigh
Fading Channel

performance of Protocol II with N = 4 outperforms that of Protocol
I with N = 4, N = 6 and N = 8. Also, the performance of
Protocol II with N = 6 is significantly better than Protocol I with
N = 12 and N = 16. This implies that with relays deployment, the
network detection error performance is improved significantly due
to the spatial diversity achieved by cooperation. Therefore, sending
many observations from sensors nodes does not necessary improve
the detection performance significantly. However, by cooperatively
relaying a fewer number of observations (i.e. with a fewer number
of sensor/relay nodes), greater detection reliability is achieved at the
fusion center.

In Fig. 7, Protocols I and II are evaluated under the MIS. It
can be seen that Protocol II outperforms Protocol I for different
numbers of nodes. It is also clear that increasing the number of
sensor/relay nodes beyond N = 12 does not improve the error
performance significantly given the power constraint PT on the
network. In addition, the performance obtained from Protocol II with
N = 8 sensor/relay nodes is better than the performance obtained
from Protocol I with (N ≥ 12) sensor nodes as was shown earlier.

VII. CONCLUSIONS

In this paper, a wireless sensor network model suitable for the
analysis of direct transmission of observations from sensor nodes
(Protocol I) as well as cooperative (AF) relay nodes (Protocol II) is
proposed. It was demonstrated that the proposed model facilitates
the analysis of the theoretical performance for possibly correlated
observations from sensors with relays deployment. It has also been
shown that for a simple network with only two nodes, Protocol II
outperforms Protocol I when the observations are highly correlated
(sensor nodes are in close proximity of each other) and thus it is
better to employ a single sensor with a cooperating relay node. On a
larger scale (for N ≥ 4), it was shown that employing many sensor
nodes does not necessarily achieve the best network detection error
performance. However, by employing relays, significant detection
error performance gains are achieved from diversity and also a
reduction in the total number of nodes required for optimal detection.
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