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Recent development in multimedia and network technologies has made possible

the ubiquitous sharing and distribution of multimedia over networks. However, il-

legal alteration and unauthorized copying of multimedia data pose serious threats

to multimedia security and intellectual property rights, especially considering the

ease manipulation of digital data. Therefore, it is critical to secure and protect

multimedia content, and to ensure the integrity of rights by authorized users solely

for intended purpose. Digital fingerprinting is an emerging technology to address

post-delivery content protection and to enforce digital rights. In digital finger-

printing, unique identification information is embedded in each distributed copy,

and is used to trace and identify the source of illicit copies. Such a traitor tracing

is a fundamental problem in multimedia forensics, as well as an important tool for

enforcing digital rights.



This thesis addresses various issues in multimedia fingerprinting. We first inves-

tigate the order statistics based nonlinear collusion attacks on digital fingerprint-

ing, and analyze their effectiveness in defeating the fingerprinting systems. We also

compare the performance of several commonly used detection statistics under col-

lusion. We then examine the impact of scalable video coding and transmission on

digital fingerprinting systems and collusion attacks. We analyze the effectiveness of

the collusion attacks under the constraints that all colluders have equal probability

of detection, and analyze the collusion resistance of scalable fingerprinting systems.

We then consider the problem of traitors within traitors in digital fingerprinting,

in which some selfish colluders wish to minimize their own risk of being captured

while still profiting from the illegal redistribution of multimedia. We investigate

the possible strategy by the selfish colluders to reduce probability of detection, and

analyze their performance under the quality constraints. We also investigate the

possible countermeasures by other colluders to protect their own interest. Finally,

we investigate the secure distribution of fingerprinted copies for video streaming

applications, and propose two secure fingerprint multicast schemes. We analyze

their performance, including the communication cost and the robustness against

collusion attacks, and discuss the tradeoff between the bandwidth efficiency and

computation complexity.
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Chapter 1

Introduction

1.1 Motivation

In the past decades, we have witnessed the revolution of digital information tech-

nology and its significant impact on our daily lives. The popularity of digital

camera, digital camcorder, MP3 player and DVD player, have inspired people all

over the world to create and enjoy multimedia in digital domain. Furthermore, the

ubiquity of broadband networks and the advance in multimedia technologies have

proliferated the delivery and sharing of multimedia data over networks.

However, illegal alteration, repackaging and unauthorized redistribution of mul-

timedia have serious consequences on governmental and military operations as well

as commercial applications. Attackers can easily alter the multimedia content, pro-

duce copies of high quality and redistribute without authorization, which threatens

multimedia security and intellectual property rights. Consequently, it is critical to

secure multimedia transmission and to protect the rights of content providers.

Take commercial applications as an example, the U.S. copyright industries,

including pre-recorded records and tape, motion pictures and videos, play a key
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role in the U.S. economy. In Year 2002, the estimated value added for the copyright

industries was $514.4 billion and 4.91% of the U.S. Gross domestic Product (GDP).

However, piracy drastically affected the sales revenue for these copyright industries

in Year 2002. For example, total foreign sales revenue for the copyright industries

grew by only 1.1% from 2001 to 2002 – a dramatic decline from 1999 where growth

was at 14.5% from 1998, largely attributed to piracy [51]. Consequently, content

protection and digital rights enforcement are crucial to safeguard this valuable

economic resource of copyright industries.

Digital rights management systems incorporate encryption, conditional access,

copy control, and media identification and tracing, and aim to protect the mul-

timedia security and the intellectual property rights [5, 27, 46]. Some important

standardization groups and bodies that have been working on DRM systems and

the integration of security into multimedia frameworks are the International Orga-

nization for Standardization (ISO) MPEG, Secure Digital Music Initiative (SDMI),

DVD/Copy Protection Technical Working Group (CPTWG), *C, Open Platform

Initiative for Multimedia Access (OPIMA), Digital Video Broadcasting (DVB),

Digital Audio-Visual Council (DAVIC), Bluetooth Special Interest Group, TV any-

time, etc. [27]

Access control and multimedia forensics are two fundamental modules in digital

rights management systems to protect content security and prohibit unauthorized

alteration and distribution of multimedia data. First, encryption and access control

protects the secure transmission of multimedia information over networks and con-

trols access to multimedia content [21,39,49,57,70]. Secondly, multimedia forensics

helps a digital rights enforcer to detect the illegal tampering on multimedia content

and to identify the people who generate the illicit copies [5, 27, 46, 71]. These two

2



approaches are complementary to each other: access control prevents unauthorized

users from accessing multimedia content, while multimedia forensics detects, and

therefore thwarts, illegal manipulation and redistribution of multimedia by users

who have access to the clear text representation.

Digital watermarking is one emerging technology in multimedia forensics and

offers the protection of multimedia content after the data are decrypted into clear

text [12,35,43,69]. In digital watermarking, a secondary information, often called

watermark, is seamlessly attached to the primary multimedia data (also called

host signal), and can be used for various purposes (e.g., ownership protection

and authentication) depending on the applications and requirements. Compared

with other possible solutions, digital watermarking has the advantage that the

embedded watermark is seamlessly bounded to and travels with the host signal,

which is desirable in many applications.

Digital fingerprinting is one application of digital watermarking, whose pur-

pose is to trace the distribution of multimedia and identify the source of illicit

copies [13,58,71]. Such a traitor tracing technique forces culprits to be responsible

for their behavior, and is a fundamental tool in multimedia forensics. In digital

fingerprinting, unique identification information is embedded in each distributed

copy and serves as a digital fingerprint. Digital fingerprinting applications require

that the embedded fingerprints can survive both common signal processing and

intentional attacks, and therefore, the content owner can still detect the identities

of the attackers with little ambiguity even if the data have been severely distorted.

In addition to the civilian usage in digital rights enforcement, digital finger-

printing can also be used in military applications. One example is to protect

digital maps that contain classified and important information for military and
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intelligence agencies [24,25].

Due to the uniqueness of each distributed copy, there is a cost effective attack

against digital fingerprinting systems, collusion attacks, by several users who re-

ceive copies of the same content but embedded with different fingerprints [3,13,52].

During collusion, the attackers (colluders) gather together, combine information

from different copies and generate a new copy where the original fingerprints are

removed or attenuated. If not properly designed, a fingerprinting system might

fail to detect the traces of any fingerprints under collusion attacks with only a few

colluders. Consequently, multiuser collusion poses new challenges on multimedia

forensics, and a digital fingerprinting system should not only survive attacks on a

single copy [14,28,42], but also be robust against multiuser collusion attacks.

In addition, the uniqueness of each distributed copy also challenges the secure

and efficient distribution of the uniquely fingerprinted copies over networks, espe-

cially for video streaming applications where a large volume of data have to be

transmitted to a large number of users under stringent delay constraints [1,31,65].

A simple solution of unicasting each fingerprinted copy to the corresponding user

is inefficient, since the required bandwidth grows linearly as the number of users

increases while the difference between fingerprinted copies is small. Multicast

technology provides a bandwidth advantage when distributing the same content

to multiple users [7, 11]. It reduces the overall communication cost by duplicating

packages only when routing paths to multiple receivers diverge [41, 59]. However,

traditional multicast technology is designed to transmit the same data to multiple

users, and it cannot be directly applied to fingerprinting applications where differ-

ent users receive slightly different copies. This calls for new distribution schemes

for multimedia fingerprinting, in particular, for networked video applications.
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This thesis addresses the issues regarding traitor tracing in multimedia forensics

and studies various aspects of multimedia fingerprinting.

1.2 Prior Art

The prior work in digital fingerprinting for multimedia forensics can be roughly

divided into three major areas: analysis of the effectiveness of the collusion at-

tacks and the collusion resistance of fingerprinting systems; design of anti-collusion

multimedia fingerprinting systems that jointly consider the multimedia fingerprint

code design, embedding and detection; and investigation of the secure and efficient

distribution of anti-collusion fingerprinted copies over networks.

Analysis of the Collusion Attacks

An important research area in digital fingerprinting is to study the effectiveness

of collusion attacks. It helps to understand the collusion resistance of a digital

fingerprinting system and plays an important role in the design of anti-collusion

fingerprinting systems.

An early work on collusion attack and digital fingerprint code design for generic

data was proposed in [3], which assumed that the colluders can detect a specific

fingerprint code bit if it takes different values between their fingerprinted copies

and can change it to any value. For those bits where different copies have the same

value, it was assumed that the colluders cannot change an undetected bit without

rendering the object useless.

Unlike generic data, multimedia has the unique characteristics that minor vari-

ations on the values will not introduce perceptually noticeable distortion. This

robustness makes it feasible and desirable to embed fingerprints seamlessly into the
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host multimedia data. Fingerprint codes designed based on the above assumptions

are usually too long to be reliably embedded into and extracted from multimedia

data. For generic data, colluders can easily detect a fingerprint code bit if it differs

between different copies and change it to any value. However, for multimedia data

such as images, the embedding is capable of spreading each fingerprint code bit

over the entire content. Thus, different bits embedded additively over the same

region are not distinguishable, neither can they be changed to any value due to

the perceptual quality constrain. Consequently, the above assumptions of the col-

lusion attacks are not always suitable for multimedia data. Instead, the average

attack and those order statistics based nonlinear collusion attacks in [52] are more

common when colluding multimedia data.

In [20], the collusion attack was modeled as averaging different copies followed

by an additive noise, and O(
√

N/ log N) colluders were shown to be enough to

break the fingerprinting system where N is the fingerprint length. Similar results

were given in [32]. The work in [64] studied the relationships between the max-

imum allowable colluders by a fingerprinting system and other parameters, e.g.,

the fingerprint length, the total number of user and system performance require-

ments. The collusion attack model was generalized to linear shift invariant filtering

followed by an additive noise in [54].

In [52], several types of collusion attacks were studied, including a few order

statistics based nonlinear attacks. For uniformly distributed fingerprints, nonlinear

collusion attacks were shown to defeat the fingerprinting system more effectively

than the average attack [52]. Simulation results in [52] also showed that normally

distributed fingerprints are more robust against nonlinear collusion attacks than

uniform fingerprints, but analytical study on the Gaussian fingerprint’s perfor-
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mance was not provided.

Anti-Collusion Fingerprint Design

The ultimate goal of analyzing collusion attacks is to design anti-collusion fin-

gerprinting systems for multimedia forensics. In an early work on collusion secure

fingerprint code design for generic data [3], fingerprint codes of length O(K4 log K)

were proposed to catch at least one out of at most K colluders with an arbitrarily

high probability. Similar work was presented in [9], which focused on tracing the

leakage of decryption keys in broadcast instead of tracing multimedia content.

Improvement was made upon the fingerprint code in [3] by replacing the lower

layer code with direct spread spectrum sequence in [73]. It relaxed the assumptions

in [3] and increased the total number of users that can be supported by three times.

In [22] and [44], new features were introduced in the fingerprint code in [3], such

as dynamic code design and asymmetric fingerprinting.

To address the unique characteristics of multimedia where it is feasible and

desired to embed the fingerprints seamlessly into the host signal, a two-layer fin-

gerprinting design scheme for multimedia was proposed in [75] where the inner code

from spread spectrum embedding [13,47] is combined with an outer error-correcting

code (ECC). The work in [29] jointly considered the fingerprint code design and

multimedia fingerprint embedding and studied the performance of error correction

code (ECC) based fingerprinting systems. In [19], the finite projective geometry

was used to generate codes whose overlap with each other can identify colluding

users. In [58], combinatorial theories were used to design the Anti Collusion Code

(ACC), and several colluder identification schemes were proposed with different

performance tradeoff. In [62], group oriented fingerprinting was proposed where
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prior knowledge of the possible collusion patterns was used to improve the collu-

sion resistance of the fingerprinting systems. Observing that some colluders are

more likely to collude with other due to social or geographical reasons, the group

oriented fingerprint design introduced a well-controlled amount of correlation into

the fingerprints assigned to different users to enhance the traitor tracing capability.

Secure Fingerprint Multicast

To address the secure fingerprint multicast issue, in [10], a two layer fingerprint

design was used where the inner layer of spread spectrum embedding [13] was

combined with the outer fingerprint code of [3]. Two uniquely fingerprinted copies

were generated, encrypted and multicasted, where each frame in the two copies

was encrypted with a unique key. Each user was given a unique set of keys for

decryption and reconstructed a unique sequence. Although their scheme reduced

the bandwidth requirement, their fingerprinting system was vulnerable to collusion

attacks. From their reported results, for a two hour video distributed to 10, 000

users, only when no more than three users colluded could their system detect

at least one colluder correctly with probability 0.9. Similar work was presented

in [6, 33,40].

In [4], the fingerprint design was similar to that of [10], and the sender gener-

ated and multicasted several uniquely fingerprinted copies. In their work, trusted

routers in the multicast tree forwarded differently fingerprinted packets to different

users. In [30], a hierarchy of trusted intermediaries was introduced into the net-

work. All intermediaries embedded their unique IDs as fingerprints into the content

as they forwarded the packets through the network, and a user was identified by

all the IDs of the intermediaries that were embedded in his received copy.
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In [72], fingerprints were embedded in the DC coefficients of the luminance

component in I frames using spread spectrum embedding. For each fingerprinted

copy, a small portion of the MPEG stream, including the fingerprinted DC coeffi-

cients, was encrypted and unicasted to the corresponding user. Their distribution

scheme achieved the bandwidth efficiency by multicasting the rest of the video

content to all users. Since the fingerprints were only embedded in a small number

of coefficients and were of short length, the robustness against collusion attacks

was limited.

A joint fingerprinting and decryption scheme was proposed In [34]. In their

work, the content owner or the service provider encrypted the perceptually relevant

features extracted from the host signal with a secret key KS known to the content

owner/service provider only, multicasted the encrypted content to all users, and

transmitted to each user i a unique decryption key Ki 6= KS. At the receiver’s

side, user i could only partially decrypt the received encrypted bit stream, and

each user reconstructed a different version of the original host signal due to the

uniqueness of the decryption key Ki. In [34], the fingerprint information was

essentially the asymmetric key pair (KS, Ki), and the unique signature from the

partial decryption was used to identify the attacker/colluders.

1.3 Thesis Overview and Contributions

This thesis focuses on the study of the cost effective multiuser collusion on mul-

timedia fingerprinting as well as secure fingerprint multicast in networked video

applications.

We begin, in Chapter 2, with an introduction of digital fingerprinting for mul-

timedia forensics. We first introduce the general framework of multimedia finger-
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printing systems, and then discuss the multimedia fingerprint design and embed-

ding. In particular, we focus on spread spectrum embedding that is widely used in

multimedia fingerprinting, and review multimedia fingerprint design that jointly

considers fingerprint code design and embedding. We also consider several possible

applications of multimedia fingerprinting and study their system requirements.

In Chapter 3, we address nonlinear collusion attacks on Gaussian fingerprints.

We first consider from the colluders’ point of view and compare various nonlinear

collusion attacks on independent Gaussian fingerprints. We analyze the effective-

ness of the collusion attacks and the perceptual quality of the colluded signals.

We then shift our role to desinger/detector and analyze the performance of sev-

eral commonly used detection statistics [48,52,76] in the literature under collusion

attacks. We also propose a preprocessing technique that improves the detection

performance by utilizing the statistical features of the extracted fingerprints.

Most previous work on fingerprint code design and collusion attacks for mul-

timedia assumed that all the colluders receive fingerprinted copies of the same

quality. In practice, due to the heterogeneity of the networks and the end users,

it is often required to have scalability during video encoding and transmission,

which enables the users to recover physically meaningful information by partially

decoding compressed bit streams [60]. In Chapter 4, taking temporal scalability as

an example, we examine the impact of the scalability on multimedia fingerprinting

and collusion attacks. We consider fair collusion attacks where all colluders have

equal probability of detection, and analyze the effectiveness of the collusion under

the fairness constraints when different colluders receive copies of different quality.

We also investigate the collusion resistance of the scalable fingerprinting systems,

and analyze the number of colluders that are required to undermine the tracing
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capability of the scalable fingerprinting systems.

In addition, most prior work relied on the assumption that all colluders tell each

other the true information of their received copies during collusion, and they are

willing to share the same risk of being captured. However, some colluders might

be selfish and wish to minimize their own risk while still profiting from collusion.

To reduce their probability of detection, they process their received copies before

multiuser collusion, and hide information of their fingerprinted copies from other

colluders. In Chapter 5, we investigate the possible strategy that the selfish collud-

ers can use to reduce probability of detection, analyze their performance, and find

the optimal pre-collusion processing that minimizes the selfish colluder’s risk under

the quality constraints. We will also investigate the possible countermeasures by

other colluders to protect their own interests and prevent those selfish colluders

from processing their copies before collusion.

In Chapter 6 and 7, we address secure fingerprint multicast in networked video

applications. Most prior work in fingerprint multicast considered applications

where the goal of the fingerprinting system is to be resistant to collusion attacks

with a few colluders, e.g., seven or ten traitors, and designed the efficient distri-

bution schemes accordingly. In many video applications, there are a large number

of users (e.g., several thousand users), and therefore, potentially a large number

of colluders (e.g., a few dozen or maybe even one hundred colluders). Some prior

work [58, 61, 62] has shown that with proper design and embedding of the fin-

gerprints, the fingerprinting systems can resist collusion attacks with dozens of

colluders, e.g., up to 60 colluders. In Chapter 6, we consider video applications

where the fingerprinting system aims to survive collusion attacks with dozens of

or even a hundred colluders, adopt the fingerprinting systems with strong traitor
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tracing capability [58, 62], and investigate the secure and efficient distribution of

fingerprinted copies. In particular, we propose two secure fingerprint multicast

scheme: a general fingerprint multicast scheme that can be used with most spread

spectrum embedding based fingerprinting systems, and a joint fingerprint design

and distribution scheme that utilizes the special structure of the fingerprint de-

sign to further reduce the communication cost. In Chapter 7, we analyze the

performance of these two fingerprint multicast schemes, including the bandwidth

efficiency and the robustness of the embedded fingerprints against collusion at-

tacks. We also analyze the quality of the reconstructed sequences, and propose a

fingerprint drift compensation scheme to improve the quality of the reconstructed

frames at the receiver’s side without extra communication overhead.

Finally, we draw conclusions and discuss some possible future directions in

Chapter 8.
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Chapter 2

Multimedia Fingerprinting

System Overview

2.1 General Framework of Digital Fingerprinting

Systems

Figure 2.1 shows a general framework for digital fingerprinting, which consists

of three parts: fingerprint embedding, multiuser collusion attacks and colluder

identification.

Fingerprint Embedding

Starting with an original copy of the host signal S, the content owner or the service

provider generates a unique fingerprint W(i) for each user u(i) in the system, and

embeds it into the fingerprinted copy X(i) that will be distributed to u(i). For

the purpose of traitor tracing in digital fingerprinting applications, the fingerprint

embedding has to satisfy the following requirements:
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Figure 2.1: The general framework for digital fingerprinting.

• Imperceptibility : The fingerprinted copy X(i) that is distributed user u(i)

is perceptually the same as the original host signal S, and the embedded

fingerprint W(i) should not introduce perceptually noticeable distortion into

the host signal S.

• Security : The embedded fingerprint W(i) should only be known to and ac-

cessed by authorized party. According to the Kerckhoff’s assumption in

cryptography [39], for a fingerprinting system that requires a very high level

of security, the fingerprinting system designer must assume that the adver-

sary has complete knowledge of the fingerprinting algorithm, and the secrecy

of the embedded fingerprints relies only on the secret keys that are used to

generate the unique fingerprints.

• Robustness : The fingerprints must persist in the host data after manipula-

tion, including both unintentional signal processing (e.g., compression) and
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intentional attacks to remove/attenuate the fingerprints (e.g., collusion at-

tacks).

After the fingerprint embedding, the content owner or the service provider dis-

tributes the fingerprinted copy X(i) to u(i).

Multiuser Collusion Attacks

At the attackers’ side, the colluders apply multiuser collusion attacks to the fin-

gerprinted copies that they receive, and try to remove or attenuate the embedded

fingerprints. A simple example of the collusion attack is to average all the finger-

printed copies, and each fingerprint’s energy is reduced by a factor of 1
K2 , where K

is the total number of colluders. The colluders can also apply order statistics based

nonlinear collusion attacks, e.g., taking the minimum values of the corresponding

components in the K copies. In this thesis, we consider fair multiuser collusion

attacks, where all colluders share the same risk and have the same probability to

be captured.

In addition to the multiuser collusion, the colluders can also apply single-copy

attacks, e.g., low pass filtering and compression, to further hinder the detection

process. Then, the newly generated colluded copy is redistributed without autho-

rization.

Fingerprint Detection and Colluder Identification

When the content owner discovers the existence of the illegally redistributed col-

luded copy, he applies a fingerprint detection and colluder identification process

to the suspicious copy. The detector first extracts the fingerprint Y from the

suspicious copy, compares this extracted fingerprint Y with each of the original
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fingerprints {W(i)}, and estimates the identities of the colluders.

Depending on the presence of the host signal S during the colluder identification

process, there are two main detection scenarios in data hiding applications, blind

and non-blind detection, respectively [46, 58]. In the blind detection scenario,

the host signal is not available to the detector and serves as an additional noise

during detection; while in the non-blind scenario, the host signal is available to

the detector and is first removed from the test signal before detection. Compared

with the blind detection, previous work has shown that non-blind detection has

better detection performance due to the following two reasons. First, compared

with blind detection, the non-blind detection first removes the host signal from

the test copy before fingerprint detection, and therefore, significantly reduces the

energy of the noise during the detection process [46, 58, 64]. In addition, in the

non-blind detection scenario, the detector can use the host signal to estimate the

possible modifications by the attackers, and therefore, compensate accordingly. For

example, by registering the test copy with respect to the original host signal, the

detector can successfully undo the geometric attacks with a very small alignment

noise [38,46].

In many data hiding applications, the host signal is often not available to the

detector and blind detection is preferred or even required [46]. For example, when

proving ownership of multimedia data, the host signal itself is questionable and

the blind detection must be applied [16,76]. However, for many fingerprinting ap-

plications, the fingerprint verification and colluder identification process is usually

handled by the content owner or an authorized third party who can have access to

the original host signal. Therefore, the host signal can be regarded as available to

the detector and the non-blind detection is feasible for fingerprinting applications.

16



To improve the detection performance, in this thesis, non-blind detection is chosen,

and we further assume that the test copy has been registered to the original host

signal before the detection process.

2.2 Multimedia Fingerprint Design and Embed-

ding

In this section, we first introduce spread spectrum embedding that is widely used

in digital fingerprinting systems, and then discuss multimedia fingerprint design

that jointly considers the encoding, embedding, and detection of fingerprints in

multimedia fingerprinting systems.

2.2.1 Spread Spectrum Embedding

Spread spectrum watermark/fingerprint embedding borrows the idea of spread

spectrum modulation in communication systems, and is widely used in digital

watermarking and fingerprinting systems due to its robustness against many at-

tacks [12, 13, 47]. It fits watermarking into the traditional model of a communica-

tion system, where the watermark is regarded as the message that is to be sent

from the watermark embedder to the watermark detector, and the modifications

to the watermarked copies (both unintentionally and intentionally) are modeled as

the noise in the channel during transmission. If blind detection is applied at the

detector’s side, then the host signal is also considered as one source of the noise.

In additive spread spectrum embedding, depending on the applications and the

design requirement, the watermark can be embedded in the spatial domain [26],

the frequency domain (e.g., DCT or DWT) [13, 47], or the feature points selected
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from the host signal [34]. Assume that S is the host signal represented by a vector

of length N , and W is the watermark of the same length N to embed. The

watermarked copy X is generated by

Xj = Sj + JNDjWj, (2.1)

where Xj, Sj and Wj are the jth components of the watermarked copy, the host

signal and the watermark, respectively. JND is the just-noticeable-distortion from

human visual models [12,47], and it controls the energy and achieve the impercep-

tibility of the embedded watermarks.

At the detector’s side, given the suspicious copy Y of length N , to test the

presence of the watermark W in Y, the detection process can be modeled as a

hypothesis testing problem [68]:




H0 : Yj = nj (j = 1, · · · , N) if watermark is absent,

H1 : Yj = Wj + nj (j = 1, · · · , N) if watermark is present.

(2.2)

In (2.2), the deterministic signal W is the watermark to test, n is an additive noise

that comes from signal processing as well as attacks on the watermarked copy X,

and N is the number of the coefficients that carry the watermark information. If

n is modeled as i.i.d. Gaussian N (0, σ2
n), then from the detection theory [48], the

optimum detector is the matched filter

TN = < Y,W >/||W||, (2.3)

where ||W|| is the Euclidean norm of W. The detection statistics TN follow Gaus-

sian distribution

TN ∼





N (0, σ2
n) if watermark is absent,

N (||W||, σ2
n) if watermark is present.

(2.4)

18



Then, TN is compared with a threshold h and the detector decides H1 if TN > h

and H0 otherwise. The threshold h can be set according to the Bayesian rule or

the Neyman-Pearson rule [48], depending on the requirement of the applications.

The above hypothesis testing is to test if a watermark W is present or absent.

Another popular model considers the scenario where an one bit information is em-

bedded using antipodal model [58,68]. Assume that d is a deterministic sequence,

and b = {−1, +1} is the one bit information to embed, then the detection problem

can be modeled as:




H0 : Yj = −dj + nj (j = 1, · · · , N) if b = −1,

H1 : Yj = +dj + nj (j = 1, · · · , N) if b = +1.

(2.5)

The analysis of the detection statistics is similar to that for the model in 2.2.

2.2.2 Fingerprint Design for Multimedia Forensics

Orthogonal Fingerprint Design

A straightforward way of extending spread spectrum embedding to digital finger-

print is to assign users mutually orthogonal fingerprints [20, 32]. The advantage

of the orthogonal fingerprint modulation is the simplicity of the fingerprint design

and embedding. From the prior work in [64], orthogonal fingerprinting systems

can survive collusion attacks with up to a few dozen colluders, and are preferred

for applications with a small group of users. Given a total of M orthogonal basis,

orthogonal fingerprinting systems have limited capacity and can support no more

than a total of M users.
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Group Oriented Fingerprint Design

To improve the traitor tracing capability of multimedia fingerprinting systems,

group oriented fingerprinting systems take advantage of the prior knowledge of the

possible collusion patterns during the design of the multimedia fingerprints [62].

Observing that adversaries are more likely to collude with some users than others

due to geographic or social circumstances, in group oriented fingerprint design,

some users who are more likely to collude with each other are assigned correlated

fingerprints to enhance the collusion resistance performance.

Coded Fingerprint Design

Compared with orthogonal fingerprint design, given a limited cardinality of the

orthogonal basis, coded fingerprint design has the advantage that it can accom-

modate more users in the fingerprinting systems [58]. In coded fingerprint design,

given ν orthogonal basis signals {d(k)}k=1,··· ,ν , each user in the system is assigned

a unique code ~b(i) = [bi,1, · · · , bi,ν ] where bi,k = {−1, +1}. To generate the finger-

print W(i) for user u(i), there are two types of fingerprint modulation schemes: the

CDMA based modulation and the TDMA based modulation [68]. In the CDMA

based fingerprint modulation, for user u(i),

W(i) =
ν∑

k=1

bi,k · d(k). (2.6)

In the TDMA based fingerprint modulation, the host signal (audio, image or video)

is first partitioned into ν non-overlapping regions. For user u(i), the signal bi,k ·d(k)

is embedded into the kth region of the host signal.

A designer of the coded fingerprinting systems should design the fingerprint

code ~b with good collusion resistance property while supporting as many users

as possible. Prior work in the literature uses technologies from different areas to
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design collusion resistant fingerprint code for multimedia, including the projective

geometry [19], error correction code [29,75], combinatorial theory [58], etc.

2.3 Performance Criteria for Digital Fingerprint-

ing Systems

Although the overall goal of the digital fingerprinting system designer is to trace

traitors and prevent information leakage, different applications of multimedia fin-

gerprinting systems may have different concerns, and therefore, different require-

ments [64]. The digital fingerprinting systems should be designed according to the

requirements of the applications and the appropriate performance criteria. This

section analyzes the possible requirements of different applications and the corre-

sponding performance criteria.

Catch One

In the catch one applications, the goal is to maximize the chance to capture one

colluder while minimizing the probability of falsely accusing any innocent users.

An example of such applications is to provide digital evidence in the court of law.

In such applications, the performance criteria are the probability of capturing at

least one colluder Pd and the probability of accusing at least one innocent user Pfp.

From the detector’s point of view, the detector fails if either it fails to capture any

of the colluders or it falsely accuse an innocent user as a colluder. Consequently,

the system requirements are

Pd ≥ γd, and Pfp ≤ γfp, (2.7)
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where the parameters γd and γfp are determined by the requirements of the appli-

cations and are properly chosen by the designer of the fingerprinting systems.

Catch More

In the catch more fingerprinting applications, the goal is to capture as many col-

luders as possible, though possibly at a cost of accusing more innocent users. In

these applications, the detection process is combined with other components in

the decision making system and other evidences to make the final decision. The

set of performance criteria consists of the fraction of colluders that are successfully

captured E[Fd], and the fraction of innocent users that are falsely placed under

suspicion E[Ffp]. The system requirements for such applications are

E[Fd] ≥ λd, and E[Ffp] ≤ λfp, (2.8)

where λd and λfp are the parameters determined by the requirements of the appli-

cations.

Catch All

In this scenario, the fingerprints are designed to maximize the probability of cap-

turing all colluders, while maintaining an acceptable amount of innocents being

falsely accused. This goal arises when the data’s security is of great concern and

any information leakage could result in serious damage. An example of this sce-

nario is to protect the highly classified documents in military applications. Assume

that there are a total of M users and a total K colluders in the system. This set

of performance criteria consists of measuring the efficiency rate

R =
(M −K) · E[Ffp]

K · E[Fd]
(2.9)
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that describes the number of innocents accused per colluder, and the probability

of capturing all colluders

Pd,all = P

[
min
i∈SC

T
(i)
N > h

]
. (2.10)

The system requirements for these applications are

R ≤ θr, and Pd,all ≥ θd. (2.11)

θr and θd are determined by the requirements of the applications.
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Chapter 3

Nonlinear Collusion Attacks on

Multimedia Fingerprinting

Most prior works on digital fingerprinting and collusion attacks for multimedia

employ the watermark embedding method in [13] and use a linear collusion at-

tack model. In [52], several types of collusion attacks were studied, including a

few order statistics based nonlinear attacks. For uniformly distributed fingerprints,

nonlinear collusion attacks were shown to defeat the fingerprinting system more ef-

fectively than the averaging attack [52]. Simulation results in [52] also showed that

normally distributed fingerprints are more robust against nonlinear collusion at-

tacks than uniform fingerprints, but analytical study on the Gaussian fingerprints’

performance was not provided. In addition to the robustness against collusion

attacks, compared with discrete watermarks and uniform watermarks, Gaussian

watermarks are proven to be resistant to statistical and histogram attacks [15].

Therefore, Gaussian distributed fingerprints should be used in multimedia finger-

printing systems for robustness against various types of attacks.

In this chapter, we mainly address the analysis of order statistics based nonlin-
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ear collusion attacks on independent Gaussian fingerprints. We first consider from

the colluders’ point of view and compare various nonlinear collusion attacks on

independent Gaussian fingerprints. We analyze the effectiveness of the collusion

attacks and the perceptual quality of the colluded signals under different collusion

attacks. We then shift our role to desinger/detector and analyze the performance

of several commonly used detection statistics [48, 52, 76] in the literature under

collusion attacks. The analysis of different detection statistics provides a guideline

for the selection of the detector in a multimedia forensic system.

This chapter is organized as follows. We begin, in Section 3.1, with a system

model of digital fingerprinting and collusion attacks. Then in Section 3.2, we

analyze the effectiveness and the perceptual quality of different nonlinear collusion

attacks, and investigate the detection performance of different detection statistics.

In Section 3.3, we first study the resistance of independent unbounded Gaussian

fingerprints to different collusion attacks. We then introduce bounded Gaussian-

like fingerprints to achieve both the robustness against collusion attacks and the

imperceptibility of the embedded fingerprints, and analyze their performance. In

Section 3.4, we propose a pre-processing technique of the extracted fingerprints to

improve the detection performance. Section 3.5 shows the simulation results on

real images. A few more nonlinear collusion attacks are discussed in Section 3.6.

3.1 System Model

3.1.1 System Model and Assumptions

We consider a digital fingerprinting and collusion attack system that consists of

three parts: fingerprint embedding, collusion attacks and fingerprint detection.
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We use the spread spectrum embedding [13,47] to hide fingerprints in the host

signal. Assume that there are a total of M users in the system. Given a host signal

represented by a vector S of length N , the owner generates a unique fingerprint

W(i) of length N for each user u(i), i = 1, 2, · · · , M . We assume that the M

fingerprints {W(i)}M
i=1 are independent of each other. The fingerprinted copy X(i)

that is distributed to user u(i) is generated by X
(i)
j = Sj + αjW

(i)
j . Here X

(i)
j ,

Sj and W
(i)
j are the jth components of the fingerprinted copy, the original signal,

and the fingerprint, respectively, and α is the just-noticeable-difference (JND) from

human visual models [47] to control the energy and achieve the imperceptibility

of the embedded fingerprints. Then, the fingerprinted copy X(i) is distributed to

user u(i).

Assume that K out of M users collude, and SC = {i1, i2, · · · , iK} is the set

containing the indices of the colluders. We further assume that the collusion attack

is in the same domain as the fingerprint embedding. With K different copies

{X(k)}k∈SC
, the colluders generate the jth component of the attacked copy Vj

using one of the collusion functions shown in (3.1).

average attack: V ave
j =

∑

k∈SC

X
(k)
j /K, (3.1)

minimum attack: V min
j = min

({Xk
j }k∈SC

)
,

maximum attack: V max
j = max

(
{X(k)

j }k∈SC

)
,

median attack: V med
j = median

(
{X(k)

j }k∈SC

)
,

minmax attack: V minmax
j = (V min

j + V max
j )/2,

modified negative attack: V modneg
j = V min

j + V max
j − V med

j ,

randomized negative attack: V randneg
j =





V min
j with prob. p,

V max
j with prob. 1− p.

In (3.1), min
({Xk

j }k∈SC

)
, max

({Xk
j }k∈SC

)
and median

({Xk
j }k∈SC

)
return the
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minimum, the maximum and the median values of {Xk
j }k∈SC

, respectively. The

colluded copy is V = [V1, V2, · · · , VN ]. For our model, applying the collusion at-

tacks to the fingerprinted copies is equivalent to applying the collusion attacks to

the embedded fingerprints. For example, Vmin
j = min

(
{Sj + α ·W(k)

j }k∈SC

)
=

Sj + α ·min
(
{W(k)

j }k∈SC

)
.

In fingerprinting applications, the original signal S is often available to de-

tectors. To improve the detection performance [58], the detector first removes the

host signal from the attacked copy and extracts the fingerprint Y = g({W(k)}k∈SC
)

where g(·) is a collusion function defined in (3.1). The detector analyzes the simi-

larity between Y and each of the M original fingerprints {W(i)}, and outputs the

estimated colluder set.

In the literature, there are three detection statistics available to test the pres-

ence of the original fingerprint W(i) in the extracted fingerprint Y [48, 52,76].

T
(i)
N = 〈Y,W(i)〉/

√
‖W(i)‖2, (3.2)

Z(i) =
1

2

√
N − 3 log

1 + ρ(i)

1− ρ(i)
, where ρ(i) =

1
N

∑N
j=1 YjW

(i)
j − Ỹ · W̃ (i)

√
σ̂2

W σ̂2
Y

,

and q(i) =
√

NMy/
√

V 2
y , where

My =
N∑

j=1

YjW
(i)
j

N
and V 2

y =
N∑

j=1

(YjW
(i)
j −My)

2

N − 1
.

In (3.2), ‖W(i)‖ is the Euclidean norm of W(i); N is the length of the fingerprint;

ρ(i) is the estimated correlation coefficient between Y and W(i); Ỹ = 1
N

∑N
j=1 Yj

and W̃ (i) = 1
N

∑N
j=1 W

(i)
j are the sample means of Y and W(i), respectively; σ̂2

W =

1
N−1

∑
j (W

(i)
j − W̃ (i)) and σ̂2

Y = 1
N−1

∑
j (Yj − Ỹ ) are the unbiased estimates of the

original fingerprint’s variance and the extracted fingerprint’s variance, respectively;

and My and V 2
y are the sample mean and sample variance of {YjW

(i)
j }. Note that

all three detection statistics are correlation based in which the correlation between
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the extracted fingerprint Y and the original fingerprint W(i) is the kernel term,

and they differ primarily in the way of normalization.

3.1.2 Performance Criteria

We consider the following performance criteria to analyze different collusion attacks

and different detection statistics.

Effectiveness of Collusion Attacks and Detection Performance of Detec-

tion Statistics

To study the effectiveness of collusion attacks and the performance of detection

statistics, different criteria were used to address different applications in the litera-

ture. One set of criteria is the probability of falsely accusing at least one innocent

user and the probability of not identifying any of the colluders [20,32]. The second

set of criteria is the fraction of colluders that are successfully captured and the

fraction of innocent users that are falsely accused, as considered in [58] and [63].

We adopt these criteria and use the following measurements:

• Pd: the probability of capturing at least one colluder,

• Pfp: the probability of falsely accusing at least one innocent user,

• Fd: the fraction of colluders that are successfully captured, and

• Ffp: the fraction of innocent users that are falsely accused.

Perceptual Quality

When considering the perceptual quality, one of the commonly used objective

measurements on perceptual distortion is the mean square error (MSE) and equiv-
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alently PSNR for image applications. A major weakness of MSE is that it ignores

the unique characteristic of multimedia data: minor perturbations on the data

values will not cause noticeable distortion as long as they do not exceed the just-

noticeable-difference [47]. Furthermore, MSE only measures the average energy

of the noise introduced and does not consider the local constraints on each noise

component.

We take JND into consideration and define the following two new measure-

ments,

• FJND
4
=

∑N
j=1 I[|nj |>JNDj ]/N , and

• the redefined mean square error MSEJND
4
=

∑N
j=1 n

′2
j where n′j is defined as

n′j =





nj + JNDj if nj < −JNDj,

0 if − JNDj ≤ nj ≤ JNDj,

nj − JNDj if nj > JNDj.

(3.3)

MSEJND calculates the power of the noise components that introduce perceptual

distortion and FJND reflects the percentage of the noise components that exceed

JND. A large MSEJND or a large FJND indicates large perceptual distortion in-

troduced.

3.2 Statistical Analysis of Collusion Attacks and

Detection Statistics

In this section, we will analyze the statistical behavior of three detection statistics

under different collusion attacks.
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3.2.1 Analysis of the Correlation Term under Different

Collusion Attacks

In our system model, the extracted fingerprint is Y = g
({W(k)}k∈SC

)
. As dis-

cussed in the previous section, when measuring the similarity between Y and W(i),

all three statistics are correlation based, and the common kernel term is the linear

correlation

T
′(i)
N

4
=

1

N
< Y,W(i) >=

1

N

N∑
j=1

g({W (k)
j }k∈Sc)W

(i)
j , (3.4)

where N is the length of the fingerprint. For different collusion attacks, T
′(i)
N

follows different distributions. This section analyzes the statistical behavior of this

correlation term under different collusion attacks.

Under the assumption that {W (k)
j , k = 1, · · · ,M}N

j=1 are i.i.d. distributed with

zero mean and variance σ2
W , {g({W (k)

j }k∈Sc)W
(i)
j }N

j=1 are also i.i.d. distributed.

From central limit theorem, if {g({W (k)
j }k∈Sc)W

(i)
j }N

j=1 have finite mean µ
T
′(i)
N

and

finite variance σ2

T
′(i)
N

, then T
′(i)
N can be approximated by:

T
′(i)
N ∼ N

(
µ

T
′(i)
N

, σ2

T
′(i)
N

/N

)
. (3.5)

The problem is reduced to find the terms µ
T
′(i)
N

= E
[
g({W (k)}k∈Sc)W

(i)
]

and

σ2

T
′(i)
N

= var
[
g({W (k)}k∈Sc)W

(i)
]
. We simplify the notation by dropping the sub-

script j. For a given K and a given collusion function g(·), due to the symmetry

of g({W (k)}k∈Sc)W
(i) with respect to the user index i, all g({W (k)}k∈Sc)W

(i) where

i ∈ SC have the same mean and variance, and similarly, all g({W (k)}k∈Sc)W
(i)

where i /∈ SC have the same mean and variance.
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For i ∈ SC , define

µg,H1

4
= E

[
g({W (k)}k∈Sc)W

(i)
]
, (3.6)

and σ2
g,H1

4
= var

[
g({W (k)}k∈Sc)W

(i)
]

= E
[(

g({W (k)}k∈Sc)W
(i)

)2
]
− (µg,H1)

2 .

For i /∈ SC , because {W (i)}M
i=1 are i.i.d. distributed with zero mean and variance

σ2
W , we have

µg,H0

4
= E

[
g({W (k)}k∈Sc)W

(i)
]

= 0, (3.7)

and σ2
g,H0

4
= var

[
g({W (k)}k∈Sc)W

(i)
]

= E
[(

g({W (k)}k∈Sc)
)2

]
σ2

W .

Therefore, the three terms E
[
g({W (k)}k∈Sc)W

(i)
]
, E

[(
g({W (k)}k∈Sc)W

(i)
)2

]
for

i ∈ SC and E
[(

g({W (k)}k∈Sc)
)2

]
are needed for analyzing the correlation term

under each collusion attack.

Under the average attack, if i ∈ SC , we have

E

[(
1

K

∑

k∈SC

W (k)

)
W (i)

]
=

1

K
σ2

W ,

E




(
1

K

∑

k∈SC

W (k)W (i)

)2

 =

1

K2
E

[(
W (i)

)4
]

+
K − 1

K2
σ4

W ,

and E




(
1

K

∑

k∈SC

W (k)

)2

 =

1

K
σ2

W . (3.8)

Under the minimum attack, given the total number of colluders K, if f(·)
and F (·) are the pdf and cdf of W (i), respectively, from the probability and order

statistics theory [18], we can get the pdf of Wmin4= min
({W (k)}k∈SC

)

fW min(Wmin = w′) = Kf(w′)[1− F (w′)]K−1. (3.9)

From (3.9), we can calculate the second moment of Wmin. For i ∈ SC , we can

express the joint pdf of Wmin and W (i) as follows by noticing that fW min,W (i)(w′, w)
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breaks into two nonzero regions

fW min,W (i)(Wmin = w′,W (i) = w) (3.10)

=





f(w′)[1− F (w′)]K−1 if Wmin = W (i),

(K − 1)f(w′)f(w)[1− F (w′)]K−2 if Wmin < W (i).

Consequently, E
[
WminW (i)

]
= E

[
WminW (i)

]
1
+ E

[
WminW (i)

]
2
, where

E
[
WminW (i)

]
1

=

∫ ∞

−∞
w
′2f(w′)[1− F (w′)]K−1dw′ (3.11)

E[WminW (i)]2 =

∫ ∞

−∞
w′(K − 1)f(w′)[1− F (w′)]K−2

(∫ ∞

w′
wf(w)dw

)
dw′.

The calculation of E
[(

WminW (i)
)2

]
is similar.

The analysis of the maximum and median attacks follows the same approach.

For the maximum attack, the pdf of Wmax4= max
({W (k)}k∈SC

)
is:

fW max(Wmax = w′) = Kf(w′)FK−1(w′), (3.12)

and the joint pdf of Wmax and W (i) for i ∈ SC is:

fW max,W (i)(Wmax = w′,W (i) = w) (3.13)

=





f(w′)FK−1(w′) if Wmax = W (i),

(K − 1)f(w′)f(w)FK−2(w′) if Wmax > W (i).

Under the median attack, define Wmed4=median
({W (k)}k∈SC

)
. If K = 2l + 1, the

pdf of Wmed is:

fW med(Wmed = w′) = K

(
2l

l

)
f(w′)F l(w′)[1− F (w′)]l, (3.14)
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and the joint pdf of Wmed and W (i) for i ∈ SC is

fW med,W (i)(Wmed = w′,W (i) = w) (3.15)

=





(
2l
l

)
f(w′)F l(w′)[1− F (w′)]l if Wmed = W (i),

(K − 1)
(
2l−1

l

)
f(w′)f(w)F l(w′)[1− F (w′)]l−1 if Wmed < W (i),

(K − 1)
(
2l−1

l

)
f(w′)f(w)F l−1(w′)[1− F (w′)]l if Wmed > W (i).

Under the minmax attack Wminmax4=1
2
(Wmin + Wmax), if i ∈ SC , we have

E
[
WminmaxW (i)

]
=

(
E

[
WminW (i)

]
+ E

[
WmaxW (i)

])
/2,

E
[(

WminmaxW (i)
)2

]
=

{
E

[(
WminW (i)

)2
]

+ E
[(

WmaxW (i)
)2

]}
/4

+E
[
WminWmax

(
W (i)

)2
]
/2,

and E
[(

Wminmax
)2

]
=

{
E

[(
Wmin

)2
]

+ E
[
(Wmax)2]} /4

+E
[
WminWmax

]
/2. (3.16)

The results from the previous analysis on the minimum and the maximum

attacks can be applied to (3.16). In addition, we can find the correlation between

Wmin and Wmax from their joint pdf

fW min,W max(Wmin = w′,Wmax = w′′) (3.17)

= K(K − 1)f(w′)f(w′′)[F (w′′)− F (w′)]K−2,

thus, we have

E
[
Wmin ·Wmax

]
=

∫ ∞

−∞

∫ ∞

w′
w′w′′fW min,W max(w′, w′′)dw′′dw′. (3.18)

The calculation of E
[
(WminWmax)

2
]

is similar. E
[
WminWmax

(
W (i)

)2
]
is ob-
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tained based on the joint pdf of Wmin, Wmax, and W (i), which is

fW min,W max,W (i)(Wmin = w′,Wmax = w′′,W (i) = w) (3.19)

=





(K − 1)f(w′)f(w′′)[F (w′′)− F (w′)]K−2

if Wmin = W (i),

(K − 1)f(w′)f(w′′)[F (w′′)− F (w′)]K−2

if Wmax = W (i),

(K − 1)(K − 2)f(w′)f(w′′)f(w)[F (w′)− F (w′′)]K−3

if Wmin < W (i) < Wmax.

The analysis of the modified negative (ModNeg) attack is similar to that of the

minmax attack. If K = 2l + 1, then the joint pdf of Wmin and Wmax is

fW min,W med(Wmin = w′,Wmed = w′′) (3.20)

= (2l + 1)2l

(
2l − 1

l

)
f(w′)f(w′′)[F (w′′)− F (w′)]l−2[1− F (w′′)]l,

and the joint pdf of Wmed and Wmax is

fW med,W max(Wmed = w′,Wmaxw′′) (3.21)

= (2l + 1)2l

(
2l − 1

l

)
f(w′)f(w′′)[F (w′′)− F (w′)]l−1F l(w′).
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For i ∈ SC , the joint pdf of Wmin,Wmed and W (i) is

fW min,W med,W (i)(Wmin = w′,Wmed = w′′,W (i) = w) (3.22)

=





2l
(
2l−1

l

)
f(w′)f(w′′)[F (w′′)− F (w′)]l−1[1− F (w′′)]l

if Wmin = W (i),

2l
(
2l−1

l

)
f(w′)f(w′′)[F (w′′)− F (w′)]l−1[1− F (w′′)]l

if Wmed = W (i),

2l(2l − 1)
(
2l−2
l−1

)
f(w′)f(w′′)f(w)[F (w′′)− F (w′)]l−1[1− F (w′′)]l−1

if Wmed < W (i) < Wmax,

2l(2l − 1)
(
2l−2

l

)
f(w′)f(w′′)f(w)[F (w′′)− F (w′)]l−2[1− F (w′′)]l

if Wmin < W (i) < Wmed,

(3.23)

and the joint pdf of Wmax,Wmed and W (i) is

fW med,W max,W (i)(Wmed = w′,Wmax = w′′,W (i) = w) (3.24)

=





2l
(
2l−1

l

)
f(w′)f(w′′)[F (w′′)− F (w′)]l−1F l(w′′)

if Wmed = W (i),

2l
(
2l−1

l

)
f(w′)f(w′′)[F (w′′)− F (w′)]l−1F l(w′′)

if Wmax = W (i),

2l(2l − 1)
(
2l−2
l−1

)
f(w′)f(w′′)f(w)[F (w′′)− F (w′)]l−1F l−1(w′′)

if Wmin < W (i) < Wmed,

2l(2l − 1)
(
2l−2

l

)
f(w′)f(w′′)f(w)[F (w′′)− F (w′)]l−2F l(w′′)

if Wmed < W (i) < Wmax.

Under the randomized negative (RandNeg) attack, we assume that p is in-

dependent of {W (i)}. The colluded fingerprint can be written as W randneg =
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Wmin ·Bp+Wmax ·(1−Bp), where Bp is a Bernoulli random variable with parameter

p and is independent of {W (i)}. The m-th moment (m = 1, 2, · · · ) of W randnegW (i)

for i ∈ SC and the m-th moment of W randneg are

E
[(

W randnegW (i)
)m

]
= p · E

[(
WminW (i)

)m
]

+ (1− p) · E
[(

WmaxW (i)
)m

]
,

and E
[(

W randneg
)m]

= p · E [(
Wmin

)m]
+ (1− p) · E [(Wmax)m] . (3.25)

From all the above analysis, the correlation kernel term T
′(i)
N can be approxi-

mated by the following Gaussian distribution

T
′(i)
N ∼





N
(
0,

σ2
g,H0

N

)
if i /∈ SC ,

N
(
µg,H1 ,

σ2
g,H1

N

)
if i ∈ SC .

(3.26)

3.2.2 Analysis of the Detection Statistics

From (3.26), we can approximate the detection statistics T
(i)
N by a Gaussian random

variable

T
(i)
N =

NT
′(i)
N√

‖Wi‖2
∼





N
(
0,

σ2
g,H0

σ2
W

)
if i /∈ SC ,

N
(√

Nµg,H1

σW
,

σ2
g,H1

σ2
W

)
if i ∈ SC .

(3.27)

The Z statistics can be approximated by a Gaussian random variable N (µ
(i)
Z , 1)

with mean µ
(i)
Z = 1

2

√
N − 3 log 1+E[ρ(i)]

1−E[ρ(i)]
, where E[ρ(i)] is the mean of ρ(i) defined

in (3.2) and is the estimated correlation coefficient of the extracted fingerprint Y

and the original fingerprint W(i) [52]. We can show that

Z(i) ∼





N (0, 1) if i /∈ SC ,

N
(

1
2

√
N − 3 log 1+E[ρ(i)]

1−E[ρ(i)]
, 1

)
if i ∈ SC .

Here, for i ∈ SC ,

E[ρ(i)] ≈ cov
[
g({W (k)}k∈SC

),W (i)
]

√
σ2

W σ2
g,Y

=
µg,H1√
σ2

W σ2
g,Y

, (3.28)
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where σ2
g,Y is the variance of the extracted fingerprint.

The q statistics normalize the correlation term with the unbiased estimate of

its variance. So we have

q(i) ∼





N (0, 1) if i /∈ SC ,

N
(√

Nµg,H1q
σ2

g,H1

, 1

)
if i ∈ SC .

(3.29)

3.2.3 Analysis of the Performance of Collusion Attacks

and Detection Statistics

Analysis of Pd, Pfp, E[Fd], and E[Ffp]

In our system model with a total of M users and K colluders, given a signal to be

tested and given one detection statistics, K out of the M statistics {T (i)
N }M

i=1 are

normally distributed with a positive mean and the others are normally distributed

with a zero mean, as analyzed in the previous section.

Take the TN statistics as an example, define µ1
4
=
√

Nµg,H1

σW
, σ2

1

4
=

σ2
g,H1

σ2
W

, and σ2
0

4
=

σ2
g,H0

σ2
W

.

If {T (i)
N }M

i=1 are uncorrelated with each other or the correlation is very small, then

for a given threshold h, we can approximate Pd and Pfp by

Pd = P

[
max
i∈SC

T
(i)
N > h

]
≈ 1−

[
1−Q

(
h− µ1

σ1

)]K

,

and Pfp = P

[
max
i/∈SC

T
(i)
N > h

]
≈ 1−

[
1−Q

(
h

σ0

)]M−K

, (3.30)

where Q(x) =
∫∞

x
1√
2π

e−
t2

2 dt is the Gaussian tail function.

To calculate E[Fd] and E[Ffp], we can have the following approximations

E[Fd] = P
[
T

(i∈SC)
N > h

]
≈ Q

(
h− µ1

σ1

)
,

and E[Ffp] = P
[
T

(i/∈SC)
N > h

]
≈ Q

(
h

σ0

)
. (3.31)

The analysis of Pd, Pfp, Fd and Ffp for the Z and q statistics are the same.
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Perceptual Quality

In our system model, the distortion introduced to the host signal by the colluded

fingerprint is nj = JNDj · g({W (k)
j }k∈SC

), j = 1, 2, · · · , N . Given the collusion at-

tack g(·) and the number of colluders K, if A
4
=g({W (k)}k∈SC

) has the pdf fg,K(w),

we can simplify the MSEJND and E[FJND] to

MSEJND ≈ N × E
[
(|A| − 1)2 | |A| > 1

]

= N

∫ −1

−∞
(w + 1)2fg,K(w) dw + N

∫ ∞

1

(w − 1)2fg,K(w) dw,

and E[FJND] = P [|A| > 1] =

∫ −1

−∞
fg,K(w) dw +

∫ ∞

1

fg,K(w) dw. (3.32)

3.3 Effectiveness of Collusion Attacks on Gaus-

sian Based Fingerprints

It has been shown in [52] that the uniform fingerprints can be easily defeated by

nonlinear collusion attacks, and the simulation results there also showed that the

Gaussian fingerprints are more resistant to nonlinear collusion attacks than the

uniform fingerprints. However, no analytic study was provided in the literature

on the resistance of Gaussian fingerprints to nonlinear collusion attacks. In this

section, we study the effectiveness of nonlinear collusion attacks on Gaussian based

fingerprints.

3.3.1 Unbounded Gaussian Fingerprints

Statistical Analysis

We first study the resistance of unbounded Gaussian fingerprints to collusion at-

tacks. As before, we assume that there are a total of M users and the fingerprints
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{W (i)
j } are i.i.d. Gaussian with zero mean and variance σ2

W . Usually we take

σ2
W ≈ 1/9 to ensure that around 99.9% of fingerprint components are in the range

of [−1, 1] and are imperceptible after being scaled by a JND factor.

Under the assumption that the Bernoulli random variable Bp in the random-

ized negative attack is independent of the zero mean Gaussian fingerprints, we

have E
[(

W randneg
)2

]
= E

[
(Wmin)

2
]

= E
[
(Wmax)2] for all possible p ∈ [0, 1].

Consequently, we have

σ2
randneg,Y = E

[(
W randneg

)2
]
− (

E
[
W randneg

])2 ≤ E
[(

Wmin
)2

]
, (3.33)

and the upper bound of the variance in (3.33) is achieved when p = 0.5 and

E
[
W randneg

]
= 0. From (3.30) and (3.31), the larger the variance, the more

effective the attack. Consequently, we take p = 0.5 and consider the most effective

attack.

Given the analysis in the previous section, we can calculate the parameters

µg,H1 , σ2
g,H1

, σ2
g,H0

and σ2
g,Y for Gaussian distribution with zero mean and variance

σ2
W . Due to the existence of the Q(·) terms in the pdfs and joint pdfs, analytical

expressions are not available. We use the recursive adaptive Simpson quadrature

method [23] to numerically evaluate the integrals with an absolute error tolerance

of 10−6 and the results for σ2
W = 1/9 are plotted in Figure 3.1.

From Figure 3.1, we find that, for a given number of colluders K, µg,H1 are the

same for all collusion attacks and equal to σ2
W /K. Different collusion attacks have

different σ2
g,H1

, σ2
g,H0

and σ2
g,Y . The relationship of σ2

g,H1
and σ2

g,H0
for different

collusion attacks are

σ2
randneg,H1

= σ2
min,H1

= σ2
max,H1

> σ2
modneg,H1

> σ2
ave,H1

≈ σ2
med,H1

≈ σ2
minmax,H1

,

and σ2
randneg,H0

= σ2
min,H0

= σ2
max,H0

> σ2
modneg,H0
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Figure 3.1: (a) µg,H1 , (b) σ2
g,H1

, (c) σ2
g,H0

, and (d) σ2
g,Y of the unbounded Gaussian

fingerprints with σ2
W = 1/9.
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> σ2
ave,H0

≈ σ2
med,H0

≈ σ2
minmax,H0

, (3.34)

and that of σ2
g,Y is

σ2
randneg,Y > σ2

modneg,Y > σ2
min,Y = σ2

max,Y

> σ2
ave,Y ≈ σ2

med,Y ≈ σ2
minmax,Y . (3.35)

Note that the extracted fingerprint Y under the minimum or maximum attack is

not zero mean. σ2
g,H0

is proportional to the second moment of Y, and is the largest

under the minimum, maximum, and randomized negative attacks. However, the

variance of Y under the minimum or maximum attacks is small and comparable

with σ2
g,Y under the average, median, and minmax attacks.

In order to compare the effectiveness of different collusion attacks, we define

the following notations:

• “ attack A > attack B ”: attack A is more effective than attack B in defeating

the system,

• “ attack A = attack B ”: attack A and attack B have the same performance

in defeating the system,

• “ attack A ≈ attack B ”: attack A and attack B have similar performance in

defeating the system.

From (3.30), (3.31), (3.34), and (3.35), with the TN statistics or the q statistics,

we can sort different collusion attacks in the descending order of their effectiveness

as:

Minimum = Maximum = RandNeg > ModNeg

> Average ≈ Median ≈ MinMax; (3.36)
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Figure 3.2: Perceptual quality of the attacked copy under different attacks with un-

bounded Gaussian fingerprints. Here σ2
W = 1/9. (Left) MSEJND/N . (Right) E[FJND].

and with the Z statistics, we can sort different attacks in the descending order of

their effectiveness as:

RandNeg > ModNeg > Minimum = Maximum

> Average ≈ Median ≈ MinMax. (3.37)

Therefore, the randomized negative attack is the most effective attack.

So far we have studied the effectiveness of different collusion attacks. As for

the perceptual quality, Figure 3.2 shows the MSEJND and E[FJND] of different

collusion attacks with i.i.d. N (0, 1/9) fingerprints. As we can see from Figure 3.2,

although the minimum, maximum, and randomized negative attacks are more ef-

fective in defeating the fingerprinting system, they also introduce larger noticeable

distortion that is proportional to the number of colluders.

Simulation Results

Our simulation is set up as follows. Since the number of embeddable coefficients

in 256× 256 and 512× 512 images is usually O(104), we assume that the length of

the fingerprints is 10, 000. To accommodate a total of M = 100 users, we generate
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Figure 3.3: (a) Pd of the TN statistics under different attacks, (b) E[Fd] of the TN

statistics under different attacks, (c) Pd of the Z statistics under different attacks, (d)

E[Fd] of the Z statistics under different attacks, (e) Pd of different statistics, and (f) E[Fd]

of different statistics with unbounded Gaussian fingerprints. Here σ2
W = 1/9, M = 100,

and N = 104. In (a), (c) and (e), Pfp = 10−2. In (b), (d) and (f), E[Ffp] = 10−2.

43



100 independent fingerprints of length 10, 000. Every fingerprint component is

independent of each other and follows the N (0, 1/9) Gaussian distribution. Our

results are based on a total of 2000 simulation runs.

In Figure 3.3 (a) and (c), Pfp is fixed as 10−2 and we compare Pd of the TN

and Z statistics, respectively, under different collusion attacks. In Figure 3.3 (b)

and (d), E[Ffp] is fixed as 10−2 and we compare E[Fd] of the TN and Z statistics,

respectively, under different attacks. The performance of the q statistics is similar

to that of TN and is not shown here. We compare different detection statistics

with Pfp = 10−2 in Figure 3.3 (e) and E[Ffp] = 10−2 in Figure 3.3 (f). Note that

in Figure 3.3 (e) and (f), we only plot the performance of the minimum and that

of the modified negative attacks since the maximum attack yield the same result

as the minimum attack and all other attacks have a similar trend.

The simulation results shown in Figure 3.3 agree with our analysis. From

Figure 3.3 (a) and (b), with the TN or q statistics, the minimum, maximum, and

randomized negative attack are the most effective attacks followed by the modified

negative attack. The average, median, and minmax attacks are the least effective

attacks. From Figure 3.3 (c) and (d), with the Z statistics, the randomized negative

attack is the most effective attack followed by the modified negative attack. The

average, median, and minmax attacks have similar performance and they are the

least efficient attacks. The minimum and maximum attacks are the second least

effective attacks. From Figure 3.3 (e) and (f), the Z statistics are more resistant to

the minimum and maximum attacks than the TN and q statistics while the three

statistics have similar performance under other collusion attacks. Therefore, from

the colluders’ point view, the best strategy for them is to choose the randomized

negative attack. From the detector’s point of view, the Z statistics should be used
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to be more robust against the minimum and maximum attacks.

In Figure 3.4, we show the attacked images after the average and the minimum

attacks with 75 colluders. Although the minimum, maximum and randomized

negative attacks are more effective, they also introduce much larger noticeable

distortion in the host image. This is because the fingerprints are not bounded,

and in fact, such unbounded fingerprints can introduce noticeable distortion in the

fingerprinted copies even when without collusion.

3.3.2 Bounded Gaussian-like Fingerprints

Compared with uniform fingerprints, Gaussian fingerprints improve the detector’s

resistance to nonlinear collusion attacks [52] and are resilient to statistical and

histogram attacks [15]. Because Gaussian distribution is unbounded, it is possi-

ble that the embedded fingerprints exceed the JND and introduce perceptually

distinguishable distortion. However, imperceptibility is a requirement of digital

fingerprinting and the owner has to guarantee the perceptual quality of the fin-

gerprinted copies. In order to remove the perceptual distortion while maintaining

the robustness against collusion attacks, we introduce the bounded Gaussian-like

fingerprints and study their performance under collusion attacks.

Assume that fX(·) and FX(·) are the pdf and cdf of a Gaussian random variable

with zero mean and variance σ2
W , respectively. The pdf of a bounded Gaussian-like

distribution f̃X(·) is:

f̃X(x) =





fX(x)
FX(1)−FX(−1)

if − 1 ≤ x ≤ 1,

0 otherwise.

(3.38)

We can show that the variance of fingerprints following pdf (3.38) is σ2
W , and

the embedded fingerprints introduce no perceptual distortion since MSEJND = 0
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Figure 3.4: Comparison of perceptual quality of the attacked images under different

attacks with 75 colluders. Fingerprints are generated from unbounded Gaussian distri-

bution with σ2
W = 1/9. (Left) Lena. (Right) Baboon. (Top) The zoomed-in region of

the original 256× 256 images. (Middle) The colluded images under the average attack.

(Bottom) The colluded images under the minimum attack.
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and FJND = 0. By bounding the fingerprints in the range of [−1, 1], we maintain

the energy of the embedded fingerprints while achieving the imperceptibility.

For fingerprints following distribution (3.38), the analyses of the collusion at-

tacks and the detection statistics are similar to the unbounded case and thus

omitted. If we sort different collusion attacks according to their effectiveness, the

result is the same as that of the unbounded Gaussian fingerprints.

The simulation of the bounded Gaussian-like fingerprints under collusion at-

tacks is set up similarly to that in Section 3.3.1. Assume that there are a total of

M = 100 users and the host signal has N = 104 embeddable coefficients. The i.i.d.

fingerprints are generated from the distribution (3.38) with σ2
W = 1/9. In Figure

3.5 (a) and (c), Pfp = 10−2 and we compare Pd of the TN and Z statistics, respec-

tively, under different collusion attacks. In Figure 3.5 (b) and (d), E[Ffp] = 10−2

and we compare E[Fd] of the TN and Z statistics, respectively, under different

collusion attacks. The performance of the q statistics is similar to that of TN . We

compare the performance of different detection statistics under the minimum and

the modified negative attacks with Pfp = 10−2 in Figure 3.5 (e) and E[Ffp] = 10−2

in Figure 3.5 (f), respectively. The simulation results agree with the analysis and

we have the same observations as in the unbounded case. From the colluders’ point

of view, the most efficient attack is the randomized negative attack, and from the

detector’s point of view, the Z statistics are more robust.

3.4 Pre-Processing of the Extracted Fingerprints

The three detection statistics we have studied so far are not specifically designed

for collusion scenarios, and therefore do not take into account the characteristics

of the newly generated copies after the collusion attacks. Intuitively, utilizing the
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Figure 3.5: (a) Pd of the TN statistics under different attacks, (b) E[Fd] of the TN

statistics under different attacks, (c) Pd of the Z statistics under different attacks, (d)

E[Fd] of the Z statistics under different attacks, (e) Pd of different statistics, and (f) E[Fd]

of different statistics with bounded Gaussian-like fingerprints. Here σ2
W = 1/9, M = 100,

and N = 104. In (a), (c) and (e), Pfp = 10−2. In (b), (d) and (f), E[Ffp] = 10−2.
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Figure 3.6: Histograms of the extracted fingerprints under the average, minimum and

randomized negative attacks, respectively. The original fingerprints follow the distribu-

tion in (3.38) with σ2
W = 1/9. N = 104 and K = 45.

statistical features of the attacked copies may improve the detection performance,

and one of such features is the sample mean of the extracted fingerprint under

the collusion attacks. From the histogram plots of the extracted fingerprints under

different attacks as shown in Figure 3.6, we observe different patterns of the sample

means of the extracted fingerprints: the extracted fingerprints have approximately

zero sample mean under the average, median, minmax and modified negative at-

tacks; the minimum attack yields a negative sample mean, and the maximum

attack yields a positive sample mean; and under the randomized negative attack,

the histogram of the extracted fingerprint components have two clusters, one with

a negative mean and the other with a positive mean.

Recall from Section 3.2.1 that σ2
g,H0

is proportional to the second moment of the

extracted fingerprint, subtracting the sample mean from the extracted fingerprint

will reduce its second-order moment, thus help improve the detection performance.
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Similarly, the detection performance under the randomized negative attack can be

improved by decreasing σ2
g,H0

and σ2
g,Y .

Motivated by this analysis, we propose a pre-processing stage in the detection

process: given the extracted fingerprint {g({W k
j }k∈Sc)}N

j=1, we first investigate its

histogram. If a single non-zero sample mean is observed, we subtract it from the

extracted fingerprint, and then apply the detection statistics. If the fingerprint

components are merged from two (or more) distributions that have distinct mean

values, we need to cluster components and then subtract from each colluded fin-

gerprint component the sample mean of the corresponding cluster. In the later

case, the means can be estimated using a Gaussian-mixture approximation, and

the clustering is based on the nearest-neighbor principle. In our problem, under the

randomized negative attack, a simple solution is to first observe the bi-modality

in the histogram of {Yj}, and then cluster all negative components into one distri-

bution and cluster all positive components into the other distribution. Given the

extracted fingerprint {Yj}N
j=1, define µneg

4
=

∑
j Yj · I [Yl < 0]/

∑
l I [Yl < 0] as the

sample mean of the negative extracted fingerprint components where I[·] is the

indication function, and µpos
4
=

∑
j Yj · I [Yj > 0]/

∑
l I [Yl > 0] as the sample mean

of the positive extracted fingerprint components. Then the pre-processing stage

generates

Y ′
j =





Yj − µneg if Yj < 0,

Yj − µpos if Yj > 0,

(3.39)

and the detector applies the detection statistics to {Y ′
j }N

j=1. The analysis of the

detection statistics with the pre-processing is the same as in Section 3.2 and is not

repeated.

The simulation is set up the same as before and the fingerprint components are
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Figure 3.7: (a) Pd under the minimum attack, (b) E[Fd] under the minimum attack,

(c) Pd under the randomized negative attack, and (d) E[Fd] under the randomized neg-

ative attack with and without pre-processing. Fingerprints are generated from bounded

Gaussian-like distribution (3.38) with σ2
W = 1/9. M = 100 and N = 104. In (a) and (c),

Pfp = 10−2. In (b) and (d), E[Ffp] = 10−2.
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generated from the bounded Gaussian-like distribution (3.38) with σ2
W = 1/9. In

Figure 3.7 (a) and (c), with Pfp = 10−2, we compare Pd of the three statistics with

and without the pre-processing under the minimum and the randomized negative

attacks, respectively. In Figure 3.7 (b) and (d), with E[Ffp] = 10−2, we com-

pare E[Fd] of the three statistics with and without the pre-processing under the

minimum and the randomized negative attacks, respectively. The detection per-

formance under the maximum attack is the same as that of the minimum attack

and is not shown here. We can see that the pre-processing substantially improves

the detection performance of the detector, and the three statistics have similar

performance under the minimum, maximum, and randomized negative attacks.

Note that the estimated correlation coefficient ρ(i) in the Z statistics removes

the mean of the extracted fingerprint before calculating the correlation between

the extracted fingerprint and the original fingerprint. This explains why the Z

statistics perform better than the TN and q statistics without pre-processing under

the minimum and maximum attacks, whereby the mean of the colluded fingerprint

components is substantially deviated from zero.

3.5 Simulation Results on Real Images

To study the performance of Gaussian based fingerprints under different nonlinear

collusion attacks on real images, we choose two 256 × 256 host images, Lena and

Baboon, which have a variety of representative visual features such as the texture,

sharp edges, and smooth areas. We use the human visual model based spread

spectrum embedding in [47], and embed the fingerprints in the DCT domain. The

generated fingerprints follow the bounded Gaussian-like distribution (3.38) with

σ2
W = 1/9. We assume that the collusion attacks are also in the DCT domain.
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Figure 3.8: (a) Pd of Lena, (b) E[Fd] of Lena, (c) Pd of Baboon, and (d) E[Fd] of

Baboon with the Z statistics under different collusion attacks. The original fingerprints

follow the distribution in (3.38) with σ2
W = 1/9. M = 100. In (a) and (b), the length

of the embedded fingerprints is N = 13691. In (c) and (d), the length of the embedded

fingerprints is N = 19497. In (a) and (c), Pfp = 10−2 and simulation results are based

on 10,000 simulation runs. In (b) and (d), E[Ffp] = 10−2 and simulation results are

based on 1,000 simulation runs.
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At the detector’s side, a non-blind detection is performed where the host signal is

first removed from the colluded copy. Then the detector applies the pre-processing

to the extracted fingerprint if a non-zero sample mean is observed. Finally, the

detector uses the detection statistics to identify the colluders.

Figure 3.8 shows the simulation results of the Z statistics. The TN and q

statistics have similar performance and are not shown here. We assume that there

are a total of M = 100 users. In Figure 3.8 (a) and (c), we fix Pfp = 10−2 and

compare Pd of Lena and Baboon, respectively, under different nonlinear collusion

attacks. In Figure 3.8 (b) and (d), we fix E[Ffp] = 10−2 and compare E[Fd] of

Lena and Baboon, respectively, under different nonlinear collusion attacks. The

simulation results from real images agree with our analysis in Section 3.2, and are

comparable to the simulation results in Section 3.3 and 3.4. In addition, a better

performance is observed in the Baboon example than in Lena. This is because the

length of the embedded fingerprints in Baboon, which is N = 19497, is larger than

that in Lena, which is N = 13691. Different characteristics of the two images, e.g.,

smooth regions and the texture, also contribute to the difference in performance.

3.6 A Few More Collusion Attacks

Besides of the attacks listed in (3.1), we further consider a few other possible

collusion attacks. One of them is the copy and paste attack where in generating

each component of the attacked copy Vj, the colluders equiprobably choose one

of the K different copies {X(k)
j }k∈SC

and take that value as Vj. In terms of the

effects on the energy reduction of the original fingerprints and the effect it has

upon the detection performance, this attack and the average attack have similar

performance.
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Another possible attack is on bounded fingerprints. Since all the K embedded

fingerprints are within the range of [−JND , JND ], so are the minimum and the

maximum of these K copies. The minimum and the maximum values also tell

the colluders the lower and upper bounds of the possible fingerprints that will

not introduce noticeable distortion. The colluders can randomly choose any value

between the minimum and the maximum as the colluded copy without introduc-

ing perceptual distortion. We call it the uniform attack, which can be modelled

as the minmax attack followed by an additive noise n. The extracted finger-

print is {Yj = 1
2
(Wmin

j + Wmax
J ) + nj}N

j=1 where nj is uniformly distributed in

[−W max
j −W min

j

2
,

W max
j −W min

j

2
]. When K is large, {nj} are approximately uniformly

distributed in [−1, 1]. Note that in addition to the collusion functions listed in

(3.1), the colluders can also add another additive noise to the attacked copy, as

long as the overall distortion introduced in the host signal (the extracted finger-

print plus the additive noise in this case) is bounded by JND. This additional noise

will hinder the detection performance without degrading the perceptual quality of

the attacked signal. We can show that given a fixed power of the overall noise intro-

duced in the host signal, different collusion attacks have comparable performance

in defeating the fingerprinting systems.

3.7 Chapter Summary

In this chapter, we have provided theoretical analysis on the effectiveness of dif-

ferent collusion attacks, and studied the perceptual quality of the attacked signals

under different collusion attacks. We have also studied several commonly used

detection statistics and compared their performance under collusion attacks. Fur-

thermore, we have proposed the pre-processing techniques specifically for collusion
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scenarios to improve the detection performance.

We first studied the effectiveness of average and various basic nonlinear col-

lusion attacks with unbounded Gaussian fingerprints. From both our analytical

and simulation results, we found that with the three detection statistics as defined

in the literature and without any modification, the randomized negative attack is

the most effective attack against the fingerprinting system. We showed that the

Z statistics are more robust against the minimum and maximum attacks than the

other two statistics by implicitly removing the mean of the extracted fingerprint.

We also showed that all three statistics have similar performance under other collu-

sion attacks. However, the unbounded Gaussian fingerprints may exceed JND and

introduce perceptual distortion in the host signal even when without collusion, and

the minimum, maximum, and randomized negative attacks introduce much larger

distortion in the attacked copies than others.

In order to remove the noticeable distortion introduced by the unbounded fin-

gerprints, we proposed the bounded Gaussian-like fingerprints, which maintain the

robustness against the collusion attacks. With the bounded Gaussian-like finger-

prints, the randomized negative attack is still the most effective attack, and the

Z statistic are more robust against the minimum and maximum attacks than the

other two statistics. The bounding improves the perceptual quality of the finger-

printed copies and that of the attacked copies, and both the fingerprint designer

and the colluders do not introduce noticeable distortion.

Observing that the extracted fingerprints under the minimum and the max-

imum attacks do not have a zero mean, we proposed the pre-processing of the

extracted fingerprints, which removes the mean from the extracted fingerprints

before applying the detection statistics. We also applied pre-processing to the

56



extracted fingerprints after the randomized negative attacks, which have distinct

bimodal distribution as opposed to the single modality under other collusions. We

showed that these pre-processing techniques improve the detection performance,

and all detection statistics give similar performance after pre-processing.

We have also studied the effectiveness of different collusion attacks and the

performance of different statistics on real images. Our real image simulation results

agree with our analysis and are comparable with the ideal case simulation results.
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Chapter 4

Fair Collusion Attacks on Scalable

Fingerprinting Systems

All prior work on multimedia fingerprinting and collusion attacks assumed that all

users receive copies of the same quality. In practice, users access the multimedia

content through different communication links and have different bandwidth avail-

able. In addition, different users have various processing capability and different

computation constraints. To address the heterogeneity of the networks and the end

users, it is often required to have scalability during video coding and transmission.

“As we move to the convergence of wireless, Internet and multimedia, scalability

becomes increasingly important for rich media access from anywhere, by anyone,

at any time, with any device, and in any form.” [60]

In this chapter, we study the impact of scalability on multimedia fingerprinting

and collusion attacks. We first study the collusion attacks when different colluders

receive copies of different quality. In particular, we consider fair collusion attacks

where all colluders share the same risk and have equal probability of detection, and

analyze the effectiveness of the collusion attacks under the fairness constraints. We
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then investigate the collusion resistance of the scalable fingerprinting systems, and

evaluate the number of colluders that are required to undermine the tracing capa-

bility of the scalable fingerprinting systems under different system requirements.

This chapter is organized as follows. Section 4.1 introduces the system model

of the scalable video coding systems and the digital fingerprinting systems. Sec-

tion 4.2 analyzes the fairness constraints on the collusion attacks when different

colluders receive copies of different quality. We study the effectiveness of the col-

lusion attacks on scalable fingerprinting systems in Section 4.3, and analyze the

collusion resistance of the fingerprinting systems in Section 4.4. Section 4.5 shows

the simulation results on real video sequences.

4.1 System Model

In this section, we first review temporally scalable video coding systems, and then

we introduce a digital fingerprinting system that consists of three parts: fingerprint

embedding, collusion attacks and fingerprint detection and colluder identification.

Finally, we discuss the performance criteria that we use in this chapter to measure

the effectiveness of the collusion attacks and the performance of the detectors.

4.1.1 Temporally Scalable Video Coding Systems

In the literature, scalable video coding is widely used to accommodate heteroge-

nous networks and users with different computation capabilities. One example of

scalable coding is the layered coding, where the video content is decomposed into

non-overlapping streams (layers) with different priorities [60]. The base layer con-

tains the most important information of the video content, provides the roughest
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Figure 4.1: A two-layer temporally scalable codec. Left: encoder, right: decoder.

resolution of the video, and is received by all users in the systems. The enhance-

ment layers contain less important information, gradually refine the reconstructed

video at the decoder’s side, and are only received by the users who have sufficient

bandwidth and computation capability.

In this chapter, we consider temporally scalable video coding, which provides

multiple versions of the same video with different temporal resolutions or frame

rates. Figure 1 shows the block diagrams of a two-layer temporally scalable codec.

At the encoder’s side, the raw video is temporally down-sampled and encoded to

generate the base layer bit stream. Then, the encoder calculates the difference

between the temporally up-sampled base layer and the original video sequence,

and encodes this residue to generate the enhancement layer bit stream. In a

temporally scalable decoder, to reconstruct a high-quality video, both the base

layer and the enhancement layer bit streams have to be received and decoded.

Then the temporally up-sampled base layer is combined with the enhancement

layer refinements to form the high-quality decoded video.

The simplest way to perform temporal down-sampling and temporal up-sampling

is by frame skipping and frame copying, respectively. For example, temporal down-

sampling with a ratio of 2:1 can be achieved by discarding one frame from every

two frames; and temporal up-sampling with a ratio of 1:2 can be realized by making

a copy of each frame and transmitting the two frames to the next stage.
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In this chapter, we consider a temporally scalable video coding system with

three-layer scalability, and use frame skipping and frame copying to implement

temporal down-sampling and up-sampling, respectively. In such a video coding

system, different frames are encoded in different layers. Assume that Fb, Fe1 and

Fe2 are the sets containing the indices of the frames that are are encoded in the

base layer, enhancement layer 1 and enhancement layer 2, respectively. As an

example, if |Fb| : |Fe1| : |Fe2| = 1 : 1 : 2 where |A| denotes the size of the set

A, Fb = {j = 4k + 1 : k = 0, 1, · · · }, Fe1 = {j = 4k + 3 : k = 0, 1, · · · } and

Fe2 = {j = 2k : k = 0, 1, · · · }.
Define F (i) as the set containing the indices of the frames that user u(i) receives.

Define Ub4={u(i) : F (i) = Fb} as the subgroup of users who subscribe to the low

quality and receive the base layer bit stream only; Ub,e14={u(i) : F (i) = Fb ∪Fe1} is

the subgroup of users who subscribe to the medium quality and receive both the

base layer and the enhancement layer 1; and Uall4={u(i) : F (i) = Fb ∪ Fe1 ∪ Fe2}
is the subgroup of users who subscribe to the high quality and receive all three

layers. Ub, Ub,e1 and Uall are mutually exclusive, and M = |Ub|+ |Ub,e1|+ |Uall|
is the total number of users.

4.1.2 Digital Fingerprinting System and Collusion Attacks

We consider a digital fingerprinting system that consists of three parts: fingerprint

embedding, collusion attacks and fingerprint detection.

Fingerprint Embedding

Spread spectrum embedding has been widely used in the literature due to its

robustness against many attacks [13], [47]. For the jth frame in the video se-

61



quence represented by a vector Sj of length Nj, and for each user u(i) who sub-

scribes to frame j, the content owner generates a unique fingerprint W
(i)
j of

length Nj. The fingerprinted copy that will be distributed to u(i) is X
(i)
j (k) =

Sj(k) + JNDj(k) ·W (i)
j (k), where X

(i)
j (k), Sj(k) and W

(i)
j (k) are the kth compo-

nents of the fingerprinted frame X
(i)
j , the host signal Sj and the fingerprint vector

W
(i)
j , respectively. JNDj is the just-noticeable-difference from human visual mod-

els [47], and it is used to control the energy and achieve the imperceptibility of the

embedded fingerprints. Finally, the content owner transmits to each user u(i) all

the fingerprinted frames
{
X

(i)
j

}
that u(i) subscribes to.

Previous works have shown that Gaussian distributed fingerprints are more

robust against the nonlinear collusion attacks [52] and are resilient to the sta-

tistical/histogram attacks [15]. Therefore, we consider Gaussian fingerprints and

assume that
{
W

(i)
j

}
follow normal distribution with zero mean and variance σ2

W .

In addition, to combat the intra-content collusion attacks [56], in each distributed

copy {X(i)
j }, similar to the work in [55], we embed correlated fingerprints W

(i)
j1

and

W
(i)
j2

in adjacent frames Sj1 and Sj2 , respectively. The correlation between the two

fingerprints W
(i)
j1

and W
(i)
j2

depends on the similarity between the two host frames

Sj1 and Sj2 . Finally, in this chapter, we use orthogonal fingerprint modulation [58]

and assign independent fingerprints to different users.

Collusion Attacks

Assume that K out of M users collude, and SC is the set containing the indices

of these colluders. The colluders apply collusion attacks to remove or attenuate

the original fingerprints. In a recent investigation [64], we have shown that order

statistics based nonlinear collusion attacks can be modeled as the averaging attack

62



followed by an additive noise. Under the constraint that the colluded copies under

different collusion attacks have the same perceptual quality, different collusion

attacks have approximately identical performance. Therefore, in this chapter, we

focus on the averaging collusion attack.

During collusion, the colluders first divide themselves into three non-overlapping

subgroups:

• SCb4={i ∈ SC : F (i) = Fb} contains the indices of the colluders who receive

the base layer only;

• SCb,e14={i ∈ SC : F (i) = Fb ∪ Fe1} contains the indices of the colluders who

receive the base layer and the enhancement layer 1;

• and SCall4={i ∈ SC : F (i) = Fb ∪ Fe1 ∪ Fe2} contains the indices of the

colluders who receive all three layers.

Assume that Kb, Kb,e1 and Kall are the number of colluders in SCb, SCb,e1 and

SCall, respectively.

Then, the colluders apply the intra-group collusion attacks followed by the

inter-group collusion attacks to generate the colluded copy {Vj}, as shown in

Figure 4.2. The colluders first apply the intra-group collusion attacks:

• For each frame j ∈ Fb that they received, the colluders in the subgroup SCb

generate Zb
j =

∑
i∈SCb X

(i)
j /Kb.

• For each frame j ∈ Fb∪Fe1 that they received, the colluders in the subgroup

SCb,e1 generate Zb,e1
j =

∑
i∈SCb,e1 X

(i)
j /Kb,e1.

• For each frame j ∈ Fb ∪ Fe1 ∪ Fe2 that they received, the colluders in the

subgroup SCall generate Zall
j =

∑
i∈SCall X

(i)
j /Kall.
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Define F c as the set containing the indices of the frames that are in the colluded

copy. For simplicity, we let F c ∈ {Fb, Fb ∪Fe1, Fb ∪Fe1 ∪Fe2}. Then, the colluders

apply the inter-group collusion attacks to generate the colluded copy {Vj}j∈F c :

• For each frame j ∈ Fb in the base layer,

Vj = β1Z
b
j + β2Z

b,e1
j + β3Z

all
j + nj, (4.1)

where β1 +β2 +β3 = 1 to maintain the average intensity of the colluded copy.

To guarantee that the energy of each of the original fingerprints is reduced,

we let 0 ≤ β1, β2, β3 ≤ 1. In (4.1), nj is the additive noise that the colluders

add to Vj to further hinder the detection.

• If Fe1 ⊂ F c and the colluded copy contains frames in the enhancement layers,

then for each frame j ∈ Fe1 in the enhancement layer 1,

Vj = α1Z
b,e1
j + α2Z

all
j + nj, (4.2)

where 0 ≤ α1, α2 ≤ α1 + α2 = 1 and nj is an additive noise.

• If Fe2 ⊂ F c and the colluded copy contains frames in all three layers, then

for each frame j ∈ Fe2 in the enhancement layer 2,

Vj = Zall
j + nj, (4.3)

where nj is an additive noise.

Define nj(k) as the kth component of the additive noise vector nj. In practice,

the variance of nj(k) is usually proportional to JNDj(k), the corresponding just-

noticeable-difference. This is because from human visual models [47], a larger

JNDj(k) implies that a noise of larger energy can be added to the corresponding
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Figure 4.2: The intra-group and the inter-group collusion attacks.

host signal component without introducing perceptually distinguishable distortion;

and the colluders usually maximize the energy of the additive noise nj under the

perceptual quality constraints in order to maximize the effectiveness of the collusion

attacks. In this chapter, we model { nj

JNDj
} as i.i.d. following distribution N (0, σ2

n).

In addition, we assume that the collusion attacks is a fair attack where all

colluders share the same risk and are equally likely to be detected. The colluders

seek the collusion parameters, F c, {βk}k=1,2,3 and {αl}l=1,2, to satisfy the fair-

ness constraints. The analysis of the fairness constraints and the selection of the

parameters are in Section 4.2.

Fingerprint Detection and Colluder Identification

When the content owner discovers the unauthorized redistribution of {Vj}j∈F c , he

applies a fingerprint detection process to identify the colluders.

In digital fingerprinting applications, the host signal {Sj} is often made avail-

able to the detector. To improve the detection performance [58], [64], we consider

a non-blind detection scenario where the host signal is first removed from the col-
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luded copy before colluder identification. We assume that the detector has a frame

synchronization module that finds the corresponding original frame Sj for each

frame Vj in the colluded copy. Then for each frame j in the colluded copy, the

detector extracts the fingerprint Yj = (Vj − Sj) /JNDj. Finally, the detector

calculates the similarity between the extracted fingerprint {Yj}j∈F c and each of

the M original fingerprints {W(i)

j∈F (i)}, compares with a threshold and outputs a

set ŜC containing the estimated indices of the colluders.

We use the correlation based detection statistics [48] that have been widely

adopted in the literature. For each user u(i), the detector first calculates F̆ (i)4=F (i)∩
F c, where F (i) contains the indices of the frames received by user u(i) and F c

contains the indices of the frames in the colluded copy. For example, if F c =

Fb ∪ Fe1, then F̆ (i1) = Fb for u(i1) ∈ Ub; F̆ (i2) = Fb ∪ Fe1 for u(i2) ∈ Ub,e1; and

F̆ (i3) = Fb∪Fe1 for u(i3) ∈ Uall. Then the detector calculates the detection statistics

T
(i)
N =


 ∑

j∈F̆ (i)

〈Yj,W
(i)
j 〉


 /

√ ∑

j∈F̆ (i)

||W(i)
j ||2, (4.4)

where ||W(i)
j || is the Euclidean norm of W

(i)
j . Given the M detection statistics

{T (i)
N }i=1,··· ,M and a pre-determined threshold h, the estimated colluder set is ŜC =

{i : T
(i)
N > h}.

4.1.3 Performance Criteria

To evaluate the effectiveness of the collusion attacks and the performance of the

detection statistics, we adopt the commonly used criteria in the literature [58, 64]

and use the following measurements:

• Pd: the probability of capturing at least one colluder;

• Pfp: the probability of accusing at least one innocent user;
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• Fd: the fraction of colluders that are successfully captured; and

• Ffp: the fraction of innocent users that are falsely accused.

To measure the quality of the colluded copy, we use the total number of frames

in the colluded copy Lc = |F c|. We let Lc ∈ {|Fb|, |Fb|+ |Fe1|, |Fb|+ |Fe1|+ |Fe2|}
for simplicity, which correspond to the three scenarios where the colluded copy has

the lowest, medium and highest temporal resolution, respectively. When Lc is

larger, the colluded copy has higher temporal resolution and better quality.

4.2 Fairness Constraints on the Collusion Attacks

In this section, given the system model as in Section 4.1, we analyze the fairness

constraints on the collusion attacks and study the selection of collusion parameters

during collusion.

4.2.1 Analysis of the Detection Statistics

For each frame j ∈ Fb in the base layer, from (4.1), the extracted fingerprint Yj

can be rewritten as

Yj =
β1

Kb

∑

i∈SCb

W
(i)
j +

β2

Kb,e1

∑

i∈SCb,e1

W
(i)
j +

β3

Kall

∑

i∈SCall

W
(i)
j + nj/JNDj. (4.5)

If the colluded copy contains frames in the enhancement layers, from (4.2), for

each frame j ∈ Fe1 in the enhancement layer 1,

Yj =
α1

Kb,e1

∑

i∈SCb,e1

W
(i)
j +

α2

Kall

∑

i∈Sall

W
(i)
j + nj/JNDj. (4.6)
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If the colluded copy contains frames in all three layers, from (4.3), for each frame

j ∈ Fe2 in the enhancement layer 2,

Yj =
1

Kall

∑

j∈SCall

W
(i)
j + nj/JNDj. (4.7)

It is straightforward to show that given the colluder set SC, for each user u(i),

the detection statistics follows a Gaussian distribution with mean µ(i) and variance

σ2
n, i.e.,

p
(
T

(i)
N |SC

)
∼ N (

µ(i), σ2
n

)
, (4.8)

where σ2
n is the variance of the additive noise nj/JNDj. For user u(i), µ(i) = 0

when he is innocent, and µ(i) > 0 when he is guilty. For i ∈ SC, µ(i) depends on

the number of frames in the colluded copy and the number frames that colluder

u(i) receives.

Fc = Fb ∪ Fe1 ∪ Fe2

When the colluded copy contains frames in all three layers, we can show that for

i ∈ SC,

µ(i) =





β1

Kb

√∑
j∈F (i) ||W(i)

j ||2 if i ∈ SCb,

β2
P

j∈Fb
||W(i)

j ||2+α1
P

j∈Fe1
||W(i)

j ||2

Kb,e1

rP
j∈F (i) ||W(i)

j ||2
if i ∈ SCb,e1,

β3
P

j∈Fb
||W(i)

j ||2+α2
P

j∈Fe1
||W(i)

j ||2+Pj∈Fe2
||W(i)

j ||2

Kall

rP
j∈F (i) ||W(i)

j ||2
if i ∈ SCall.

(4.9)

Define Nb, Ne1 and Ne2 as the lengths of the fingerprints that are embedded

in the frames in the base layer, enhancement layer 1 and enhancement layer 2, re-

spectively. Since {W(i)
j } follow Gaussian distribution with zero mean and variance

σ2
W , we can have the approximation that

∑
j∈Fb

||W(i)
j ||2 ≈ Nbσ

2
W for i ∈ SC,
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∑
j∈Fe1

||W(i)
e1 ||2 ≈ Ne1σ

2
W for i ∈ SCb,e1 ∪ SCall,

and
∑
j∈Fe2

||W(i)
e1 ||2 ≈ Ne2σ

2
W for i ∈ SCall. (4.10)

Therefore, we can approximate the mean of the detection statistics by

µ(i) ≈





β1
√

Nb

Kb σW if i ∈ SCb,

β2Nb+α1Ne1

Kb,e1
√

Nb+Ne1
σW if i ∈ SCb,e1,

β3Nb+α2Ne1+Ne2

Kall
√

Nb+Ne1+Ne2
σW if i ∈ SCall.

(4.11)

Fc = Fb ∪ Fe1

When the colluded copy contains frames in the base layer and the enhancement

layer 1, similar to the above analysis, we can have the approximation that

µ(i) ≈





β1
√

Nb

Kb σW if i ∈ SCb,

β2Nb+α1Ne1

Kb,e1
√

Nb+Ne1
σW if i ∈ SCb,e1,

β3Nb+α2Ne1

Kall
√

Nb+Ne1
σW if i ∈ SCall.

(4.12)

Fc = Fb

When the colluded copy contains frames in the base layer only, we have

µ(i) ≈





β1
√

Nb

Kb σW if i ∈ SCb,

β2
√

Nb

Kb,e1 σW if i ∈ SCb,e1,

β3
√

Nb

Kall σW if i ∈ SCall.

(4.13)
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4.2.2 Analysis of the Fairness Constraints

Given a threshold h, for colluder u(i) whose detection statistics follow distribution

N (
µ(i), σ2

n

)
, the probability that u(i) is captured is

P (i) = P
[
T

(i)
N > h

]
= Q

(
h− µ(i)

σn

)
, (4.14)

where Q(x) =
∫∞

x
1√
2π

e−
t2

2 dt is the Gaussian tail function. Therefore, for a given

σ2
n and a given threshold h, all colluders share the same risk and are equally likely

to be detected if their detection statistics have the same mean. In this section, we

will study the fairness constraints on the collusion attacks.

Fc = Fb ∪ Fe1 ∪ Fe2

When the colluded copy contains frames in all three layers, from (4.11), the col-

luders seek {0 ≤ βk ≤ 1}k=1,2,3 and {0 ≤ αl ≤ 1}l=1,2 to satisfy

β1

√
Nb

Kb
σW =

β2Nb + α1Ne1

Kb,e1
√

Nb + Ne1

σW =
β3Nb + α2Ne1 + Ne2

Kall
√

Nb + Ne1 + Ne2

σW ,

s.t. β1 + β2 + β3 = 1, α1 + α2 = 1. (4.15)

Note that

β1

√
Nb

Kb
σW =

β2Nb + α1Ne1

Kb,e1
√

Nb + Ne1

σW ⇐⇒ Kb,e1
√

Nb + Ne1

Kb
√

Nb

=
β2Nb + α1Ne1

β1Nb

. (4.16)

In addition, let β3 = 1− β1 − β2 and α2 = 1− α1, we have

β1

√
Nb

Kb
σW =

β3Nb + α2Ne1 + Ne2

Kall
√

Nb + Ne1 + Ne2

σW

⇐⇒ Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb

=
Nb + Ne1 + Ne2

β1Nb

− 1− β2Nb + α1Ne1

β1Nb

.(4.17)

Plug (4.16) into (4.17), we have

Nb + Ne1 + Ne2

β1Nb

=
Kall

√
Nb + Ne1 + Ne2

Kb
√

Nb

+ 1 +
Kb,e1

√
Nb + Ne1

Kb
√

Nb

. (4.18)
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Therefore, to satisfy the fairness constraints, from (4.16) and (4.18), the colluders

should choose

β1 =
Nb + Ne1 + Ne2

Nb

Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

(4.19)

and

β2Nb + α1Ne1 =
(Nb + Ne1 + Ne2) Kb,e1

√
Nb + Ne1

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

. (4.20)

From Section 4.1.2, the collusion parameters are required to be in the range of

[0, 1]. From (4.19), 0 ≤ β1 ≤ 1 if and only if

Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≤ Nb

Nb + Ne1 + Ne2

. (4.21)

Furthermore, from (4.20),

α1 =
Nb + Ne1 + Ne2

Ne1

Kb,e1
√

Nb + Ne1

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

− β2
Nb

Ne1

(4.22)

Given β1 as in (4.19), 0 ≤ β2 ≤ 1 − β1. Consequently, from (4.22), we have

α ≤ α1 ≤ α, where

α =
Nb + Ne1 + Ne2

Ne1

Kb
√

Nb + Kb,e1
√

Nb + Ne1

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

− Nb

Ne1

(4.23)

and

α =
Nb + Ne1 + Ne2

Ne1

Kb,e1
√

Nb + Ne1

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

. (4.24)

If [0, 1]∩ [α, α] is not empty, then there exists at least one α∗1 such that 0 ≤ α∗1 ≤ 1

and α ≤ α∗1 ≤ α. Note that α > 0, so [0, 1]∩ [α, α] 6= ∅ if and only if α ≤ 1, which

is equivalent to

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≥ Ne2

Nb + Ne1 + Ne2

. (4.25)

71



To summarize, in order to generate a colluded copy with the highest tempo-

ral resolution under the fairness constraints,
(
Kb, Kb,e1, Kall

)
and (Nb, Ne1, Ne2)

have to satisfy (4.21) and (4.25), and the colluders should choose the collusion

parameters as in (4.19) and (4.20).

Fc = Fb ∪ Fe1

In this scenario, for colluder u(i1∈SCall) and colluder u(i2∈SCb,e1) who received copies

of the highest and the medium resolution, respectively, the overall lengths of their

fingerprints in the colluded copy are the same and equal to Nb + Ne1. To ensure

that for each frame j ∈ F c in the colluded copy, the energies of these two colluders’

fingerprints X
(i1)
j and X

(i2)
j are reduced by the same ratio, the colluders should

choose α1/K
b,e1 = α2/K

all and β2/K
b,e1 = β3/K

all. For a given 0 ≤ β1 ≤ 1, it is

equivalent to

α1 =
Kb,e1

Kb,e1 + Kall
, α2 = 1− α1,

β2 =
Kb,e1

Kb,e1 + Kall
(1− β1) , and β3 = 1− β1 − β2. (4.26)

Consequently, for these two colluders,

µ(i1) = µ(i2) =
(1− β1)Nb + Ne1

(Kb,e1 + Kall)
√

Nb + Ne1

σW . (4.27)

The colluders seek 0 ≤ β1 ≤ 1 such that

β1

√
Nb

Kb
σW =

(1− β1)Nb + Ne1

(Kb,e1 + Kall)
√

Nb + Ne1

σW , (4.28)

and the solution is

β1 =
Nb + Ne1

Nb

Kb

√
Nb

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1

. (4.29)

With β1 as in (4.29), 0 ≤ β1 ≤ 1 if and only if

Kb
√

Nb

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1

≤ Nb

Nb + Ne1

. (4.30)
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Given 0 ≤ β1 ≤ 1, from (4.26), it is straightforward to show that 0 ≤ β2, β3, α1, α2 ≤
1.

To summarize, under the fairness constraints,
(
Kb, Kb,e1, Kall

)
and (Nb, Ne1, Ne2)

have to satisfy (4.30) if the colluders wish to generate a colluded copy of the medium

temporal resolution. The colluders should choose the collusion parameters as in

(4.26) and (4.29).

Fc = Fb

When the colluded copy contains frames in the base layer only, the colluders choose

{0 ≤ βk ≤ 1}k=1,2,3 with β1 + β2 + β3 = 1 to satisfy

β1

√
Nb

Kb
σW =

β2

√
Nb

Kb,e1
σW =

β3

√
Nb

Kall
σW , (4.31)

and the solution is

β1 =
Kb

Kb + Kb,e1 + Kall
, β2 =

Kb,e1

Kb + Kb,e1 + Kall
, and β3 =

Kall

Kb + Kb,e1 + Kall
.

(4.32)

In this scenario, there are no constraints on
(
Kb, Kb,e1, Kall

)
and (Nb, Ne1, Ne2),

and the colluders can always generate a colluded copy containing frames in the base

layer only.

4.2.3 Summary of the Fairness Constraints and the Selec-

tion of Collusion Parameters

From (4.21), (4.25) and (4.30), to check the fairness constraints and select the

collusion parameters, the colluders need to estimate Nb : Ne1 : Ne2, the ratio of

the lengths of the fingerprints embedded in different layers. Note that the adja-

cent frames in a video sequence are similar to each other and have approximately
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Table 4.1: Fairness constraints on collusion attacks and the selection of collusion

parameters.

F c =

Fb ∪Fe1 ∪Fe2

Fairness

Constraints





Kb√Nb

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
≤ Nb

Nb+Ne1+Ne2
,

Kall√Nb+Ne1+Ne2
Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
≥ Ne2

Nb+Ne1+Ne2
.

Parameter

Selection





β1 = Nb+Ne1+Ne2
Nb

Kb√Nb

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
,

β2Nb + α1Ne1 = (Nb+Ne1+Ne2)K
b,e1√Nb+Ne1

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
,

β3 = 1− β1 − β2, α2 = 1− α1.

F c = Fb∪Fe1

Fairness

Constraints

Kb√Nb

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
≤ Nb

Nb+Ne1
.

Parameter

Selection





β1 = Nb+Ne1
Nb

Kb

√
Nb

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
,

β2 = Kb,e1

Kb,e1+Kall (1− β1) , β3 = 1− β1 − β2,

α1 = Kb,e1

Kb,e1+Kall , α2 = 1− α1.

F c = Fb

Fairness

Constraints

No constraints on (Kb,Kb,e1,Kall) and (Nb, Ne1, Ne2) .

Parameter

Selection





β1 = Kb

Kb+Kb,e1+Kall ,

β2 = Kb,e1

Kb+Kb,e1+Kall ,

β3 = Kall

Kb+Kb,e1+Kall .
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the same number of embeddable coefficients, the colluders can use the following

approximation Nb : Ne1 : Ne2 ≈ |Fb| : |Fe1| : |Fe2|.
Table 4.1 summarizes the fairness constraints on the collusion attacks and the

selection of the collusion parameters for three different scenarios, where the col-

luded copy has the highest, medium and lowest temporal resolution, respectively.

From Table 4.1, we can observe that given
(
Kb, Kb,e1, Kall

)
and (Nb, Ne1, Ne2), the

fairness constraints on the collusion attacks are the constraints on the best possible

quality of the colluded copy. With increasing resolution of the colluded copy, the

fairness constraints on
(
Kb, Kb,e1, Kall

)
and (Nb, Ne1, Ne2) are more severe, and

generating a colluded copy of higher quality requires that there are more colluders

in subgroups SCb,e1 and SCall who receive the enhancement layer bit streams.

4.3 Effectiveness of the Collusion Attacks under

the Fairness Constraints

4.3.1 Statistical Analysis

Assume that there are a total of M users in the system. From the analysis in the

previous section, if the colluders select the collusion parameters as in Table 4.1,

then given a colluder set SC, for each user u(i),

p
(
T

(i)
N |SC

)
∼





N (µ, σ2
n) if i ∈ SC,

N (0, σ2
n) if i /∈ SC,

(4.33)

where σ2
n is the variance of nj/JNDj, and the M detection statistics {T (i)

N }i=1,··· ,M

are independent of each other since the M fingerprints assigned to different users

are generated independently. It is straightforward to show that for i ∈ SC, µ in
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(4.33) can be approximated by

µ =
β1

√
Nb

Kb
σW

≈





Nb+Ne1+Ne2

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
σW if F c = Fb ∪ Fe1 ∪ Fe2,

Nb+Ne1

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
σW if F c = Fb ∪ Fe1,

√
Nb

Kb+Kb,e1+Kall σW if F c = Fb.

(4.34)

Given a threshold h, from (4.33), we can approximate Pd and Pfp by

Pd = P

[
max
i∈SC

T
(i)
N > h

]
≈ 1−

[
1−Q

(
h− µ

σn

)]K

,

and Pfp = P

[
max
i/∈SC

T
(i)
N > h

]
≈ 1−

[
1−Q

(
h

σn

)]M−K

. (4.35)

In addition, E[Fd] and E[Ffp] can be approximated by

E[Fd] =
∑
i∈SC

P
[
T

(i)
N > h

]
/K ≈ Q

(
h− µ

σn

)
,

and E[Ffp] =
∑

i/∈SC

P
[
T

(i)
N > h

]
/(M −K) ≈ Q

(
h

σn

)
. (4.36)

From (4.34-4.36), the effectiveness of the collusion attacks depends on the total

number of colluders K as well as the temporal resolution of the colluded copy Lc.

For a fixed Lc = |F c|, the colluders have a smaller probability to be captured and

the collusion attack is more effective when there are more colluders in the systems.

If the total number of colluders K is fixed, the colluders have a larger probability of

detection when the colluded copy has a higher temporal resolution, and therefore,

better quality. This is because the extracted fingerprint is longer and provides

more information of the colluders’ identities to the detector. The colluders have to

take into consideration the tradeoff between the probability of detection and the

perceptual quality of the colluded copy during collusion.
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4.3.2 Simulation Results

From human visual models [47], not all coefficients are embeddable due to im-

perceptibility constraints. For real video sequences like “akiyo”, “foreman” and

“carphone”, the number of embeddable coefficients in each frame varies from 3000

to 7000, depending on the characteristics of the video sequences. In our simula-

tions, we assume that the length of the fingerprints embedded in each frame is

5000, and we test on a total of 40 frames. We choose Fb = {j : j = 4k + 1, k =

0, · · · , 9}, Fe1 = {j : j = 4k + 3, k = 0, · · · , 9} and Fe2 = {j : j = 2k, k =

1, · · · , 20} as an example of the temporal scalability, and the lengths of the fin-

gerprints embedded in the base layer, enhancement layer 1 and enhancement layer

2 are Nb = 50000, Ne1 = 50000 and Ne2 = 100000, respectively. We assume

that there are a total of M = 450 users and |Ub| = |Ub,e1| = |Uall| = 150. Each

user is assigned a unique fingerprint following Guassian distribution N (0, σ2
W ) with

σ2
W = 1/9, and for each user, fingerprints embedded in adjacent frames are corre-

lated with each other. The fingerprints for different users are generated indepen-

dently.

We assume that 0 ≤ Kb, Kb,e1, Kall ≤ 150 are the number of colluders in sub-

groups SCb, SCb,e1 and SCall, respectively. During collusion, the colluders apply

the intra-group collusion attacks followed by the inter-group collusion attacks. Fur-

thermore, we assume that the additive noise nj/JNDj, which is introduced into

the colluded copy by the colluders to further hinder the detection, has variance

σ2
n = 2σ2

W .

In Figure 4.3, we fix the ratio Kb : Kb,e1 : Kall = 1 : 1 : 1, and assume that the

colluded copy has temporal resolution F c = Fb ∪ Fe1, which satisfies the fairness

constraints in Table 4.1. In Figure 4.3 (a), we fix the probability of accusing at
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Figure 4.3: Effectiveness of the collusion attacks on scalable fingerprinting systems.

Assume that there are a total of M = 450 users and |Ub| = |Ub,e1| = |Uall| = 150.

Nb = 50, 000, Ne1 = 50, 000 and Ne2 = 100, 000. Kb : Kb,e1 : Kall = 1 : 1 : 1 and

F c = Fb ∪ Fe1. σ2
n/σ

2
W = 2. Pfp = 10−3 in (a), and E[Ffp] = 10−3 in (b).

least one innocent user Pfp as 10−3 and plot the probability of capturing at least

one colluder Pd when the total number of colluders K increases. In Figure 4.3 (b),

the fraction of the innocent users that are accused is E[Ffp] = 10−3 and we plot the

fraction of the colluders that are captured E[Fd] when K increases. From Figure

4.3, the collusion attacks are more effective when the total number of colluders K

increases.

In Figures 4.4, we fix the total number of colluders K = 150, and compare the

effectiveness of the collusion attacks when the number of colluders in each subgroup

(Kb, Kb,e1, Kall) changes and when the temporal resolution of the colluded copy Lc

changes. We assume that the colluders generate a colluded copy of the best possible

quality under the fairness constraints. In Figure 4.4, 0 ≤ Kb, Kb,e1, Kall ≤ 150 and
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Figure 4.4: Effectiveness of the collusion attacks on scalable fingerprinting systems.

Assume that there are a total of M = 450 users and |Ub| = |Ub,e1| = |Uall| = 150.

(Nb, Ne1, Ne2) = (50000, 50000, 100000). K = 150 and (Kb, Kb,e1, Kall) are on Line

(4.37). σ2
n/σ

2
W = 2. 0 ≤ Kb, Ke1, Ke2 ≤ 150. Pfp = 10−3 in (c), and E[Ffp] = 10−3

in (d).
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Figure 4.5: Effectiveness of the collusion attacks on scalable fingerprinting systems.

Assume that there are a total of M = 450 users and |Ub| = |Ub,e1| = |Uall| = 150.

(Nb, Ne1, Ne2) = (50000, 50000, 100000). K = 150 and (Kb, Kb,e1, Kall) are on Line

(4.38). σ2
n/σ

2
W = 2. 0 ≤ Kb, Ke1, Ke2 ≤ 150. Pfp = 10−3 in (c), and E[Ffp] = 10−3

in (d).

80



they are on the boundary of the fairness constraints (4.21), where

Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

=
Nb

Nb + Ne1 + Ne2

. (4.37)

Figure 4.4 (a) shows the number of frames in the colluded copy Lc for different

(Kb, Kb,e1, Kall), and Figure 4.4 (b) shows the corresponding means of the detection

statistics. In Figure 4.4 (c), Pfp = 10−3 and we compare Pd of the collusion attacks

with different (Kb, Kb,e1, Kall). In Figure 4.4 (d), E[Ffp] = 10−3 and we compare

E[Fd] of the collusion attacks when (Kb, Kb,e1, Kall) varies.

Similar to Figure 4.4, in Figure 4.5, the total number of colluders is fixed as

K = 150, and we assume that the colluders generate a colluded copy of the best

possible quality under the fairness constraints. In Figure 4.5, 0 ≤ Kb, Kb,e1, Kall ≤
150 and they are on another boundary of the fairness constraints (4.25), where

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

=
Ne2

Nb + Ne1 + Ne2

. (4.38)

From Figures 4.4 and 4.5, under the fairness constraints, the colluders can

generate a colluded copy of higher quality when more colluders have received the

enhancement layers from the content owner. Furthermore, when the colluded

copy has higher temporal resolution and better quality, the colluders have a larger

probability to be captured and the collusion attack is less effective. This is due to

the fact that the extracted fingerprint is longer, and it is in agreement with our

statistical analysis in Section 4.3.1.
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4.4 Resistance of the Scalable Fingerprinting Sys-

tems to Collusion Attacks

Analysis of the collusion attacks helps to evaluate the traitor tracing capacity of

digital fingerprinting systems, and provide guidance to the digital rights enforcers

on the design of collusion resistant fingerprinting systems. In this section, we con-

sider the scalable fingerprinting systems in Section 4.1.2, analyze their collusion

resistance, and quantify their traitor tracing capacity by studying how many col-

luders are required for colluders to cause the failure of the fingerprinting systems.

Following the work in [64], we consider three different fingerprinting applica-

tions that have different goals of design and different performance criteria: catch

one, catch more and catch all ; and we will study the collusion resistance of the

scalable fingerprinting systems for these three scenarios. In particular, we ana-

lyze Kmax, the maximum number of colluders that the fingerprinting systems can

successfully resist under the system requirements.

4.4.1 Catch One

In the catch one applications, the goal is to maximize the chance to capture one

colluder while minimizing the probability of falsely accusing an innocent users. In

such applications, the performance criteria are the probability of capturing at least

one colluder Pd and the probability of accusing at least one innocent user Pfp. The

system requirements are

Pd ≥ γd, and Pfp ≤ γfp. (4.39)
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Figure 4.6: The collusion resistance of the catch one applications. |Ub| : |Ub,e1| :

|Uall| = 1 : 1 : 1 and (Nb, Ne1, Ne2) = (50000, 50000, 100000). σ2
n/σ2

W = 2. γd = 0.8

and γfp = 10−3. In (a), there are a total of 300 users in the system, and |Ub| =

|Ub,e1| = |Uall| = 100. We plot PU
d and PL

d versus the total number of colluders

K. (b) illustrates KU
max and KL

max versus the total number of users.

Upper and Lower Bounds of Kmax

From (4.34) and (4.35), if we fix the probability of accusing at least one innocent

user Pfp = γfp, the performance of the detector in Section 4.1.2 depends on many

parameters: (|Ub|, |Ub,e1|, |Uall|), the lengths of the embedded fingerprints in each

layer (Nb, Ne1, Ne2), the number of colluders in each subgroup (Kb, Kb,e1, Kall),

and the length of the extracted fingerprint (or the temporal resolution of the col-

luded copy Lc, equivalently). Given the system parameters (|Ub|, |Ub,e1|, |Uall|)
and (Nb, Ne1, Ne2), for a fixed total number of colluders K, we define

PU
d (K)

4
= max

Lc,(Kb,Kb,e1,Kall)
Pd,

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
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fairness constraints in Table 4.1 are satisfied; (4.40)

and PL
d (K)

4
= min

Lc,(Kb,Kb,e1,Kall)
Pd,

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 4.1 are satisfied. (4.41)

PU
d (K) and PL

d (K) provide the upper and lower bounds of Pd, respectively, for a

fixed total number of colluders K. Figure 4.6 (a) shows an example of PU
d (K) and

PL
d (K) when there are a total of M = 300 users with |Ub| = |Ub,e1| = |Uall| = 100

and γfp = 10−3.

In the catch one applications, given (|Ub|, |Ub,e1|, |Uall|) and the total number

of users, we further define

KU
max

4
= argK{PU

d (K) ≥ γd, PU
d (K + 1) < γd}

and KL
max

4
= argK{PL

d (K) ≥ γd, PL
d (K + 1) < γd}. (4.42)

Figure 4.6 (b) shows KU
max and KL

max as functions of the total number of users M

under the system requirements γfp = 10−3 and γd = 0.8. From Figure 4.6 (b),

the fingerprinting system can withstand collusion attacks with up to a few dozen

colluders.

For a given (|Ub|, |Ub,e1|, |Uall|) and (Nb, Ne1, Ne2), when the total number of

colluders K is smaller than KL
max, the system requirements can always be satisfied,

no matter what values of Lc and (Kb, Kb,e1, Kall) are. On the contrary, if the

total number of colluders K is larger than KU
max, for all possible values of Lc and

(Kb, Kb,e1, Kall), the detector will always fail. Therefore, KU
max and KL

max provide

the upper and lower bounds of Kmax, respectively.
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Calculation of the Upper and Lower Bounds of Kmax

In this section, given (|Ub|, |Ub,e1|, |Uall|) and (Nb, Ne1, Ne2), we analyze how to

find KU
max and KL

max.

Given (|Ub|, |Ub,e1|, |Uall|) and a fixed total number of colluders K, we define

the feasible region of the triplet (Kb, Kb,e1, Kall) as

FR 4
=

{
(Kb, Kb,e1, Kall) : Kb + Kb,e1 + Kall = K, 0 ≤ Kb ≤ |Ub|,

0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|} . (4.43)

To calculate the upper and lower bounds of Kmax, we have to first calculate

PU
d (K) and PL

d (K). From the analysis in Section 4.3.1, the detector has the worst

performance when the colluded copy contains frames in the base layer only and

the extracted fingerprint is of length Nb. Therefore, PL
d (K) is achieved when

F c = Fb. There are no constraints on (Kb, Kb,e1, Kall) and (Nb, Ne1, Ne2) except

(Kb, Kb,e1, Kall) ∈ FR.

From Section 4.3.1, for a given K, Pd is maximized when the colluded copy

has the highest possible temporal resolution under the fairness constraints. Given

(Nb, Ne1, Ne2) and the total number of colluders K, we define

RC3 4
=

{
(Kb, Kb,e1, Kall) :

Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≤ Nb

Nb + Ne1 + Ne2

,

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≥ Ne2

Nb + Ne1 + Ne2

}
, (4.44)

and RC2 4
=

{
(Kb, Kb,e1, Kall) :

Kb
√

Nb

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1

≤ Nb

Nb + Ne1

}
. (4.45)
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If (Kb, Kb,e1, Kall) ∈ RC3, the colluders can generate a colluded copy with the

highest temporal resolution F c = Fb ∪ Fe1 ∪ Fe2; and for (Kb, Kb,e1, Kall) ∈ RC2,

the colluders can generate a colluded copy with F c = Fb ∪ Fe1.

If FR∩RC3 6= ∅, there exist at least one (Kb∗, Kb,e1∗, Kall∗) ∈ FR such that the

colluders can generate a colluded copy of the highest resolution F c = Fb∪Fe1∪Fe2

under the fairness constraints, and

PU
d (K) = max

F c=Fb∪Fe1∪Fe2,(Kb,Kb,e1,Kall)
Pd, (4.46)

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≤ Nb

Nb + Ne1 + Ne2

,

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≥ Ne2

Nb + Ne1 + Ne2

.

From (4.35), maximize Pd when F c = Fb ∪Fe1 ∪Fe2 is equivalent to maximize the

corresponding mean of the detection statistics

µ =
Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

, (4.47)

and it is further equivalent to minimize the denominator of µ. Consequently, the

optimization problem of (4.47) can be simplified to

min
(Kb,Kb,e1,Kall)

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2, (4.48)

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≤ Nb

Nb + Ne1 + Ne2

,

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≥ Ne2

Nb + Ne1 + Ne2

.

We use linear programming [17] to solve the optimization problem of (4.49), and

then calculate the corresponding µ and PU
d (K).
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If FR ∩ RC3 = ∅ and FR ∩ RC2 6= ∅, the colluders cannot generate a colluded

copy with F c = Fb∪Fe1∪Fe2 under the fairness constraints, but they can generate

a copy with F c = Fb ∪ Fe1. In this scenario, PU
d (K) = max{PU,1

d (K), PU,2
d (K)}

where

PU,1
d (K) = max

F c=Fb∪Fe1,(Kb,Kb,e1,Kall)
Pd, (4.49)

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
Kb
√

Nb

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1

≤ Nb

Nb + Ne1

,

Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≥ Nb

Nb + Ne1 + Ne2

,

and PU,2
d (K) = max

F c=Fb∪Fe1,(Kb,Kb,e1,Kall)
Pd, (4.50)

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
Kb
√

Nb

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1

≤ Nb

Nb + Ne1

,

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≤ Ne2

Nb + Ne1 + Ne2

.

The optimization problem in (4.49) is equivalent to

min
(Kb,Kb,e1,Kall)

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1, (4.51)

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
Kb
√

Nb

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1

≤ Nb

Nb + Ne1

,

Kb
√

Nb

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≥ Nb

Nb + Ne1 + Ne2

,

and the optimization problem in (4.50) is equivalent to

min
(Kb,Kb,e1,Kall)

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1, (4.52)

s.t. Kb + Kb,e1 + Kall = K,
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0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
Kb
√

Nb

Kb
√

Nb + (Kb,e1 + Kall)
√

Nb + Ne1

≤ Nb

Nb + Ne1

,

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

≤ Ne2

Nb + Ne1 + Ne2

.

If FR ∩ RC3 = ∅ and FR ∩ RC2 = ∅, then the colluders can only generate a

colluded copy of the lowest resolution where F c = Fb, and PU
d (K) = PL

d (K) in

this scenario.

Given PU
d (K) and PL

d (K), the analysis of KU
max and KL

max is the same as in [64]

and is omitted here.

Physical Meanings of KU
max and KL

max

From the colluders’ point of view, if colluders can collect no more than KL
max

independent copies, no matter how they collude, they can never succeed in passing

the detector without being captured. However, if they manage to collect more

than KU
max copies, they can be guaranteed success even if they generate a colluded

copy of the highest resolution and best quality. In the scenario where the colluders

collect more than KL
max but fewer than KU

max copies, they can still successfully

remove all trace of the fingerprints by generating a colluded copy of the lowest

resolution and worst quality. If the colluders wish to generate a colluded copy of

better quality, they must take the risk of being captured.

From the content owner’s point of view, if he can ensure that potential colluders

cannot collect more than KL
max independent copies, the fingerprinting system is

essentially collusion resistant.
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Figure 4.7: The collusion resistance of the catch more applications. |Ub| =

|Ub,e1| = |Uall| = 300 and (Nb, Ne1, Ne2) = (50000, 50000, 100000). σ2
n/σ2

W = 2. In

(a), λfp = 0.01, and we plot FU
d and FL

d versus the total number of colluders. In

(b), λd = 0.5, and we plot KU
max and KL

max under different requirements of λfp.

4.4.2 Catch More

In the catch more fingerprinting applications, the goal is to capture as many col-

luders as possible, though possibly at a cost of accusing more innocent users. The

set of performance criteria consists of the fraction of colluders that are successfully

captured E[Fd], and the fraction of innocent users that are falsely placed under

suspicion E[Ffp]. The system requirements for such applications are

E[Fd] ≥ λd, and E[Ffp] ≤ λfp. (4.53)

Similar to the catch one applications, given (|Ub|, |Ub,e1|, |Uall|) and (Nb, Ne1, Ne2),

for fixed E[Ffp] = λfp and a fixed total number of colluders K, we define

FU
d (K)

4
= max

Lc,(Kb,Kb,e1,Kall)
E[Fd],

s.t. Kb + Kb,e1 + Kall = K,
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0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 4.1 are satisfied; (4.54)

and FL
d (K)

4
= min

Lc,(Kb,Kb,e1,Kall)
E[Fd],

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 4.1 are satisfied. (4.55)

Given the total number of colluders K, FU
d (K) and FL

d (K) are the upper and

lower bounds of E[Fd],respectively. Figure 4.7 (a) shows an example of FU
d (K)

and FL
d (K) when λfp = 0.01.

For the catch more applications, we define

KU
max

4
= argK{FU

d (K) ≥ λd, FU
d (K + 1) < λd}

and KL
max

4
= argK{FL

d (K) ≥ λd, FL
d (K + 1) < λd}, (4.56)

which are the upper and lower bounds of Kmax under the system requirements,

respectively. Figure 4.7 (b) shows KU
max and KL

max under different system require-

ments of λfp when λd = 0.5. From Figure 4.7 (b), for the catch more applications,

the fingerprinting system can resist collusion attacks with a few dozen or even

around one hundred colluders, depending on the system requirements.

Given λd and λfp, the analysis of (FU
d (K), FL

d (K)) and (KU
max, K

U
max) in the

catch more applications is similar to that in the catch one applications and will be

not be repeated.

4.4.3 Catch All

In this scenario, the fingerprints are designed to maximize the probability of cap-

turing all colluders, while maintaining an acceptable amount of innocents being
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Figure 4.8: The collusion resistance of the catch all applications. |Ub| : |Ub,e1| :

|Uall| = 1 : 1 : 1 and (Nb, Ne1, Ne2) = (50000, 50000, 100000). σ2
n/σ

2
W = 2. θd =

0.99 and θr = 0.01. In (a), M = 300 and |Ub| = |Ub,e1| = |Uall| = 100. We plot

RU and RL versus the total number of colluders. (b) shows KU
max and KL

max versus

the total number of users M .

falsely accused. The set of performance criteria for these applications consists of

measuring the efficiency rate

R =
(M −K) · E[Ffp]

K · E[Fd]
(4.57)

that describes the number of innocents accused per colluder, and the probability

of capturing all colluders

Pd,all = P

[
min
i∈SC

T
(i)
N > h

]
. (4.58)

The system requirements for these applications are

R ≤ θr, and Pd,all ≥ θd. (4.59)

Similar to the catch one applications, given (|Ub|, |Ub,e1|, |Uall|) and (Nb, Ne1, Ne2),
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for a fixed total number of colluders K and fixed Pd,all = θd, define

RU(K)
4
= max

Lc,(Kb,Kb,e1,Kall)
R,

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 4.1 are satisfied; (4.60)

and RL(K)
4
= min

Lc,(Kb,Kb,e1,Kall)
R,

s.t. Kb + Kb,e1 + Kall = K,

0 ≤ Kb ≤ |Ub|, 0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 4.1 are satisfied. (4.61)

Given the total number of colluders K, RU(K) and RL(K) are the upper and lower

bounds of R, respectively. Figure 4.8 (a) shows an example of RU(K) and RL(K)

when there are a total of M = 300 users with |Ub| = |Ub,e1| = |Uall| = 100 and

θd = 0.99.

In the catch all applications, define

KU
max

4
= argK{RU(K) ≤ θr, RU(K + 1) > θr}

and KL
max

4
= argK{RL(K) ≤ θr, RL(K + 1) > θr}, (4.62)

which are the upper and lower bounds of Kmax. Figure 4.8 (b) shows KU
max and

KL
max as functions of the total number of users M under the system requirements

of θd = 0.99 and θr = 0.01. For the catch all applications, from Figure 4.8 (b),

the fingerprinting systems are robust against collusion attacks with a few dozen

colluders.

Given θr and θd, the analysis of (RU(K), RL(K)) and (KU
max, K

U
max) in the catch

all applications is similar to that in the catch one applications and will be not be

repeated.
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4.5 Simulation Results on Real Video Sequences

To verify the correctness of our analysis on real videos, we choose a typical video

sequence “carphone” and use the first 40 frames as an example. Similar to the sim-

ulation setup in Section 4.3.2, we choose Fb = {j : j = 4k+1, k = 0, · · · , 9}, Fe1 =

{j : j = 4k + 3, k = 0, · · · , 9} and Fe2 = {j : j = 2k, k = 1, · · · , 20} as an example

of the temporal scalability, and the lengths of the embedded fingerprints in the base

layer, enhancement layer 1 and enhancement layer 2 are Nb = 72222, Ne1 = 71926

and Ne2 = 143820, respectively. We assume that there are a total of M = 450 users

and |Ub| = |Ub,e1| = |Uall| = 150. We adopt the human visual model based spread

spectrum embedding in [47], and embed the fingerprints in the DCT domain. The

fingerprints follow Gaussian distribution N (0, 1/9), and the fingerprints assigned

to different users are generated independently. In one fingerprinted copy, similar

to that in [55], the fingerprints embedded in different frames are correlated with

each other, depending on the similarity between the host frames.

During collusion, we assume that there are a fixed total number of K = 150

colluders and the collusion attack is also in the DCT domain. In our simulations,

we assume that the colluders use the approximation N̂b : N̂e1 : N̂e2 ≈ |Fb| : |Fe1| :
|Fe2| = 1 : 1 : 2, and apply the intra-group collusion attacks followed by the inter-

group attacks as in Section 4.1.2. They further introduce an additive noise nj to

each frame j in the colluded copy. To be consistent with the simulation setup in

Section 4.3.2, we adjust the power of the additive noise such that
||nj/JNDj ||2
||W(i)

j ||2 = 2

for every frame j ∈ F c in the colluded copy. JNDj here is the jth frame’s just-

noticeable-difference from human visual models [47]. In our simulations, we assume

that the colluders generate a colluded copy of the best possible quality under the

fairness constraints, the same as in Section 4.3.2.
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Figure 4.9: Simulation results of the collusion attacks on the first 40 frames of

“carphone”. (|Fb|, |Fe1|, |Fe2|) = (10, 10, 20). M = 450, |Ub| = |Ub,e1| = |Uall| =

150 and K = 150. In (a), (c) and (e), (Kb, Kb,e1, Kall) are on Line (4.37), and in

(b), (d) and (f), (Kb, Kb,e1, Kall) are on Line (4.38). Pfp = 10−3 in (c) and (d),

and E[Ffp] = 10−3 in (e) and (f).
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At the detector’s side, we consider a non-blind detection scenario where the host

signal is removed from the colluded copy before fingerprint detection and colluder

identification process. The detector follows the detection process in Section 4.1.2

and estimates the indices of the colluders ŜC.

Figure 4.9 shows the simulation results. In Figure 4.9 (a), (c) and (e), 0 ≤
Kb, Kb,e1, Kall ≤ 150 and they are on Line (4.37); and in Figure 4.9 (b), (d) and

(f), 0 ≤ Kb, Kb,e1, Kall ≤ 150 and they are on Line (4.38). In Figure 4.9 (c) and

(d), we fix Pfp = 10−3 and compare Pd when (Kb, Kb,e1, Kall) changes. In Figure

4.9 (e) and (f), E[Ffp] is fixed as 10−3, and we compare E[Fd] of the collusion

attacks with different (Kb, Kb,e1, Kall). From Figure 4.9, the effectiveness of the

collusion attacks depends on the perceptual quality of the colluded copy: if the

colluded copy has higher resolution and better quality, the extracted fingerprint is

longer, and therefore, the colluders have larger probability to be captured. Also,

the simulation results on real video sequences are comparable with that in Section

4.3.2.

4.6 Chapter Summary

In this chapter, we have studied the performance of scalable fingerprinting systems

where different users received fingerprinted copies of different quality. We have

analyzed the fairness constraints on the collusion attacks and provided statistical

analysis on the effectiveness of the collusion attacks. We have also investigated the

collusion resistance of the scalable fingerprinting systems and studied the maximum

number of colluders that the fingerprinting systems can withstand.

We first studied the fairness constraints on the collusion attacks when colluders

received fingerprinted copies of different quality. We found that higher resolution
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and better quality of the colluded copy puts more severe constraints on the number

of colluders in each subgroup. We then analyzed the effectiveness of the collusion

attacks. Both our analytical and simulation results have shown that the colluders

are more likely to be captured when the colluded copy has higher resolution and

better quality. The colluders have to take into consideration the tradeoff between

the probability of detection and the perceptual quality of the colluded copy during

collusion.

We also studied the collusion resistance of the scalable fingerprinting systems for

three different applications with different system requirements, and provided the

lower and upper bounds of the maximum number of colluder that the fingerprinting

systems can resist. From the colluders’ point of view, the upper bound tells the

colluders how many independent copies are required to guarantee the success even

if the colluded copy has the highest quality. From the content owner’s point of view,

to achieve collusion-free, a desired security requirement is to make the potential

colluders very unlikely to collect copies more than the lower bound.
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Chapter 5

Traitors within Traitors: Strategy

and Performance Analysis

Most prior work assumed that during collusion, all colluders would like to share

the risk, and they adjust the collusion attack to guarantee that all of them have

the same probability of detection. However, there exist selfish colluders who want

to minimize their own probability of detection while still profiting from collusion.

In order to achieve this goal, they hide from other colluders information of the

fingerprinted copies that they received, and process their fingerprinted copies before

multiuser collusion.

In this chapter, we investigate this “traitors within traitors” problem in mul-

timedia fingerprinting. We examine the possible pre-collusion processing tech-

niques by the selfish colluders, analyze their effectiveness, and find the optimal

pre-collusion processing strategy to minimize their probability of detection un-

der the quality constraints. We also investigate the possible countermeasures by

other colluders to protect their own interest and prevent the selfish colluders from

processing the copies before collusion.
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This chapter is organized as follows. We begin, in Section 5.1, with the system

model of traitors within traitors. In Section 5.2, we consider a simple scenario

where all colluders receive copies of the same quality, and investigate the possible

pre-collusion processing strategy by the selfish colluders. In Section 5.3, we study

the pre-collusion processing technique in scalable fingerprinting systems, where

different users receive copies of different resolution. Section 5.4 investigates the

preliminary countermeasures against pre-collusion processing by other colluders.

5.1 System Model

5.1.1 General Framework of Digital Fingerprinting Sys-

tems for Multimedia Forensics

We consider a digital fingerprinting system that consists of three parts: finger-

print embedding, multiuser collusion attacks, and fingerprint detection and col-

luder identification.

Fingerprint Embedding

Spread spectrum embedding has been widely used in multimedia fingerprinting

systems due to its robustness against many attacks [13, 47]. In additive spread

spectrum embedding for video applications, for the jth frame in the video sequence

represented by a vector Sj of length Nj, the content owner generates a unique

fingerprint W
(i)
j of length Nj for each user u(i) in the system. The fingerprinted

copy that is distributed to u(i) is X
(i)
j (k) = Sj(k) + JNDj(k) · W (i)

j (k), where

X
(i)
j (k), Sj(k) and W

(i)
j (k) are the kth components of the fingerprinted frame X

(i)
j ,

the host signal Sj and the fingerprint vector W
(i)
j , respectively. JNDj is the just-
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noticeable-difference from human visual models [47], and it is used to control the

energy and achieve the imperceptibility of the embedded fingerprints. Finally, the

content owner transmits to each user u(i) the fingerprinted frames
{
X

(i)
j

}
.

Previous work has shown that Gaussian distributed fingerprints are more robust

against nonlinear collusion attacks [52] and are resilient to the statistical/histogram

attacks [15]. Therefore, in this chapter, we consider Gaussian fingerprints and

assume that
{
W

(i)
j

}
follow normal distribution with zero mean and variance σ2

W .

Furthermore, we apply orthogonal fingerprint modulation [58] and generate the

fingerprints for different users independently. In this chapter, to be resistant to

intra-content collusion attacks on video watermarking [55,56], in each fingerprinted

copy {X(i)
j }, the fingerprints W

(i)
j1

and W
(i)
j2

that are embedded in adjacent frames

Sj1 and Sj2 , respectively, are correlated with each other. The correlation between

W
(i)
j1

and W
(i)
j2

depends on the similarity between the two host frames Sj1 and Sj2 .

This is similar to the work in [55].

Multiuser Collusion Attacks

Assume that there are a total of K colluders and SC is the set containing their

indices. The colluders first collect a total of K copies of the same content but

embedded with different fingerprints, and then apply a multiuser collusion attack

to reduce the energy of each of the original fingerprints. In a recently investigation,

it has been shown that a nonlinear collusion attack can be modeled as the averaging

collusion attack followed by an additive noise [64]. Under the constraints that the

colluded copies under different collusion attacks have the same perceptual quality,

all collusion attacks have approximately the same performance. Therefore, in this

chapter, we consider the averaging based collusion attacks for the simplicity of
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analysis.

Fingerprint Detection and Colluder Identification

Once the content owner discovers the existence of the illegal copy in the market, he

applies a fingerprint detection and colluder identification process on the suspicious

copy. For each frame Vj in the colluded copy, the detector first extracts the

fingerprint Yj from Vj. Then, he calculates the similarity between the extracted

fingerprint {Yj} and each of the original fingerprints {W(i)
j }, compares with a

pre-determined threshold h, and outputs the identities of the estimated colluders

ŜC.

To measure the similarity between the extracted fingerprint and the original fin-

gerprint, for each user u(i), the detector calculates the correlation based detection

statistics

T
(i)
N =

∑
j

〈Yj,W
(i)
j 〉/

√∑
j

||W(i)
j ||2, (5.1)

where ||W(i)
j || is the Euclidean norm of W

(i)
j . For a given threshold h, the estimated

colluder set is ŜC = {i : T
(i)
N > h}.

5.1.2 Traitors within Traitors

Before collusion, the colluders have to exchange information of the received copies

with each other. The correctness of this information is critical to guarantee the

fairness of the collusion and ensure that all colluders have equal probability of

detection. In most prior work on multimedia fingerprinting and collusion attacks,

it was assumed that all colluders would like to share the risk and have the same

probability of detection, and they tell each other the correct information of their

received fingerprinted copies. In practice, there are selfish colluders who want to
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minimize their own risk of being captured, while they still wish to participate in the

collusion in order to profit from the unauthorized redistribution. To achieve this

goal, the selfish colluders hide from other colluders information of the fingerprinted

copies that they received from the content owner.

Assume that X(i) is the fingerprinted copy that is received by colluder u(i).

In the scenario where all colluders are willing to share the risk and have equal

probability of detection, the multiuser collusion attack is applied to {X(k)}i∈SC ,

and the colluded copy is generated as

V = g
({X(i)}i∈SC

)
+ n, (5.2)

where g(·) is the collusion function and n is an additive noise introduced by the

colluders to further hinder the detection. Figure 5.1 (a) shows an example of the

collusion attack in this scenario.

When there are selfish colluders who wish to minimize their risk, those self-

ish colluders process their fingerprinted copies before multiuser collusion. During

collusion, if other colluders do not discover this pre-collusion processing behavior,

and if they use these processed copies instead of the originally received copies, the

pre-collusion processing could help the selfish colluders to further reduce their own

risk of being captured.

Shown in Figure 5.1 (b) is an example of this scenario. Without loss of general-

ity, assume that colluder u(i1) is the selfish colluder who wants to minimize his own

risk, and X(i1) is the fingerprinted copy that he received from the content owner.

Based on X(i1), u(i1) generates another copy X̃(i1) that is perceptually similar to

X(i1), and use X̃(i1) during collusion. If the other colluders fail to discover u(i1)’s

pre-collusion processing behavior, the colluded copy equals to

V′ = g
(
X̃(i1), {X(i)}i∈SC,i 6=i1

)
+ n, (5.3)
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Figure 5.1: (a) The collusion attack when all colluders are willing to share the

same risk of being captured. (b) The collusion attack when some selfish colluders

want to further reduce their own probability of detection.

where g(·) is the collusion function and n is an additive noise.

5.1.3 Performance Criteria

To measure the effectiveness of pre-collusion processing in reducing the selfish

colluders’ probability of detection, we use the following criteria:

• P
(i)
d : the probability that a colluder u(i) is successfully captured; and

• Pfa: the probability that an innocent user is falsely accused.

For a fixed Pfa, we compare a selfish colluder’s probability of detection in two

scenarios: when the selfish colluder does not apply pre-collusion processing (i.e.,

he is willing to share the risk with other colluders), and when the selfish colluder

processes his fingerprinted copy before collusion. From the selfish colluder’s point
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of view, the pre-collusion processing technique is more effective when the difference

between these two probabilities is larger.

In the example shown in Figure 5.1 (b), in order to cover up the fact that he

processes his fingerprinted copy before multiuser collusion, the selfish colluder u(i1)

has to guarantee that the newly generated copy X̃(i1) has high quality. We use the

mean square error (MSE) between X̃(i1) and X(i1), or equivalently the PSNR for

image and video applications, to measure the effect of pre-collusion processing on

the perceptual quality of the fingerprinted copies.

5.2 Energy Attenuation of the Embedded Fin-

gerprints During Pre-collusion Processing

For a selfish colluder, to further reduce his own probability of detection, one pos-

sible solution is to apply pre-collusion processing to attenuate the energy of the

embedded fingerprint. An example is to replace each segment of the fingerprinted

signal with another, seemingly similar segment from different spatial or temporal

regions of the content, e.g., averaging or swapping consecutive frames of similar

content [56].

In this section, we take frame averaging as an example, and analyze its effects

on the probability of detection as well as the perceptual quality of the fingerprinted

copies. We consider a simple scenario where all users in the system receive fin-

gerprinted copies of the same quality. Our analysis can be extended to scalable

fingerprinting systems, where different users receive copies of different quality.
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Figure 5.2: Applying weighted average during pre-collusion processing.

5.2.1 Pre-collusion Processing Using Weighted Average

In this chapter, we assume that the selfish colluder uses a simple linear interpolation

based average during pre-collusion processing.1 For a selfish colluder u(i1), assume

that {X(i1)
j }j=1,2,··· are the fingerprinted frames that he received from the content

owner, and X
(i1)
j−1, X

(i1)
j and X

(i1)
j+1 are three consecutive frames. As shown in Figure

5.2, for each frame j, u(i1) applies weighted average to the three adjacent frames,

X
(i1)
j−1, X

(i1)
j and X

(i1)
j+1, and generates a new frame X̃

(i1)
j by

X̃
(i1)
j = λ−1

j ·X(i1)
j−1 + λ0

j ·X(i1)
j−1 + λ+1

j ·X(i1)
j+1, (5.4)

where 0 ≤ λ−1
j , λ0

j , λ
+1
j ≤ 1 and λ−1

j + λ0
j + λ+1

j = 1. For simplicity, we let

λ−1
j = λ+1

j = (1 − λ0
j)/2, and give equal weights to the neighboring frames X

(i1)
j−1

and X
(i1)
j+1. The selfish colluder u(i1) repeats this process for every frame in the

video sequence and generates {X̃(i1)
j }j=1,2,···.

For simplicity, we assume that there is only one selfish colluder u(i1) in this

section.2 If the other colluders do not discover u(i1)’s pre-collusion processing

1A selfish colluder can also apply more complicated motion based interpolation [2,8], and the

analysis will be similar.

2When there are multiple selfish colluders using weighted average during pre-collusion pro-

cessing, the analysis is similar and not repeated here.
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actions, then the jth frame in the colluded copy equals to

V′
j =

∑
i∈SC,i6=i1

X
(i)
j

K
+

λ−1
j ·X(i1)

j−1 + λ0
j ·X(i1)

j−1 + λ+1
j ·X(i1)

j+1

K
+ nj, (5.5)

where nj is an additive noise.

5.2.2 Performance Analysis and Selection of the Optimal

Weight Vector

By processing the fingerprinted frames before collusion, the selfish colluder wishes

to minimize his own probability of detection while maintaining the perceptual

quality of {X̃(i1)
j }. In this section, we will first analyze the quality of the newly

generated frames {X̃(i1)
j } and the selfish colluder’s probability of detection, and

then study the selection of the optimal weight vector [λ0
1, λ

0
2, · · · ].

Analysis of Perceptual Quality

If X̃
(i1)
j is generated as in (5.4), then the MSE between X̃

(i1)
j and X

(i1)
j is

MSEj = ||X̃(i1)
j −X

(i1)
j ||2 =

(
1− λ0

j

2

)2

· φj,

where φj = 4||X(i1)
j ||2 + ||X(i1)

j−1||2 + ||X(i1)
j+1||2

−4〈X(i1)
j−1,X

(i1)
j 〉 − 4〈X(i1)

j ,X
(i1)
j+1〉+ 2〈X(i1)

j−1,X
(i1)
j+1〉. (5.6)

In (5.6), ||X(i1)
j || is the Euclidean norm of X

(i1)
j , and 〈X(i1)

j−1,X
(i1)
j 〉 is the correla-

tion between X
(i1)
j−1 and X

(i1)
j . From (5.6), a larger λ0

j implies a smaller MSEj.

Consequently, from the perceptual quality’s point of view, u(i1) should choose a

larger λ0
j . When λ0

j = 1 and colluder u(i1) does not apply pre-collusion processing,

X̃
(i1)
j = X

(i1)
j and it has the best possible quality.
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Analysis of Probability of Detection

Given the colluded copy as in (5.5), the fingerprint that is extracted from frame j

in the colluded copy V′
j is

Yj =

∑
i∈SC,i6=i1

W
(i)
j

K
+

λ−1
j ·W(i)

j−1 + λ0
j ·W(i)

j−1 + λ+1
j ·W(i)

j+1

K
+ dj, (5.7)

where dj contains terms that are independent of the embedded fingerprints {W(i)
j }.

For simplicity, we assume that dj are i.i.d. and follow Gaussian distribution

N (0, σ2
n).

It is straightforward to show that given the colluder set SC and the index of

the selfish colluder i1, the detection statistics follow Gaussian distribution with

mean µ(i) and variance σ2
n, i.e.,

p
(
T

(i)
N |SC, i1

)
∼ N (

µ(i), σ2
n

)
. (5.8)

The detection statistics have a zero mean for an innocent user and a positive mean

for a guilty colluder. Consequently, the probability of accusing an innocent user

and the probability of capturing a guilty colluder u(i∈SC) are

Pfa ≈ Q

(
h

σn

)
and P

(i)
d ≈ Q

(
h− µ(i)

σn

)
, (5.9)

respectively, where Q(·) is the Gaussian tail function. Therefore, for fixed σ2
n and

Pfa, a colluder u(i) has a smaller probability of detection when µ(i) is smaller, and

minimizing the probability of detection is equivalent to minimizing the mean of

the detection statistics.

For the selfish colluder u(i1),

µ(i1) =
∑

j

µ
(i1)
j ,
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where µ
(i1)
j =

1− λ0
j

2
· 〈W(i1)

j−1,W
(i1)
j 〉

K

√∑
l ||W(i1)

l ||2
+ λ0

j

||W(i1)
j ||2

K

√∑
l ||W(i1)

l ||2

+
1− λ0

j

2
· 〈W(i1)

j ,W
(i1)
j+1〉

K

√∑
l ||W(i1)

l ||2
. (5.10)

In (5.10), 〈W(i)
j−1,W

(i)
j 〉 is the correlation between W

(i)
j−1 and W

(i)
j , and 〈W(i)

j ,W
(i)
j+1〉

is the correlation between W
(i)
j and W

(i)
j+1. From the fingerprint design in Section

5.1.1,

〈W(i)
j−1,W

(i)
j 〉 ≤ ||W(i)

j ||2, and 〈W(i)
j ,W

(i)
j+1〉 ≤ ||W(i)

j ||2. (5.11)

From (5.10) and (5.11), if λ0
1, · · · , λ0

j−1, λ
0
j+1, · · · are fixed, µ(i1) is a non-decreasing

function of λ0
j and is minimized when λ0

j = 0. Consequently, from the detection

probability’s point of view, u(i1) should choose a smaller λ0
j to reduce his own

probability of detection.

Selection of the Optimal Weight Vector

During pre-collusion processing, the selfish colluders wish to minimize their own

probability of detection while maintaining the quality of the fingerprinted copies.

Consequently, for a selfish colluder u(i1), the selection of the weight vector [λ0
1, λ

0
2, · · · ]

can be modeled as

min
{λ0

j}

{
µ(i1) =

∑
j

µ
(i1)
j

}

s.t. MSEj ≤ ε, 0 ≤ λ0
j ≤ 1, j = 1, 2, · · · , (5.12)

where ε is the threshold on the perceptual quality. In our model of weighted av-

erage, {λ0
j} for different frames are selected independently. Thus, minimizing µ(i1)

over the entire video sequence is equivalent to minimizing µ
(i1)
j in (5.10) for each
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frame j independently. Therefore, the optimization problem in (5.12) is equivalent

to: for each frame j,

min
λ0

j

µi1
j

s.t. MSEj ≤ ε, 0 ≤ λ0
j ≤ 1, (5.13)

Given φj as defined in (5.6), we can show that the solution to (5.13) is

λ∗j = max

{
0, 1− 2 ·

√
ε/φj

}
. (5.14)

5.2.3 Simulation Results

In our simulations, we choose sequence “carphone”, and use the first 40 frames as

an example. At the content owner’s side, we adopt the human visual model based

spread spectrum embedding [47], and embed fingerprints in the DCT domain. The

fingerprints follow Gaussian distributionN (0, σ2
W ) with σ2

W = 1/9, and fingerprints

for different users are generated independently. In each fingerprinted copy, similar

to the work in [55], fingerprints embedded in adjacent frames are correlated with

each other, and the correlation depends on the similarity between the two host

frames.

At the colluder’s side, we assume that there are a total of 150 colluders. For

simplicity, we assume that there is only one selfish colluder and he applies weighted

average as in (5.4) during pre-collusion processing. In addition, we assume that

after the multiuser collusion attack, the colluders add an additive noise to further

hinder the detection. In this chapter, we let the noise term dj in (5.7) have variance

σ2
n = 2σ2

W , and other values of σ2
n will give the same trend.

At the detector’s side, we consider a non-blind detection scenario. The detector

first registers the test signal with respect to the host signal, then removes the host
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Figure 5.3: Simulation results of the weighted average on sequence “carphone”.

Assume that there are a total of K = 150 colluders and there is only one self-

ish colluder u(i1). {λ∗j} are the solution of (5.14) where ε is chosen to satisfy

PSNRj ≥ 40dB for all frame j. (Left): PSNR of the newly generated copy {X̃(i1)
j }

compared with the originally received fingerprinted frames {X(i1)
j }. (Right): the

selfish colluder’s probability of detection P
(i1)
d .

signal from the test copy, and finally applies the fingerprint detection process in

Section 5.1.1.

Figure 5.3 shows the simulation results of weighted average on sequence “car-

phone”. For each frame j, PSNRj is defined as PSNR of X̃
(i1)
j compared with

X
(i1)
j . In Figure 5.3, {λ∗j} are the solution of (5.14) where ε is chosen to satisfy

PSNRj ≥ 40dB for all frames. In our simulations, we consider four different sce-

narios where λ0
j = 1, λ0

j = 0.8, λ0
j = λ∗j , and λ0

j = 0, respectively3. Figure 5.3 (a)

and (b) compare the perceptual quality of {X̃(i1)
j } and the selfish colluder u(i1)’s

probability of detection, respectively, when {λ0
j} take different values.

3λ0
j = 1 corresponds to the scenario where the selfish colluder u(i1) does not apply pre-collusion

processing before multiuser collusion.
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Figure 5.4: λ∗j of (5.14) for different sequences where ε is chosen to satisfy

PSNRj ≥ 40dB for all frames in {X̃(i1)
j }.

From Figure 5.3, a selfish colluder can reduce his own probability of detection

by applying the weighted average before multiuser collusion. By choosing {λ0
j}

of smaller values, the selfish colluder has a smaller probability of detection while

sacrificing the quality of the newly generated copy. Therefore, during pre-collusion

processing, the selfish colluder has to consider the tradeoff between the probability

of detection and the perceptual quality.

We then compare the solution of {λ0
j} in (5.14) for different sequences. We

choose four representative video sequences: “miss america” that has large smooth

region and slow motion, “carphone” and “foreman” that are moderately compli-

cated, and “flower” where the high frequency band has large energy and the camera

moves quickly. We choose the threshold ε in (5.14) such that PSNRj ≥ 40dB for

all frames in {X̃(i1)
j }. Figure 5.4 shows the solutions of (5.14) for various sequences.

From Figure 5.4, for sequences that have slow motion (“miss america”), a selfish

colluder can choose {λ0
j} with small values, e.g., around 0, without significant

quality degradation; for sequences that have moderate motion (“carphone” and

110



“foreman”), λ∗j is around 0.5; while for sequences with fast movement (“flower”),

a selfish colluder has to choose large {λ0
j}, e.g., larger than 0.9, to ensure the

perceptual quality.

5.3 Modifying Resolution of Received Copies Dur-

ing Pre-collusion Processing

In the previous section, we have shown how a selfish colluder can modify the

content of the received frames to minimize his probability of detection under the

quality constraints, and it can be applied to all video fingerprinting systems. In this

section, we consider scalable fingerprinting systems in which users receive copies of

different quality, and study how a selfish colluder can modify the resolution of his

fingerprinted copy to minimize his risk. For simplicity, in this section, we assume

that the selfish colluders only change the resolution of their received copies and do

not further apply weighted average during pre-collusion processing.

5.3.1 Changing the Resolution of the Fingerprinted Copies

Before Collusion

Assume that F (i1) contains the indices of the frames that a selfish colluder u(i1)

subscribes to, and {X(i)
j } are the fingerprinted frames that he receives from the

content owner. Before collusion, the selfish colluder u(i1) processes his received

copy and generates another copy {X̃(i1)
j }, whose temporal resolution is different

from that of {X(i1)
j }. Assume that F̃ (i1) contains the indices of the frames in

{X̃(i1)
j } and F̃ (i1) 6= F (i1). During collusion, u(i1) uses the newly generated copy

{X̃(i1)
j }j∈ eF (i1) , instead of {X(i1)

j }j∈F (i1) .
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Figure 5.5: An example of cheat upward where F (i1) = Fb and F̃ (i1) = Fb∪Fe1∪Fe2.

We consider a simple scenario where F̃ (i1) ∈ {Fb, Fb∪Fe1, Fb∪Fe1∪Fe2}. For

simplicity, we assume that there is only one selfish colluder u(i1) who changes the

resolution of his copy before multiuser collusion, and no colluders apply weighted

average. Our analysis can be extended to complicated scenarios where there are

multiple selfish colluders.

For a selfish colluder u(i1) who changes the resolution of his received copy during

pre-collusion processing, we define the processing parameter as CP (i1)4=
(
F (i1), F̃ (i1)

)
.

If F̃ (i1) ⊃ F (i1), i.e., a selfish colluder u(i1) subscribes to the low quality version

and he tells other colluders that he has a copy of higher frame rate, we call it

“cheat upward”. If F̃ (i1) ⊂ F (i1), i.e., u(i1) subscribes to the high quality version

and he tells others that he only has a copy of lower resolution, we call it “cheat

downward”.

Cheat Upward

In this type of pre-collusion processing, a selfish colluder u(i1) subscribes to a copy

of low frame rate while telling other colluders that he received a copy of higher

resolution. As an example, we consider a scenario where the processing parameter

is CP (i1) =
(
F (i1) = Fb, F̃

(i1) = Fb ∪ Fe1 ∪ Fe2

)
. In the example shown in Figure

5.5, a selfish colluder receives the fingerprinted base layer only, and applies cheat
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upward to generate a copy {X̃(i1)
j } that contains frames in all three layers. He then

tells the other colluders that {X̃(i1)
j }j∈Fb∪Fe1∪Fe2 is the copy that he received.

Pre-collusion Processing

We assume that for every frame j ∈ F (i1) = Fb that u(i1) received, the selfish

colluder simply copies X
(i1)
j and let X̃

(i1)
j = X

(i1)
j . During pre-collusion processing,

u(i1) needs to forge X̃
(i1)
j for frame j ∈ Fe1 ∪ Fe2 in the enhancement layers that

he did not receive. Assume that X
(i1)
j1

and X
(i1)
j3

are two adjacent frames in the

base layer that are received by u(i1). To forge a frame X̃
(i1)
j2

in the enhancement

layers where j2 ∈ Fe1 ∪ Fe2 and j1 < j2 < j3, in this chapter, we consider a simple

interpolation based method and let

X̃
(i1)
j2

= λ1 ·X(i1)
j1

+ λ2 ·X(i1)
j3

,

where λ1 =
j3 − j2

j3 − j1

and λ2 =
j2 − j1

j3 − j1

. (5.15)

Other complicated algorithms, e.g., motion based interpolation [2, 8], can also be

used to improve the quality of the forged frames, and the analysis will be similar.

Perceptual Quality

When the selfish colluder applies cheat upward, he has to forge frames in the

enhancement layers that he did not receive from the content owner. To cover

up the fact he processed his fingerprinted copy before collusion and make other

colluders believe him, the selfish colluder must ensure that the fake enhancement

layers generated by himself have high quality.

In this section, we examine the perceptual quality of the forged enhancement

layers and study the quality constraints on cheat upward. As an example, we

consider a scenario where the processing parameter is CP (i1) = (Fb, Fb∪Fe1∪Fe2),

and use the simple interpolation based method in (5.15).

For a selfish colluder u(i1) in subgroup SCb and for a frame j ∈ Fe1∪Fe2 in the
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Figure 5.6: The quality of the enhancement layers that is forged by the selfish

colluder during pre-collusion processing. The processing parameter is CP (i1) =

(Fb, Fb ∪ Fe1 ∪ Fe2) and the interpolation based method in (5.15) is used. Fb =

{1, 5, 9, · · · }, Fe1 = {3, 7, 11, · · · } and Fe2 = {2, 4, 6, 8, · · · }.

enhancement layers, assume that X
(i1)
j is the fingerprinted frame that he would

have received if he had subscribed to frame j. In our simulations, we choose X
(i1)
j

as the ground truth and calculate the PSNR of X̃
(i1)
j compared with X

(i1)
j .4

Figure 5.6 shows the results on the first 40 frames of sequence “miss america”,

“carphone” and “flower”. From Figure 5.6, for sequence “miss america” with flat

regions and slow motion, the selfish colluder can forge enhancement layers of high

quality (around 40dB in PSNR); for sequence “flower” that has fast movement,

the selfish colluder can only generate low-quality enhancement layers (only 15dB

in PSNR), and therefore, might not be able to apply cheat upward due to the

4In practice, the selfish colluder u(i1) does not have X(i1)
j and cannot use objective criteria

to measure the quality of X̃(i1)
j . He can only subjectively judge the quality himself. The results

shown here is only for the purpose of performance comparison.
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quality constraints.5

Analysis of the Probability of Detection

For a selfish colluder, to analyze the effectiveness of cheat upward on reducing

his risk of being captured, we compare his probability of detection when the selfish

colluder applies cheat upward with that when he does not process his fingerprinted

copy before collusion. We use the example in Figure 5.5 where the processing

parameter is CP (i1) = (Fb, Fb ∪ Fe1 ∪ Fe2).

We first consider the scenario where u(i1) does not apply pre-collusion process-

ing, and we assume that

• SCb = {i ∈ SC : F (i) = Fb} contains the indices of the colluders who

subscribes to copies of lowest resolution and only receive the base layer from

the content owner;

• SCb,e1 = {i ∈ SC : F (i) = Fb∪Fe1} contains the indices of the colluders who

receive both the base layer and the enhancement layer 1 from content owner;

• and SCall = {i ∈ SC : F (i) = Fb ∪ Fe1 ∪ Fe2} contains the indices of the

colluders who receive all three layers.

Kb, Kb,e1 and Kall are the number of colluders in SCb, SCb,e1 and SCall, respec-

tively.

Given (Kb, Kb,e1, Kall) and (Nb, Ne1, Ne2), the colluders first decide the resolu-

tion of the colluded copy F c, and then choose the collusion parameters {βk}k=1,2,3

5Motion based interpolation [2, 8] can be used to improve the quality. However, for some

sequences with fast movement and complex scene composition, e.g., “football” and “flower”, even

with motion based interpolation, the selfish colluder may still not be able to forge enhancement

layers of good enough quality to use. Therefore, the selfish colluders may not be able to apply

cheat upward on those complicated sequences.
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and {αl}l=1,2 according to Table 4.1. In this scenario, for each frame j ∈ Fb in the

base layer, the extracted fingerprint is

Yj =
β1 ·W(i1)

j

Kb
+

∑

i∈SCb,i6=i1

β1 ·W(i)
j

Kb
+

∑

i∈SCb,e1

β2 ·W(i)
j

Kb,e1
+

∑

i∈SCall

β3 ·W(i)
j

Kall
+ nj,

(5.16)

where nj is the additive noise. We assume that nj follows Gaussian distribution

N (0, σ2
n) for simplicity.

At the detector’s side, following the detection procedure in Section 5.1.1, F̆ (i) =

F (i) ∩ F c = Fb, and the detector calculates the detection statistics

T
(i1)
N =

∑
j∈Fb

〈Yj,W
(i1)
j 〉√∑

j∈Fb
||W(i1)

j ||2
, (5.17)

compares it with the threshold h and decides if u(i1) is a possible colluder. It is

straightforward to show that given the colluder set SC and the extracted finger-

print as in (5.16), the detection statistics in (5.17) follows distribution

p
(
T

(i1)
N |SC

)
∼ N (µ(i1), σ2

n),

where µ(i1) =
β1

Kb

√∑
j∈Fb

||W(i1)
j ||2. (5.18)

We then consider the scenario where u(i1) applies cheat upward during pre-

collusion processing, and assume that

• S̃C
b

= {i ∈ SC : F̃ (i)} contains the indices of the colluders who claim that

they received the base layer only;

• S̃C
b,e1

= {i ∈ SC : F̃ (i) = Fb ∪ Fe1} is the set containing the indices of

the colluders who claim that they have received both the base layer and

enhancement layer 1;
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• and S̃C
all

= {i ∈ SC : F̃ (i) = Fb∪Fe1∪Fe2} is the set containing the indices

of the colluders who claim that they have received all three layers.

Define K̃b, K̃b,e1 and K̃all as the number of colluders in S̃C
b
, S̃C

b,e1
and S̃C

all
,

respectively.

If u(i1) is the only selfish colluder and the processing parameter is CP (i1) =

(Fb, Fb ∪Fe1 ∪Fe2), then we have S̃C
b
= SCb \ {i1}6, S̃C

b,e1
= SCb,e1 and S̃C

all
=

SCall∪{i1}. Consequently, K̃b = Kb−1, K̃b,e1 = Kb,e1 and K̃all = Kall+1. If other

colluders do not discover u(i1)’s processing before collusion, given (K̃b, K̃b,e1, K̃all)

and (Nb, Ne1, Ne2), following Table 4.1, the colluders first decide on the indices of

the frames in the colluded copy F̃ c, and then choose the parameters {β̃k}k=1,2,3 and

{α̃l}l=1,2 accordingly. For fair comparison, if (K̃b, K̃b,e1, K̃all) and (Nb, Ne1, Ne2)

satisfy the fairness constraints listed in Table 4.1, we choose F̃ c = F c .

At the detector’s side, in this scenario, for frame j ∈ Fb in the base layer, the

extracted fingerprint is

Yj =
β̃3 ·W(i1)

j

K̃all
+

∑

i∈SCb,i6=i1

β̃1 ·W(i)
j

K̃b
+

∑

i∈SCb,e1

β̃2 ·W(i)
j

K̃b,e1
+

∑

i∈SCall

β̃3 ·W(i)
j

K̃all
+ nj.

(5.19)

Under the assumption that nj follows the same Gaussian distribution N (0, σ2
n) as

in (5.16), given the colluder set SC, the identity of the selfish colluder i1, and the

pre-collusion processing parameter CP (i1), the detection statistics in (5.17) follow

the distribution

p
(
T

(i1)
N |SC, i1, CP (i1)

)
∼ N (µ̃(i1), σ2

n),

where µ̃(i1) =
β̃3

K̃all

√∑
j∈Fb

||W(i1)
j ||2. (5.20)

6For two sets A and B where B ⊆ A, A \B
4
={i : i ∈ A, i /∈ B}.
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Figure 5.7: Means of the selfish colluder’s detection statistics when he applies cheat

upward. (Fb, Fe1, Fe2) = (10, 10, 20), and (Nb, Ne1, Ne2) = (50000, 50000, 100000).

There are a total of M = 450 users in the system and a total of K = 150 colluders.

0 ≤ Kb, Kb,e1, Kall ≤ 150 and (Kb, Kb,e1, Kall) are on the line (5.21). CP (i1) =

(Fb, Fb ∪ Fe1 ∪ Fe2).

From (5.18) and (5.20), if the same threshold h is used at the detector’s side,

comparing P
(i1)
d of these two scenarios is equivalent to comparing µ(i1) in (5.18)

with µ̃(i1) in (5.20).

To compare the values of the two means, we consider the following scalable

fingerprinting systems. We observe that for video sequences like “miss america”,

“carphone” and “foreman”, each frame has approximately 3000 ∼ 7000 embed-

dable coefficients, depending on the characteristics of the video sequence. As an

example, we assume that the length of the embedded fingerprints in each frame is

5000, and we test on a total of 40 frames. We choose Fb = {j : j = 4k + 1, k =

0, · · · , 9}, Fe1 = {j : j = 4k + 3, k = 0, · · · , 9} and Fe2 = {j : j = 2k, k =

1, · · · , 20} as an example of the temporal scalability, and the lengths of the fin-
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gerprints embedded in the base layer, enhancement layer 1 and enhancement layer

2 are Nb = 50000, Ne1 = 50000 and Ne2 = 100000, respectively. We assume

that there are a total of M = 450 users and |Ub| = |Ub,e1| = |Uall| = 150. Each

user is assigned a unique fingerprint following Guassian distribution N (0, σ2
W ) with

σ2
W = 1/9.

We assume that there are a total of K = 150 colluders, 0 ≤ Kb, Kb,e1, Kall ≤
150 and (Kb, Kb,e1, Kall) are on the line

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

=
Ne2

Nb + Ne1 + Ne2

, (5.21)

which is the boundary of the fairness constraints for F c = Fb ∪ Fe1 ∪ Fe2 in Table

4.1. Other values of (Kb, Kb,e1, Kall) and (Nb, Ne1, Ne2) give the same trend.

Given the above scalable fingerprinting system, Figure 5.7 compares µ(i1) in

(5.18) with µ̃(i1) in (5.20). In Figure 5.7 (a), F c = Fb ∪ Fe1 ∪ Fe2 and the colluded

copy has the highest resolution; and in Figure 5.7 (b), F c = Fb and the colluded

copy contains frames in the base layer only. From Figure 5.7, cheat upward can help

the selfish colluder to further reduce his probability of detection when the colluded

copy is of high quality; while it can not lower the selfish colluder’s risk when the

colluders decide to generate a copy of low resolution. This is because when F c = Fb,

no matter how many frames that u(i1) claims that he has received, only those in the

base layer are used during collusion. Therefore, in such a scenario, cheat upward

cannot help the selfish colluders to further reduce his risk. To generalize, cheat

upward is effective in reducing a selfish colluder u(i1)’s probability of detection only

if F c ⊃ F (i1).
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Figure 5.8: An example of cheat downward where F (i1) = Fb ∪ Fe1 ∪ Fe2 and

F̃ (i1) = Fb.

Cheat Downward

In cheat downward, a selfish colluder receives a copy of high resolution and tells

other colluders that he only has a copy of low quality. Shown in Figure 5.8 is an

example of cheat downward where u(i1) subscribes to all three layers while claiming

that he only has the fingerprinted base layer. In this example, during pre-collusion

processing, u(i1) simply keeps frames in the base layer and drops those in the

enhancement layers.

In cheat downward, the selfish colluder does not need to forge any frames, and

therefore, the quality constraints are satisfied. For cheat downward, the analysis

of the selfish colluder’s probability of detection is similar to that for cheat upward,

and is not repeated here.

Figure 5.9 compares the means of the selfish colluder’s detection statistics when

he uses cheat downward with that when he does not apply pre-collusion processing.

The setup of the scalable fingerprinting system in Figure 5.9 is the same as that in

Figure 5.7. In Figure 5.9, the processing parameter is CP (i1) = (Fb∪Fe1∪Fe2, Fb),

and F c = Fb∪Fe1∪Fe2 and F c = Fb in Figure 5.9 (a) and (b), respectively. Similar

to cheat upward, when the colluded copy has high resolution, the selfish colluder
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Figure 5.9: Means of the selfish colluder’s detection statistics when he ap-

plies cheat downward. (Fb, Fe1, Fe2) = (10, 10, 20) and (Nb, Ne1, Ne2) =

(50000, 50000, 100000). There are a total of M = 450 users in the system and

a total of K = 150 colluders. 0 ≤ Kb, Kb,e1, Kall ≤ 150 and (Kb, Kb,e1, Kall) are

on the line (5.21). CP (i1) = (Fb ∪ Fe1 ∪ Fe2, Fb).

can reduce his own probability of detection by applying cheat downward before

multiuser collusion; while when the resolution of the colluded copy is low, cheat

downward cannot further lower the selfish colluder’s risk. Cheat downward can

reduce the selfish colluder’s probability of detection only when the colluded copy

has high resolution and F c ⊃ F̃ (i1).

5.3.2 Performance Comparison of Different Strategy

For each selfish colluder, if he wants to modify the resolution of his fingerprinted

copy during pre-collusion processing, he has two choices. For example, for a selfish

colluder u(i1∈SCb) who receives the base layer only, he can apply cheat upward

with two different processing parameters: CP
(i1)
1 = (Fb, Fb ∪ Fe1) and CP

(i1)
2 =
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(Fb, Fb ∪ Fe1 ∪ Fe2). We assume that the fake enhancement layers generated in

cheat upward satisfy the quality constraints, and other colluders do not discover

the selfish colluder’s pre-collusion processing behavior. In this section, we compare

the effectiveness of different processing parameters in reducing the selfish colluder’s

risk of being captured.

From the analysis in the previous section, neither cheat upward nor cheat down-

ward can further reduce the selfish colluder’s probability of detection when F c = Fb

and the colluded copy contains the base layer only. Therefore, in this section, we

only consider the scenario where the colluded copy contains the enhancement layers

and F c equals to either Fb ∪ Fe1 or Fb ∪ Fe1 ∪ Fe2.

Our simulation setup is similar to that in Section 5.3.1. We assume each frame

has 5000 embeddable coefficients and we test on a total of 40 frames. We con-

sider a temporally scalable video coding system where Fb = {j : j = 4k + 1, k =

0, · · · , 9}, Fe1 = {j : j = 4k + 3, k = 0, · · · , 9} and Fe2 = {j : j = 2k, k =

1, · · · , 20}, and the lengths of the fingerprints embedded in the base layer, en-

hancement layer 1 and enhancement layer 2 are Nb = 50000, Ne1 = 50000 and

Ne2 = 100000, respectively. We further assume that there are a total of M = 450

users in the system, and |Ub| = |Ub,e1| = |Uall| = 150. For each user, we generate a

unique fingerprint following Gaussian distribution N (0, σ2
W ) where σ2

W = 1/9, and

in each fingerprinted copy, we embed correlated fingerprints in adjacent frames. In

addition, fingerprints for different users are independent of each other.

During collusion, we assume that there are a total of K = 150 colluders. 0 ≤
Kb, Kb,e1, Kall ≤ 150 and (Kb, Kb,e1, Kall) are on the line (5.21). We further assume

that the additive noise nj follows distribution N (0, σ2
n) where σ2

n = 2σ2
W . In

our simulations, we assume that there is only one selfish colluder u(i1) and other
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colluders do not discover the pre-collusion processing by the selfish colluder.

At the detector’s side, we assume that there is a registration module that

registers each frame in the colluded copy with respect to the corresponding frame

in the host signal, and we consider a non-blind detection scenario where the host

signal is first removed from the test copy before detection.

For Selfish Colluders in Subgroup SCb

For a selfish colluder u(i1) where i1 ∈ SCb and F (i1) = Fb, he can use cheat

upward with two different processing parameters: CP
(i1)
1 = (Fb, Fb ∪ Fe1) and

CP
(i1)
2 = (Fb, Fb ∪Fe1 ∪Fe2). In this section, we compare the effectiveness of these

two parameters in reducing u(i1)’s probability of detection P
(i1)
d .

Figure 5.10 shows our simulation results. In Figure 5.10, we fix the probability

of accusing an innocent user Pfa as 0.01, and compare P
(i1)
d of different processing

parameters. F c = Fb ∪ Fe1 and F c = Fb ∪ Fe1 ∪ Fe2 in Figure 5.10 (a) and

(b), respectively. From the selfish colluder’s point of view, when F c = Fb ∪ Fe1,

the two parameters have almost identical performance. If F c = Fb ∪ Fe1 ∪ Fe2,

CP
(i1)
2 = (Fb, Fb ∪ Fe1 ∪ Fe2) gives the selfish colluder a smaller probability of

detection than CP
(i1)
2 = (Fb, Fb ∪ Fe1). Therefore, under the quality constraints,

a selfish colluder in SCb should choose cheat upward with processing parameter

CP
(i1)
2 to minimize his own risk of being detected.

For Selfish Colluders in Subgroup SCb,e1

For a selfish colluder u(i1∈SCb,e1) who receives the base layer and the enhancement

layer 1 from the content owner, he can apply cheat downward with processing

parameter CP
(i1)
1 = (Fb ∪ Fe1, Fb) during pre-collusion processing, or use cheat
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Figure 5.10: Performance comparison of different processing parameters for

selfish colluders in SCb. (Fb, Fe1, Fe2) = (10, 10, 20) and (Nb, Ne1, Ne2) =

(50000, 50000, 100000). Assume that there are a total of M = 450 users and

|Ub| = |Ub,e1| = |Uall| = 150. The total number of colluders is K = 150.

0 ≤ Kb, Kb,e1, Kall ≤ 150 and (Kb, Kb,e1, Kall) are on the line (5.21). Pfa = 0.01.

upward with parameter CP
(i1)
2 = (Fb ∪ Fe1, Fb ∪ Fe1 ∪ Fe2).

Figure 5.11 shows the simulation results. When F c = Fb ∪ Fe1, CP
(i1)
1 reduces

u(i1)’s probability of detection while CP
(i1)
2 cannot lower the selfish colluder’s risk.

This is because when F c = Fb∪Fe1, F c ⊃ F̃ (i1) for cheat downward with parameter

CP
(i1)
1 , while F c 6⊃ F (i1) for cheat upward with parameter CP

(i1)
2 . The simulation

results are in agreement with our analysis in the previous section. When F c =

Fb∪Fe1∪Fe2, both CP
(i1)
1 and CP

(i1)
2 reduce u(i1)’s probability of detection, while

P
(i1)
d of CP

(i1)
2 is smaller than that of CP

(i1)
1 .

Consequently, in order for a selfish colluder in subgroup SCb,e1 to minimize

his own risk, when the colluded copy has medium resolution, he should use cheat

downward with processing parameter CP
(i1)
1 = (Fb ∪ Fe1, Fb); and when the col-
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Figure 5.11: Performance comparison of different processing parameters for

selfish colluders in SCb,e1. (Fb, Fe1, Fe2) = (10, 10, 20) and (Nb, Ne1, Ne2) =

(50000, 50000, 100000). Assume that there are a total of M = 450 users and

|Ub| = |Ub,e1| = |Uall| = 150. The total number of colluders is K = 150.

0 ≤ Kb, Kb,e1, Kall ≤ 150 and (Kb, Kb,e1, Kall) are on the line (5.21). Pfa = 0.01.

luded copy has high resolution, he should apply cheat upward with CP
(i1)
2 =

(Fb ∪ Fe1, Fb ∪ Fe1 ∪ Fe2).

For Selfish Colluders in SCall

For a selfish colluder u(i1) in subgroup SCall who receives all three layers, during

pre-collusion processing, he can use cheat downward with two different parameters:

CP
(i1)
1 = (Fb ∪ Fe1 ∪ Fe2, Fb) and CP

(i1)
2 = (Fb ∪ Fe1 ∪ Fe2, Fb ∪ Fe1). Figure 5.12

shows the simulation results.

From Figure 5.12, when F c = Fb ∪ Fe1, CP
(i1)
1 reduces u(i1)’s probability of

detection, while CP
(i1)
2 does not change the selfish colluder’s risk of being captured.

When F c = Fb∪Fe1∪Fe2, both processing parameters reduce u(i1)’s probability of
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Figure 5.12: Performance comparison of different processing parameters for

selfish colluders in SCall. (Fb, Fe1, Fe2) = (10, 10, 20) and (Nb, Ne1, Ne2) =

(50000, 50000, 100000). Assume that there are a total of M = 450 users and

|Ub| = |Ub,e1| = |Uall| = 150. The total number of colluders is K = 150.

0 ≤ Kb, Kb,e1, Kall ≤ 150 and (Kb, Kb,e1, Kall) are on the line (5.21). Pfa = 0.01.

detection, while P
(i1)
d of CP

(i1)
1 is smaller than that of CP

(i1)
2 . Consequently, from

the selfish colluder’s point of view, for colluder u(i1) in subgroup SCall, he should

always choose cheat downward with parameter CP
(i1)
1 = (Fb∪Fe1∪Fe2, Fb) during

pre-collusion processing to minimize his own probability of detection.

5.3.3 Simulation Results on Real Video

We verify the correctness of our analysis on real videos, and choose the first 40

frames of the sequence “carphone” as an example. Similar to that in Section

5.3.1, we consider a temporally scalable video coding system where Fb = {j :

j = 4k + 1, k = 0, · · · , 9}, Fe1 = {j : j = 4k + 3, k = 0, · · · , 9} and Fe2 =

{j : j = 2k, k = 1, · · · , 20}. The length of the embedded fingerprints in the base
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Figure 5.13: Simulation results of changing the resolution of the received copies

during pre-collusion processing on the first 40 frames of sequence carphone.

(Fb, Fe1, Fe2) = (10, 10, 20). The total number of users is M = 450 and

|Ub| = |Ub,e1| = |Uall| = 150. There are a total number of K = 150 collud-

ers, 0 ≤ Kb, Kb,e1, Kall ≤ 150 and (Kb, Kb,e1, Kall) are on the line (5.21). Pfa is

fixed as 10−2. In (a) and (c), F c = Fb ∪ Fe1 ∪ Fe2. In (b) and (d), F c = Fb ∪ Fe1.
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layer, enhancement layer 1 and enhancement layer 2 are Nb = 72222, Ne1 = 71926

and Ne2 = 143820, respectively. We assume that the total number of users is

M = 450 and |Ub| = |Ub,e1| = |Uall| = 150. We adopt the human visual model

based spread spectrum embedding in [47], and embed the fingerprints in the DCT

domain. The fingerprints follow Gaussian distribution N (0, σ2
W ) with σ2

W = 1/9,

and the fingerprints assigned to different users are generated independently. In each

fingerprinted copy, the fingerprints embedded in different frames are correlated

with each other, depending on the similarity between the host frames.

During collusion, we assume that there are a total of K = 150 colluders. 0 ≤
Kb, Kb,e1, Kall ≤ 150 and they are on the line (5.21). We consider a simple scenario

where there is only one selfish colluder who changes the resolution of his received

copy before collusion, and no colluders apply weighted average. Furthermore,

we assume that no colluders discover the pre-collusion processing by the selfish

colluder. In our simulations, we adjust the power of the additive noise nj such

that ||nj||2/||W(i)
j ||2 = 2 for every frame j ∈ F c in the colluded copy.

We simulate the non-blind detection scenario where the detector first subtracts

the host signal from the test copy before fingerprint detection, and then follows

the procedure in Section 5.1.1.

Figure 5.13 shows the simulation results. In Figure 5.13 (a), the selfish colluder

u(i1) is in subgroup SCb and the processing parameter is CP (i1) = (Fb, Fb ∪ Fe1 ∪
Fe2). In Figure 5.13 (b) and (c), the selfish colluder is in subgroup SCb,e1 and the

processing parameters are CP (i1) = (Fb∪Fe1, Fb) and CP (i1) = (Fb∪Fe1, Fb∪Fe1∪
Fe2), respectively. In Figure 5.13 (d), the selfish colluder is in subgroup SCall, and

the processing parameter is CP (i1) = (Fb ∪ Fe1 ∪ Fe2, Fb). In Figure 5.13 (a) and

(c), F c = Fb ∪ Fe1 ∪ Fe2 and the colluded copy has high resolution, and in Figure
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5.13 (b) and (d), F c = Fb ∪ Fe1 and the colluded copy has medium quality.

From Figure 5.13, under the quality constraints, if the colluded copy contains

the enhancement layers and if the processing parameter is chosen properly, chang-

ing the resolution of the received copies can significantly reduce the selfish col-

luder’s risk of being detected. In addition, the simulation results on real video

agree with our analysis in Section 5.3, and are comparable with the simulation

results in Section 5.3.2.

5.4 Countermeasures against Pre-collusion Pro-

cessing

From the previous sections, by processing his fingerprinted copy before multiuser

collusion, a selfish colluder can reduce his probability of detection, especially when

the colluded copy has high quality. To prevent such pre-collusion processing and

protect his own interest, before collusion, each colluder has to check the integrity

of all the fingerprinted frames from the other colluders. In this section, we dis-

cuss some preliminary countermeasures against pre-collusion processing by selfish

colluders.

In this chapter, we assume that when transmitting the fingerprinted copies

through networks, the the service provider enables the users to authenticate each

fingerprinted frame that is distributed to them. Possible authentication methods

include [36,37,50,53,66,67,74]. If the content owner or the service provider provides

such verification tools for the receivers, then before collusion, for each fingerprinted

frame X̃
(i)
j from colluder u(i), all other colluders should verify whether it has been

tampered using the same verification tools. This integrity check can help to detect
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pre-collusion processing using weighted average. Furthermore, it will also assist

the other colluders to detect cheat upward by a selfish colluder, who has to forge

the enhancement layers that he did not subscribe to. Consequently, verification of

each fingerprinted frame before multiuser collusion will help to detect and prevent

a selfish colluder from applying both weighted average and cheat upward before

multiuser collusion.

To detect cheat downward, if the content owner also provide tools to verify the

indices of the frames that user u(i) received during transmission, then the other

colluders can use the same tools to verify F̃ (i) before multiuser collusion. If the

content owner does not provide methods to verify F̃ (i), the colluders have to find

other ways to guarantee the fairness of the collusion attacks. Note that for a selfish

colluder u(i1), cheat downward will not further reduce his probability of detection

if F c ⊂ F̃ (i1). Consequently, after the colluders verify each fingerprinted frame

from all colluders, if they cannot verify F̃ (i), they have to choose F c =
⋂

i∈SC F̃ (i)

to guarantee the absolute fairness of collusion. This implies that it is very likely

that the colluders can only generate a colluded copy of low quality.

5.5 Chapter Summary

In this chapter, we have studied the traitors within traitors problem in multimedia

fingerprinting, where some selfish colluders process their fingerprinted copies before

multiuser collusion to minimize their own probability of detection under the quality

constraints. We have studied the possible pre-collusion processing strategy by the

selfish colluders, and analyzed their effects on both the selfish colluders’ probability

of detection and the perceptual quality of the fingerprinted copies. We have also

studied possible countermeasures by other colluders to detect and prevent such
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pre-collusion processing in order to protect their own interest.

We first proposed to use weighted average to attenuate the energy of the origi-

nally embedded fingerprints, and analyzed its performance. From both our analysis

and simulation results, this pre-collusion processing technique reduces the selfish

colluder’s probability of detection at the cost of quality degradation. We then

studied the selection of the optimal weight vector to minimize the selfish colluder’s

risk under the quality constraints. This type of pre-collusion processing can be

applied to all video fingerprinting systems.

We also studied a specific pre-collusion processing technique on scalable fin-

gerprinting systems, in which different colluders receive copies of different quality.

In such fingerprinting systems, a selfish colluder can also modify the resolution of

his received copy during pre-collusion processing. From our analytical and sim-

ulation results, with careful selection of the processing parameter, this type of

pre-collusion processing can decrease the selfish colluder’s risk of being captured

when the colluded copy is of medium or high resolution. For this type of pre-

collusion processing, we also analyzed the optimal processing parameter for selfish

colluders in different subgroups to minimize their probability of detection under

the quality constraints.

Finally, we studied some preliminary countermeasures for other colluders to

detect and prevent pre-collusion processing. To detect weighted average and cheat

upward, each colluder should check the integrity and verify the authenticity of

each fingerprinted frame from other colluders. To prevent cheat downward, if the

content owner does not provide tools for users to verify the indices of the received

frames, the colluders have to generate a colluded copy of low quality in order to

guarantee the absolute fairness of collusion.
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Chapter 6

Secure Fingerprint Multicast for

Video Streaming

In video streaming applications, a large amount of data has to be transmitted to

a large number of users with limited bandwidth available under stringent latency

constraints. This requires the service provider to minimize the communication

cost in transmitting each copy in order to support as many users as possible. The

uniqueness of each distributed copy in digital fingerprinting makes it even more

critical to have secure fingerprint multicast schemes, which reduce the bandwidth

requirement while protecting the secrecy of the multimedia content as well as each

embedded fingerprint.

All the prior work on secure fingerprint multicast considered applications where

the goal of the fingerprinting system is to be resistant to collusion attacks with a few

colluders, e.g., seven or ten traitors, and designed the efficient distribution schemes

accordingly. In video streaming applications, there are usually a large number of

users (e.g., several thousand users), and therefore, potentially a large number of

colluders (e.g., a few dozen or maybe even a hundred colluders). Some prior work
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[58, 61, 62] has shown that with proper design and embedding of the fingerprints,

the fingerprinting systems can resist collusion attacks with dozens of colluders,

e.g., up to 60 colluders. In this chapter, we consider video applications where

the fingerprinting system aims to survive collusion attacks with dozens of or even

a hundred colluders, adopt the fingerprinting systems with strong traitor tracing

capability [58, 62], and study the secure and efficient distribution of fingerprinted

copies in such applications.

In this chapther, we consider the group-oriented fingerprint design in [62] as

an example, and study the secure fingerprint multicast schemes for tree based fin-

gerprinting systems. Section 6.2 introduces the tree based fingerprint design and

Section 6.1 analyzes the security requirement in video streaming applications. In

Section 6.3, we discuss the simple solution of pure unicast scheme, where each fin-

gerprinted copy is unicasted to the corresponding user. In Section 6.4, we propose

a general fingerprint multicast scheme that can be used with most spread spec-

trum embedding based fingerprinting systems, and in Section 6.5, we propose a

joint fingerprint design and distribution scheme which utilizes the special structure

of the fingerprint design to further improve the bandwidth efficiency.

6.1 Secure Video Streaming

In video streaming applications, to protect the welfare and interests of the content

owner, it is critical to ensure the proper distribution and authorized usage of

multimedia content. To be specific, the desired security requirements in video

streaming applications are1:

1Note that depending on the applications, there might be other security requirements except

these listed in this chapter, e.g., sender authentication and data integrity verification [45]. It
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1. Secrecy of the video content : Only legitimate users who have registered with

the content owner/service provider can have access to the content of video

sequences. Proper encryption should be applied to prevent outsiders who do

not subscribe to the service from estimating the video’s content.

2. Traitor tracing : After the data are distributed to the legitimate users, the

content owner has to protect multimedia from unauthorized redistribution.

Digital fingerprinting is one possible solution to trace traitors and thwart the

illegal information leakage.

3. Robustness of the embedded fingerprints : If digital fingerprinting is used for

traitor tracing, it is required that the embedded fingerprints can survive

common signal processing (e.g., compression), attacks on a single copy [14,

28], as well as multiuser collusion attacks [13,52].

4. Anti-framing : The clear text of a fingerprinted copy is known only by the

corresponding legitimate user whose fingerprint is embedded in that copy,

and no other users of the service can access that copy in clear text and frame

an innocent user.

In particular, we will explain the anti-framing requirement in detail. In digital

fingerprinting applications, different fingerprinted copies do not differ significantly

from each other. If the content owner or the service provider does not protect

the transmitted bit streams appropriately, it is very easy for an attacker, who

subscribes to the video streaming service, to impersonate an innocent user of the

service.

is out of the scope of this chapter and we assume that the distribution systems have already

included the corresponding security modules if required.
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Figure 6.1: An example of framing attack on fingerprinting systems.

Figure 6.1 shows an example of the framing attack. Assume that K(i) and K(j)

are the secret keys of user u(i) and u(j), respectively; X(i) and X(j) are the clear

text versions of two fingerprinted copies for u(i) and u(j), respectively; and Z(i) and

Z(j) are the cipher text versions of X(i) and X(j) encrypted with K(i) and K(j), re-

spectively. u(i) first decrypts Z(i) that is transmitted to him and reconstructs X(i).

Assume that he also intercepts Z(j) that is transmitted to u(j). Without appropri-

ate protection by the content owner or the service provider, u(i) can compare Z(j)

with X(i), estimates X(j) without knowledge of K(j), and generates X̃(j) of good

quality, which is an estimated version of X(j). u(i) can then redistribute X̃(j) or

use X̃(j) during collusion. This framing puts innocent user u(j) under suspicion

and disables the content owner from capturing attacker u(i). The content owner

must prohibit such framing attacks.

In summary, before transmission, the content owner should embed unique and

robust fingerprints in each distributed copy, and apply proper encryption to the

bit streams to protect both the content of the video as well as each fingerprinted

coefficient in every fingerprinted copy.
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6.2 Tree Based Fingerprint Design

From Section 6.1, traitor tracing capability is a fundamental requirement for con-

tent protection and digital rights enforcement in networked video applications.

This section introduces the tree based fingerprint design [62], which can resist

collusion attacks by a few dozen colluders.

It was observed in [62] that a subgroup of users are more likely to collude

with each other than others due to geographical or social reasons. A tree based

fingerprint design was proposed in [61], [62] to explore the hierarchical relationship

among users. In their fingerprint design, users that are more likely to collude with

each other are assigned correlated fingerprints to improve the robustness against

collusion attacks.

For simplicity, a symmetric tree structure is used where the depth of each leaf

node is L and each node at level l − 1 (l = 1, · · · , L) has the same number of

children nodes Dl. In a simple example of the tree structure shown in Figure 6.2,

it is assumed that

• the users in the subgroup U1,1 are equally likely to collude with each other

with probability p3;

• each user in the subgroup U1,1 is equally likely to collude with the users in

the subgroup U1,2 with probability p2 < p3;

• and each user in the subgroup U1,1 ∪ U1,2 is equally likely to collude with

the users in other subgroups with probability p1 < p2 < p3.

A unique basis fingerprint a(i1,··· ,il) following Gaussian distribution N (0, σ2
W )

is generated for each node [i1, · · · , il] in the tree except the root node and all

the basis fingerprints {a} are independent of each other. For each user, all the
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Figure 6.2: A tree-structure based fingerprinting scheme with L = 3, D1 = D2 = 2

and D3 = 3.

fingerprints that are on the path from its corresponding leaf node to the root node

are assigned to him. For example, in Figure 6.2, the fingerprints a1, a1,1 and a1,1,1

are embedded in the fingerprinted copy X(1) that is distributed to user u(1).

Assume that there are a total of K colluders and SC is the set containing the

indices of the colluders. Given K different copies {X(i)}i∈SC , the colluders generate

the colluded copy V = g
({X(i)}i∈SC

)
where g(·) is the collusion function.

In the detection process, the detector first extracts the fingerprint Y from V.

In [61], [62], a multi-stage colluder identification scheme was proposed and is as

follows.

Detection at the first level of the tree: The detector correlates the ex-

tracted fingerprint Y with each of the D1 fingerprints {ai1}i1=1,··· ,D1 at level 1 and

calculates the detection statistics

T i1 =< Y, ai1 > /||ai1||, i1 = 1, · · · , D1, (6.1)

where ||a|| is the Euclidean norm of a. The estimated guilty regions at level 1 are

GR(1) = {[i1] : T i1 > h1}, (6.2)
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where h1 is a predetermined threshold for fingerprint detection at the first level in

the tree.

Detection at level 2 ≤ l ≤ L in the tree: Given the previously estimated

guilty regions GR(l−1), for each [i1, · · · , il−1] ∈ GR(l−1), the detector calculates

the detection statistics

T i1,··· ,il−1,il =< Y, ai1,··· ,il−1,il > /||ai1,··· ,il−1,il ||, il = 1, · · · , Dl, (6.3)

and narrows down the guilty regions to

GR(l) =
{
[i1, · · · , il] : [i1, · · · , il−1] ∈ GR(l − 1), T i1,··· ,il ≥ hl

}
(6.4)

where hl is a predetermined threshold for fingerprint detection at level l in the

tree. Finally, the detector outputs the estimated colluder set

ŜC =
{
u(i) : i = [i1, · · · , iL] ∈ GR(L)

}
. (6.5)

6.3 The Pure Unicast Distribution Scheme

The most straightforward way to distribute the fingerprinted copies is the pure

unicast scheme, where each fingerprinted copy is encoded independently, encrypted

with the corresponding user’s secret key and unicasted to him. It is simple and

has limited requirement on the receivers’ computation capability. However, from

the bandwidth’s point of view, it is inefficient because the required bandwidth is

proportional to the number of users while the difference between different copies

is small.

In this chapter, in the pure unicast scheme, to prevent outside attackers from

estimating the video content, the generalized index mapping [21], [70] is used to

encrypt portions of the compressed bit streams that carry the most important
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information of the video content: the DC coefficients in the Intra blocks and the

motion vectors in the Inter blocks. Applying the generalized index mapping to the

fingerprinted AC coefficients can prevent the attackers from framing an innocent

user at the cost of inroducing significant bit rate overhead.2 In this chapter, to

protect the fingerprinted coefficients without significant bit rate overhead, similar

to the encryption scheme in [49], we apply the stream cipher [39] from traditional

cryptography to the compressed bit streams of the AC coefficients.3 It has no im-

pact on the compression efficiency. In addition, the bit stuffing scheme [70] is used

to prevent the encrypted data from becoming identical to some headers/markers.

6.4 The General Fingerprint Multicast Distribu-

tion Scheme

In this section, we propose a general fingerprint multicast distribution scheme that

can be used with most multimedia fingerprinting systems where the spread spec-

trum embedding is adopted. We consider a video fingerprinting and distribution

system that uses MPEG-2 encoding standard. For simplicity, we assume that all

the distributed copies are encoded at the same bit rate and have approximately

the same perceptual quality. To reduce the computation cost at the sender’s side,

fingerprints are embedded in the DCT domain. The block based human visual

models [47] are used to guarantee the imperceptibility and control the energy of

the embedded fingerprints.

2From [70], the bit rate is increased by more than 5.9% if two nonzero AC coefficients in each

Intra block are encrypted.

3We only encrypt the content-carrying fields and the headers/markers are transmitted in clear

text.
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From human visual models [47], not all DCT coefficients are embeddable due to

the imperceptibility constraints on the embedded fingerprints, and a non-embeddable

coefficient has the same value in all copies. To reduce the required bandwidth in

transmitting the non-embeddable coefficients, we propose a general fingerprint

multicast scheme: the non-embeddable coefficients are multicasted to all users,

and the coefficients left are embedded with unique fingerprints and unicasted to

each user.4

In the general fingerprint multicast scheme, the transmitted video sequences

are encrypted in the same way as in the pure unicast scheme. To guarantee that no

outsiders can access the video content, a key that is shared by all users is used to en-

crypt the multicasted bit stream by applying the generalized index mapping to the

DC coefficients in the Intra blocks and the motion vectors in the Inter blocks. To

protect the fingerprinted coefficients, each unicasted bit stream is encrypted with

the corresponding user’s secret key. The stream cipher [39] is applied to the uni-

casted bit streams with headers/markers intact. Finally, the bit stuff scheme [70]

is used to ensure that the cipher text does not duplicate MPEG headers/markers.

Figure 6.3 shows the MPEG-2 based general fingerprint multicast scheme for

video on demand applications where the video is stored in compressed format.

Assume that Km is a key that is shared by all users, and K(i) is user u(i)’s secret

key. The key steps in the fingerprint embedding and distribution at the server’s

side are as follows.

1. A unique fingerprint is generated for each user.

4We assume that each receiver has moderate computation capability and can listen to at least

2 channels simultaneously to reconstruct one video sequence. We also assume that the receivers

have large enough buffers to smooth out the jittering of delays among different channels.
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2. The compressed bit stream is split into two parts: the first one includes

motion vectors, quantization factors and other side information and is not

altered, and the second one contains the coded DCT coefficients and is vari-

able length decoded.

3. Motion vectors, quantization factors and other side information are left in-

tact, and only the values of the DCT coefficients are changed. For each

DCT coefficient, if it is not embeddable, it is variable length coded with

other non-embeddable coefficients. Otherwise, first, it is inversely quantized.

Then for each user, the corresponding fingerprint component is embedded

using spread spectrum embedding, and the resulting fingerprinted coefficient

is quantized and variable length coded with other fingerprinted coefficients.

4. The non-embeddable DCT coefficients are encrypted with Km and multicas-

ted to all users, together with the positions of the embeddable coefficients

in the 8 × 8 DCT blocks, motion vectors and other shared information; the

coded fingerprinted DCT coefficients are encrypted with each user’s secret

key {K(i)} and unicasted to them.

For live applications where the video is compressed and transmitted at the

same time, the fingerprint embedding and distribution process is similar to that

for video on demand applications.

The decoder at user u(i)’s side is the same for both types of applications and is

similar to a standard MPEG-2 decoder. After decrypting, variable length decoding

and inversely quantizing both the unicasted bit stream to user u(i) and the multi-

casted bit stream to all users, the decoder puts each reconstructed DCT coefficient

in its original position in the 8× 8 DCT block. Then, it applies inverse DCT and

motion compensation to reconstruct each frame.
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Figure 6.3: The MPEG-2 based general fingerprint multicast scheme for video on

demand applications. Top: the fingerprint embedding and distribution process at

the server’s side, bottom: the decoding process at the user’s side.

6.5 The Tree Based Joint Fingerprint Design and

Distribution Scheme

The general fingerprint multicast scheme proposed in the previous section is design

for the general fingerprinting applications that use spread spectrum embedding.

In this section, to further improve the bandwidth efficiency, we utilize the tree

structure of the embedded fingerprints and propose a joint fingerprint design and

distribution scheme.

In this section, we first compare two fingerprint modulation schemes commonly

used in the literature: the CDMA based and the TDMA based fingerprint modula-

tion. We compare their bandwidth efficiency and their robustness against collusion

attacks in the tree based fingerprinting systems. Then in Section 6.5.2, we propose

a joint fingerprint design and distribution scheme that achieves both the robust-
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ness against collusion attacks and the bandwidth efficiency of the distribution

scheme. In Section 6.5.3, we take the computation constraints into consideration,

and adjust the joint fingerprint design and distribution scheme to minimize the

communication cost under the computation constraints.

6.5.1 The CDMA Based and The TDMA Based Finger-

print Modulation

In the tree based fingerprint design, a unique basis fingerprint ai1,··· ,il following

Gaussian distribution N (0, σ2
W ) is generated for each node [i1, · · · , il] in the tree,

and the basis fingerprints {a} are independent of each other. For user u(i) whose

index is i = [i1, · · · , iL], a total of L fingerprints ai1 , ai1,i2 , · · · , ai1,··· ,iL are embed-

ded in the fingerprinted copy X(i) that is distributed to him. Assume that the

host signal S has a total of N embeddable coefficients. There are two different

methods to embed the L fingerprints into the host signal S: the CDMA based and

the TDMA based fingerprint modulation.

The CDMA Based Fingerprint Modulation

In the CDMA based fingerprint modulation, the basis fingerprints {a} are of the

same length N and equal energy. User u(i)’s fingerprint W(i) is generated by

W(i) =
√

ρ1 ai1 +
√

ρ2 ai1,i2 + · · ·+√
ρL ai1,i2,··· ,iL , (6.6)

and the fingerprinted copy distributed to u(i) is X(i) = S + W(i) where S is the

host signal. In (6.6), {0 ≤ ρl ≤ 1}L
l=1 with

∑L
j=1 ρj = 1 are determined by the

probabilities of users under different tree branches to collude with each other. They

are used to control the energy of the embedded fingerprints at each level and the

correlation between fingerprints assigned to different users.
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Figure 6.4: An example of the partitioning of the host signal for a tree with L = 3

and [ρ1, ρ2, ρ3] = [1/4, 1/4, 1/2].

The TDMA Based Fingerprint Modulation

In the TDMA based fingerprint modulation, the host signal S is divided into L

non-overlapping parts S1, · · · ,SL, such that the number of embeddable coefficients

in Sl is Nl = ρlN with
∑L

l=1 Nl = N . An example of the partitioning of the host

signal is shown in Figure 6.4 for a tree with L = 3, [ρ1, ρ2, ρ3] = [1/4, 1/4, 1/2]

and [N1, N2, N3] = N [1/4, 1/4, 1/2]. For every 4 seconds, all the frames in the

1st second belong to S1, all the frames in the 2nd second are in S2 and all the

frames in the last two seconds are in S3. If the video sequence is long enough, the

number of embeddable coefficients in Sl is approximately Nl.

In the TDMA based fingerprint modulation, the basis fingerprints {ai1,··· ,il} at

level l are of length Nl. In the fingerprinted copy X(i) that is distributed to user

u(i), the basis fingerprint ai1,··· ,il at level l is embedded in the lth part of the host

signal Sl, and the lth part of the fingerprinted copy X(i) is X
(i)
l = Sl + ai1,··· ,il .

Comparison of the Performance of the CDMA Based and the TDMA

Based Fingerprint Modulation

To compare the CDMA based and the TDMA based fingerprint modulation schemes

in the tree based fingerprinting systems, we measure the energy of the fingerprints

that are embedded in different parts of the fingerprinted copies. Assume that the

host signal S is partitioned into L non-overlapping parts {Sl}l=1,··· ,L where there
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are Nl embeddable coefficients in Sl, the same as in the TDMA based modulation.

We also assume that for user u(i), W
(i)
l is the fingerprint that is embedded in Sl,

and X
(i)
l = Sl + W

(i)
l is the lth part of the fingerprinted copy that is distributed

to u(i). Define Ek,l as the energy of the basis fingerprint ai1,··· ,ik at level k that is

embedded in X
(i)
l , and El

4
=

∑L
k=1 Ek,l is the energy of W

(i)
l . We further define a

matrix P whose element at row k and column l is pk,l
4
=Ek,l/El, and it is the ratio

of the energy of the kth level fingerprint ai1,··· ,ik embedded in X
(i)
l over the energy

of W
(i)
l . The P matrices for the CDMA based and the TDMA based fingerprint

modulation schemes are

PCDMA =




ρ1 ρ1 · · · ρ1

ρ2 ρ2 · · · ρ2

...
...

. . .
...

ρL ρL · · · ρL




L×L

and PTDMA =




1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1




L×L

(6.7)

respectively. In addition, in the TDMA based fingerprint modulation scheme,

PTDMA

[
N1 N2 · · · NL

]T

= N

[
ρ1 ρ2 · · · ρL

]T

(6.8)

and
∑L

l=1 Nl = N , where N is the total number of embeddable coefficients in S.

Comparison of Bandwidth Efficiency

First, in the TDMA based modulation scheme, pk,l = 0 for k > l, and there-

fore, the lth part of the fingerprinted copy X
(i)
l is only embedded with the basis

fingerprints at level k ≤ l in the tree. Note that the basis fingerprints {ai1,··· ,ik}k≤l

are shared by all the users in the subgroup Ui1,··· ,il4={u(j), j = [j1, · · · , jl, · · · , jL] :

j1 = i1, · · · , jl = il}, so is X
(i)
l . Consequently, in the TDMA based fingerprint

modulation, the distribution system can not only multicast the non-embeddable

coefficients to all users, it can also multicast part of the fingerprinted coefficients
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that are shared by a subgroup of users to them. In the CDMA based fingerprint

modulation, pk,l > 0 for k > l and the distribution system can only multicast

the non-embeddable coefficients. Therefore, from the bandwidth efficiency’s point

of view, the TDMA based modulation is more efficient than the CDMA based

fingerprint modulation.

Comparison of Resistance to Collusion

Second, in the TDMA based modulation scheme, pk,l = 0 for k 6= l and the basis

fingerprint ai1,··· ,il at level l are only embedded in the lth part of the fingerprinted

copy X
(i1,··· ,il)
l . With the TDMA based modulation scheme, by comparing all the

fingerprinted copies that they have, the colluders can distinguish different parts

of the fingerprinted copies that are embedded with fingerprints at different levels

in the tree. They can also figure out the structure of the fingerprint tree and the

positions of all colluders in the tree. Based on the information they collect, they

can apply a specific attack against the TDMA based fingerprint modulation, the

interleaving based collusion attack.

Assume that SC is the set containing the indices of all colluders, and {X(k)}k∈SC

are the fingerprinted copies that they received. In the interleaving based collusion

attacks, the colluders divide themselves into L subgroups {SCl ⊆ SC}l=1,··· ,L,

and there exists at least one 1 ≤ l < L such that the lth subgroup SCl and

the (l + 1)th subgroup SCl+1 are under different branches in the tree and are

non-overlapping, i.e., SCl ∩ SCl+1 = ∅. The colluded copy V contains L non-

overlapping parts {Vl}l=1,··· ,L, and the colluders in the subgroup SCl generate the

lth part of the colluded copy by Vl = g
(
{X(i)

l }i∈SCl

)
where g(·) is the collu-

sion function. Figure 6.5 shows an example of the interleaving based collusion

attack on the tree based fingerprint design of Figure 6.2. Assume that SC =
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Figure 6.5: An example of the interleaving based collusion attack on the tree

based fingerprinting system shown in Figure 6.2 with the TDMA based fingerprint

modulation.

{1 = [1, 1, 1], 2 = [1, 1, 2], 4 = [1, 2, 1], 7 = [2, 1, 1]} is the set containing the indices

of the colluders. The colluders choose SC1 = {7} , SC2 = {4} and SC3 = {1, 2},
and generate the colluded copy V where

V1 = X
(7)
1 = S1 + a2,

V2 = X
(4)
2 = S2 + a1,2,

and V3 = (X
(1)
3 + X

(2)
3 )/2 = S3 +

(
a1,1,1 + a1,1,2

)
/2. (6.9)

In the detection process, at the first level in the tree, although both a1 and

a2 are guilty, the detector can only detect the existence of a2 because a1 is not in

any part of the colluded copy V. The detector outputs the estimated guilty region

GR(1) = [2]. At the second level, the detector tries to detect whether [2, 1] and

[2, 2] are the guilty sub-regions, and finds out neither of these two are guilty since

a2,1 and a2,2 are not in V. To continue the detection process, the detectors has to

check the existence of each of the four fingerprints {ai1,i2} in V. This detection

process is equivalent to the detection of independent fingerprints. The performance
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of the detection process in the TDMA based fingerprint modulation is worse than

that of the CDMA based fingerprint modulation [62], and it is due to the special

structure of the fingerprint design and the unique “multi-stage” detection process

in the tree based fingerprinting systems.

To summarize, in the tree based fingerprinting systems, the TDMA based fin-

gerprint modulation improves the bandwidth efficiency of the distribution system

at the cost of the robustness against collusion attacks.

6.5.2 The Joint Fingerprint Design and Distribution Scheme

In the joint fingerprint design and distribution scheme, the content owner first

applies the tree based fingerprint design and generates the fingerprint tree, the same

as in [61], [62]. Then, he embeds the fingerprints using the joint TDMA and CDMA

fingerprint modulation scheme, which improves the bandwidth efficiency without

sacrificing the robustness. Finally, the content owner distributes the fingerprinted

copies to users using the proposed distribution scheme.

Design of the Joint TDMA and CDMA Fingerprint Modulation

To achieve both the robustness against collusion attacks and the bandwidth effi-

ciency of the distribution scheme, we propose a joint TDMA and CDMA fingerprint

modulation scheme, whose P matrix is an upper triangular matrix. In PJoint, we

let pk,l = 0 for k > l to achieve the bandwidth efficiency. For k ≤ l, we choose

0 < pk,l ≤ 1 to achieve the robustness. Take the interleaving based collusion

attack shown in Figure 6.5 as an example, in the joint TDMA and CDMA finger-

print modulation, although a1 is not in V1, it can still be detected from V2 and

V3. Consequently, the detector can apply the “multi-stage” detection and narrow
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down the guilty-region step by step, the same as in the CDMA based fingerprint

modulation.

At level 1, p1,1 = 1. At level 2 ≤ l ≤ L, given pl,l, we seek {pk,l}k<l to satisfy

E1,l : E2,l : · · · : El−1,l = ρ1 : ρ2 : · · · , ρl−1. (6.10)

We can show that

pk,l =
ρk

ρ1 + · · ·+ ρl−1

(1− pl,l) for 1 ≤ k < l ≤ L,

and PJoint =




1 1− p2,2 · · · (1− pL,L) ρ1

1−ρL

0 p2,2 · · · (1− pL,L) ρ2

1−ρL

...
...

. . .
...

0 0 · · · pL,L




L×L

. (6.11)

Given {pl,l}l=1,··· ,L and PJoint as in (6.11), we seek N1, N2, · · · , NL to satisfy

PJoint

[
N1 N2 · · ·NL

]T

= N

[
ρ1 ρ2 · · · ρL

]T

s. t.
L∑

l=1

Nl = N, 0 ≤ Nl ≤ N. (6.12)

From (6.11), when pL,L = ρL, it is the CDMA based fingerprint modulation.

Therefore, we only consider the case where pL,L > ρL. Define

A =




1 1− p2,2 · · · (1− pL−1,L−1)
ρ1PL−2

k=1 ρk

0 p2,2 · · · (1− pL−1,L−1)
ρ2PL−2

k=1 ρk

...
...

. . .
...

0 0 · · · pL−1,L−1




(L−1)×(L−1)

and B =
1− pL,L

1− ρL




ρ1 ρ1 · · · ρ1

ρ2 ρ2 · · · ρ2

...
...

. . .
...

ρL−1 ρL−1 · · · ρL−1




(L−1)×(L−1)

. (6.13)

149



We can show that (6.12) can be rewritten as:




A−B

pL,L pL,L · · · pL,L




L×(L−1)




N1

...

NL−1




= (pL,L − ρL) N




ρ1

1−ρL

...

ρL−1

1−ρL

1




,

and NL = N −
L−1∑

l=1

Nl. (6.14)

Define Q
4
=




A−B

pL,L pL,L · · · pL,L




L×(L−1)

and c
4
= (pL,L − ρL) N

[
ρ1

1−ρL

ρ2

1−ρL
· · · ρL−1

1−ρL
1

]T

. (6.15)

Given {pl,l}l=1,··· ,L, if Q is of full rank, then the least square solution to (6.14) is

[
N1 N2 · · · NL−1

]T

= Q†c and NL = N −
L−1∑

l=1

Nl, (6.16)

where Q† =
(
QTQ

)−1
Q is the pseudo inverse of Q. Finally, we need to verify the

feasibility of the solution (6.16), i.e., if 0 ≤ Nl ≤ N for all 1 ≤ l ≤ L. If not,

another set of {pl,l}l=1,··· ,L has to be used.

Fingerprint Embedding and Detection in the Joint TDMA and CDMA

Modulation

In the joint TDMA and CDMA fingerprint modulation scheme, given PJoint as in

(6.11) and {Nl}l=1,··· ,L as in (6.16), for each basis fingerprint ai1,··· ,il at level l in

the tree,

ai1,··· ,il = ai1,··· ,il
l d ai1,··· ,il

l+1 d · · · d ai1,··· ,il
L , (6.17)
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where {ai1,··· ,il
k }k=l,··· ,L follow Gaussian distribution N (0, σ2

W ) and are independent

of each other. ai1,··· ,il
k for k ≥ l is of length Nk, and is embedded in Sk. “d” is

the concatenation operator. For user u(i=[i1,··· ,iL]), the lth part of the fingerprinted

copy that u(i) receives is

X
(i1,··· ,il)
l = Sl + W

(i1,··· ,il)
l , (6.18)

where

W
(i1,··· ,il)
l =

√
p1,la

i1
l +

√
p2,la

i1,i2
l + · · ·+√

pl,la
i1,··· ,il
l . (6.19)

During collusion, assume that there are a total of K colluders and SC is the

set containing the indices of all colluders. Assume that the colluders divide them

into L subgroups {SCl ⊆ SC}l=1,··· ,L. For each 1 ≤ l ≤ L, given the K copies

{X(k)
l }k∈SC , the colluders in SCl generate the lth part of the colluded copy by

Vl = g
(
{X(k)

l }k∈SCl

)
. Assume that V = V1 d · · · d VL is the colluded copy that

is generated by the colluders.

At the detector’s side, given the colluded copy V, for each 1 ≤ l ≤ L, the

detector first extracts the fingerprint Yl from Vl, and the detection process is

similar to that in Section 6.2.

Detection at the first level of the tree: The detector correlates the ex-

tracted fingerprint {Yl}l=1,··· ,L with each of the D1 fingerprints {ai1}i1=1,··· ,D1 at

level 1 and calculates the detection statistics

T i1 =
L∑

k=1

< Yk, a
i1
k >/

√√√√
L∑

k=1

||ai1||2, i1 = 1, · · · , D1. (6.20)

The estimated guilty regions at level 1 are

GR(1) = {[i1] : T i1 > h1}, (6.21)

where h1 is a predetermined threshold for fingerprint detection at the first level in

the tree.
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Detection at level 2 ≤ l ≤ L in the tree: Given the previously estimated

guilty regions GR(l− 1), for each [i1, i2, · · · , il−1] ∈ GR(l− 1), the detector calcu-

lates the detection statistics

T i1,··· ,il−1,il =
L∑

k=l

< Yk, a
i1,··· ,il−1,il
k >/

√√√√
L∑

k=l

||ai1,··· ,il−1,il||2, il = 1, · · · , Dl, (6.22)

and narrows down the guilty regions to

GR(l) =
{
[i1, · · · , il] : [i1, · · · , il−1] ∈ GR(l − 1), T i1,··· ,il ≥ hl

}
, (6.23)

where hl is a predetermined threshold for fingerprint detection at level l in the

tree. Finally, the detector outputs the estimated colluder set

ŜC =
{
u(i) : i = [i1, · · · , iL] ∈ GR(L)

}
. (6.24)

Fingerprint Distribution in the Joint Fingerprint Design and Distribu-

tion Scheme

In the joint fingerprint design and distribution scheme, given the fingerprinted copy

{X(i)} as in (6.18), the MPEG-2 based fingerprint distribution scheme for video

on demand applications is shown in Figure 6.6. Assume that Km is a key that is

shared by all users, K(i1,··· ,il) is a key shared by a subgroup of users U(i1,··· ,il), and

K(i) is user u(i)’s secret key. The encryption method in the joint fingerprint design

and distribution scheme is the same as that in the general fingerprint multicast

and is not repeated. The key steps in the fingerprint embedding and distribution

process at the server’s side are as follows.

• For each user u(i), the fingerprint W(i) is generated as in (6.19).

• The compressed bit stream is split into two parts: the first one includes

motion vectors, quantization factors and other side information and is not
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Figure 6.6: The MPEG-2 based joint fingerprint design and distribution scheme for

video on demand applications. Top: the fingerprint embedding and distribution

process at the server’s side, bottom: the decoding process at the user’s side.

altered, and the second one contains the coded DCT coefficients and is vari-

able length decoded.

• Only the values of the DCT coefficients are modified, and the first part of the

compressed bit stream is left unchanged. For each DCT coefficient, if it is

not embeddable, it is variable length coded with other non-embeddable DCT

coefficients. If it is embeddable, first, it is inversely quantized. If it belongs

to Sl, for each subgroup Ui1,··· ,il , the corresponding fingerprint component in

W
(i1,··· ,il)
l is embedded using spread spectrum embedding, and the resulting

fingerprinted coefficients is quantized and variable length coded with other

fingerprinted coefficients in X
(i1,··· ,il)
l .
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• The coded non-embeddable DCT coefficients are encrypted with key Km and

multicasted to all users, together with the positions of the embeddable coeffi-

cients in the 8×8 DCT blocks, motion vectors and other shared information.

For 1 ≤ l < L, the coded fingerprinted coefficients in X
(i1,··· ,il)
l are encrypted

with key K(i1,··· ,il) and multicasted to the users in the subgroup Ui1,··· ,il . The

coded fingerprinted coefficient in X
(i)
L are encrypted with user u(i)’s secret

key and unicasted to him.

The decoder at user u(i)’s side is similar to that in the general fingerprint

multicast scheme. The difference is that the decoder has to listen to L + 1 bit

streams in the joint fingerprint design and distribution scheme instead of 2 in the

general fingerprint multicast scheme.

6.5.3 Joint Fingerprint Design and Distribution under Com-

putation Constraints

Compared with the general fingerprint multicast scheme, the joint fingerprint de-

sign and distribution scheme further reduces the communication cost by multicas-

ting some of the fingerprinted coefficients that are shared by a subgroup of users to

them. However, it increases the total number of multicast groups that the sender

needs to manage and the number of channels that each receiver downloads data

from.

In the general fingerprint multicast scheme shown in Figure 6.3, the sender sets

up and manages 1 multicast group, and each user listens to 2 bit streams simul-

taneously to reconstruct the fingerprinted video sequence. In the joint fingerprint

design and distribution scheme, the sender has to set up a multicast group for every

subgroup of users represented by a node in the upper L− 1 levels in the tree. For
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a tree structure with L = 4 and [D1, D2, D3, D4] = [4, 5, 5, 100], the total number

of multicast groups needed is 125. Also, each user has to listen to L = 4 different

multicast groups and 1 unicast channel. In practice, the underlying network might

not be able to support so many multicast groups simultaneously, and it could be

beyond the sender’s capability to manage this huge number of multicast groups at

one time. It is also possible that the receivers can only receive data from a small

number of channels simultaneously due to computation and buffer constraints.

To address this computation constraints, we adjust the joint fingerprint design

and distribution scheme to minimize the overall communication cost under the

computation constraints.

For a fingerprint tree of level L and degrees [D1, · · · , DL], if the sender sets up

a multicast group for each subgroup of users represented by a node in the upper l

levels in the tree, then the total number of multicast groups is MG(l)
4
=1 + D1 +

· · ·+∏l
m=1 Dm. Also, each user listens to RB(l)

4
=l+2 channels. Assume that MG

is the maximum number of multicast groups that the network can support and the

sender can manage at once. We further assume that each receiver can only listen

to no more than RB channels. Define the computation constraint parameter as
(
MG, RB

)
, and define

L′
4
= max

{
l : MG(l) ≤ MG,RB(l) ≤ RB

}
. (6.25)

To satisfy the computation constraints
(
MG, RB

)
, we adjust the fingerprint

distribution scheme in 6.5.2 as follows. Step 1, 2 and 3 in the distribution scheme

in 6.5.2 are not changed, and Step 4 is modified to:

• The coded non-embeddable DCT coefficients are encrypted with key Km and

multicasted to all users, together with the positions of the embeddable coeffi-

cients in the 8×8 DCT blocks, motion vectors and other shared information.
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• For each subgroup of users Ui1,··· ,il corresponding to a node at level l ≤ L′

in the tree, a multicast group is set up and the fingerprinted coefficients in

X
(i1,··· ,il)
l are encrypted with key K(i1,··· ,il) and multicasted to users in Ui1,··· ,il .

• For L′ < m ≤ L − 1, there are two possible methods to distribute the fin-

gerprinted coefficients in X
(i1,··· ,iL′ ,··· ,im)
m to a subgroup of users Ui1,··· ,iL′ ,··· ,im ,

and the one that has a smaller communication cost is chosen.

– First, after encrypting the encoded fingerprinted coefficients in X
(i1,··· ,im)
m

with key K(i1,··· ,im), the encrypted bit stream can be multicasted to the

users in the subgroup Ui1,··· ,iL′ . Since K(i1,··· ,im) is known only to the

users in the subgroup Ui1,··· ,im , only they can decrypt the bit stream

and reconstruct X(i1,··· ,im). This is similar to the distribution scheme

in [10].

– The fingerprinted coefficients in X(i1,··· ,im) can also be unicasted to each

user in the subgroup Ui1,··· ,im after encryption, the same as in the general

fingerprint multicast scheme.

• The fingerprinted coefficients in X
(i1,··· ,iL)
L are encrypted with user u(i=[i1,··· ,iL])’s

secret key K(i) and unicasted to him.

This will minimize the communication cost under the computation constraints
(
MG, RB

)
.

6.6 Chapter Summary

In this chapter, we have studied the secure distribution of fingerprinted copies for

video streaming applications where a large amount of data have to be transmitted
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to a large number of users in real time. In particular, we consider applications that

require strong traitor tracing capability and can survive collusion attacks with up

to a few dozen colluders, and we have proposed two secure fingerprint multicast

schemes: a general fingerprint multicast scheme and a joint fingerprint design and

distribution scheme.

We first observed that not all coefficients are embeddable in spread spectrum

embedding due to perceptual constraints, and a non-embeddable coefficient has the

same value in all copies. To reduce the communication cost in transmitting these

non-embeddable coefficients, we proposed a general fingerprint multicast scheme

that can be used with most spread spectrum embedding based fingerprinting sys-

tems. In this scheme, the non-embeddable coefficients that are shared by all users

are multicasted, while the embeddable coefficients are embedded with each user’s

unique fingerprint and unicasted to the corresponding user.

We then proposed a joint fingerprint design and distribution scheme that ex-

plores the special structure of the fingerprint design to further improve the band-

width efficiency. We first proposed a joint TDMA and CDMA fingerprint modu-

lation scheme for the tree based fingerprint design. It enables the service provider

to further multicast some fingerprinted coefficients that are shared by a subgroup

of users to them, while maintaining the robustness of the embedded fingerprints

against collusion. Based on the proposed fingerprint modulation scheme, we pro-

posed a fingerprint multicast scheme that minimizes the overall communication

cost under the computation constraints.
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Chapter 7

Secure Fingerprint Multicast:

Performance Analysis and

Comparison

In Chapter 6, we have studied the secure distribution of fingerprinted copies in

video streaming applications, and we have proposed two secure fingerprint multi-

cast schemes: a general fingerprint multicast scheme that can be used with most

spread spectrum embedding based fingerprinting systems, and a joint fingerprint

design and distribution scheme that utilizes the special structure of the fingerprint

design to further improve the bandwidth efficiency.

In this chapter, we analyze the performance of these two fingerprint multi-

cast schemes, including the bandwidth efficiency, the robustness of the embedded

fingerprints and the perceptual quality of the reconstructed fingerprints at the

decoder’s side. In Section 7.1, we analyze the bandwidth efficiency of the two

multicast schemes and compare it with that of the pure unicast scheme, where

each fingerprinted copy is unicasted to the corresponding user. In Section 7.2, we
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compare the robustness of the embedded fingerprints using the joint TDMA and

CDMA fingerprint modulation with that of the fingerprint embedded using the

CDMA based fingerprint modulation, and equivalently, the resistance of the em-

bedded fingerprints in the three schemes. In Section 7.3, we analyze the perceptual

quality of the reconstructed video sequence at the decoder’s side, and propose a

fingerprint drift compensation scheme for the two fingerprint multicast schemes.

7.1 Analysis of Bandwidth Efficiency

To analyze the bandwidth efficiency of the secure fingerprint multicast schemes

proposed in Chapter 6, we compare their communication costs with that of the

pure unicast scheme. In this section, we assume that the fingerprinted copies in

all schemes are encoded at the same targeted bit rate R.

To be consistent with general Internet routing where hop-count is the widely

used metric for route cost calculation [11], we use the hop-based link usage to

measure the communication cost and set the cost of all edges to be the same. To

transmit a package of length Lenunit to a multicast group of size M , it was shown

in [7, 11] that the normalized multicast communication cost can be approximated

by Cunit
multi(M)/Cunit

uni (M) = MEoS, where Cunit
multi(M) is the communication cost using

multicast, Cunit
uni (M) is the average communication cost per user using unicast and

EoS is the economies-of-scale factor. It was shown in [7] that EoS is between 0.66

and 0.7 for realistic networks. In this chapter, we choose EoS ≈ 0.7.
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7.1.1 The “multicast only” scenario

For the purpose of performance comparison, we consider another special scenario

where the video streaming applications require the service provider to prevent out-

siders from estimating the video’s content, but do not require the traitor tracing

capability. In this scenario, we apply the general index mapping to encrypt the

DC coefficients in the Intra blocks and the motion vectors in Inter block; and the

AC coefficients are left unchanged and transmitted in clear text. Since the copies

that are distributed to different users are the same, the service provider can use

a single multicast channel for the distribution of the encrypted bit stream to all

users. We call this particular scenario, which does not require the traitor tracing

capability and uses multicast channels only, the “multicast only”; and we compare

the communication cost of the “multicast only” with that of the proposed secure

fingerprint multicast schemes to illustrate the extra communication overhead in-

troduced by the traitor tracing requirement.

For a given video sequence and a targeted bit rate R, we assume that in the pure

unicast scheme, the average size of the compressed bit streams that are unicasted

to different users is Lenpu. Define Lenmo as the length of the bit stream that is

multicasted to all users in the “multicast only” scenario. Note that in the pure

unicast scheme, the streaming cipher that we applied to the AC coefficients in

each fingerprinted copy does not increase the bit rate and keep the compression

efficiency unchanged. Consequently, we have Lenmo ≈ Lenpu.

For a multicast group of size M , we further assume that the communication

cost of the pure unicast scheme is Cpu, and Cmo is the communication cost in the

“multicast only”. We have

Cpu(M) = M × Cunit
uni (M)× Lenpu/Lenunit,
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and Cmo(M) = Cunit
multi(M)× Lenmo/Lenunit. (7.1)

We define the communication cost ratio of the “multicast only” as

γmo(M)
4
=

Cmo(M)

Cpu(M)
≈ M−0.3, (7.2)

and it depends only on the total number of users M .

7.1.2 The General Fingerprint Multicast Scheme

For a given video sequence and a targeted bit rate R, we assume that in the general

fingerprint multicast scheme, the bit stream that is multicasted to all users is of

length Lenfm
multi, and the average size of different bit streams that are unicasted to

different users is Lenfm
uni. For a multicast group of size M , we further assume that

the communication cost of the general fingerprint multicast scheme is Cfm. We

have

Cfm(M) = Cunit
multi(M)× Lenfm

multi/Lenunit + M × Cunit
uni (M)× Lenfm

uni/Lenunit.(7.3)

The coding parameter is defined as CP
4
=

(
Lenfm

multi + Lenfm
uni

)
/Lenpu, and the uni-

cast ratio is defined as UR
4
=Lenfm

uni/
(
Lenfm

multi + Lenfm
uni

)
. Then the communica-

tion cost ratio of the general fingerprint multicast scheme is

γfm(M)
4
=

Cfm(M)

Cpu(M)
≈ CP

{
UR + (1− UR)M−0.3

}
. (7.4)

The smaller the communication cost ratio γfm, the more efficient the general fin-

gerprint multicast scheme. Given the multicast group size M , the efficiency of the

general fingerprint multicast scheme is determined by the coding parameter and

the unicast ratio.
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Coding Parameters

Four factors affect the coding parameters.

• For each fingerprinted copy, two different sets of motion vectors and quanti-

zation factors are used: the general fingerprint multicast scheme uses those

calculated from the original unfingerprinted copy, while the pure unicast

scheme uses those calculated from the fingerprinted copy itself. Note that

the original unfingerprinted copy and the fingerprinted copy are similar to

each other, so are both sets of parameters. Therefore, the difference between

these two sets of motion vectors and quantization factors has negligible effect

on the coding parameters.

• In the general fingerprint multicast scheme, headers and side information

have to be inserted in each unicasted bit stream for synchronization. We

follow the MPEG-2 standard and observe that this extra overhead consumes

no more than 0.014 bit per pixel (bpp) per copy and is much smaller than

the targeted bit rate R. Therefore, its effect on the coding parameters can

be ignored.

• In the variable length coding stage, the embeddable and the non-embeddable

coefficients are coded together in the pure unicast scheme while they are

coded separately in the general fingerprint multicast scheme. Figure 7.1

shows the histograms of the (run length, value) pairs of the “carphone”

sequence at R = 1Mbps(1.3bpp) in both schemes. From Figure 7.1, the (run

length, value) pairs generated by the two schemes have approximately the

same distribution. Thus, encoding the embeddable and the non-embeddable

coefficients together or separately does not affect the coding parameters. The
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Figure 7.1: Histograms of the (run length, value) pairs of the “carphone” sequence

that are variable length coded in the two schemes. R = 1Mbps. The indices of the

(run length, value) pairs are sorted first in the ascending order of the run length,

and then in the ascending order of the value. Left: in the Intra coded blocks, right:

in the Inter coded blocks.

same conclusion can be drawn for other sequences and for other bit rates.

• In the general fingerprint multicast scheme, the positions of the embeddable

coefficients have to be encoded and transmitted to the decoders. The encod-

ing procedure is as follows.

– For each 8 × 8 DCT block, first, an 8 × 8 mask is generated where a

bit ‘0’ is assigned to each non-embeddable coefficient and a bit ‘1’ is

assigned to each embeddable coefficient. Since DC coefficients are not

embedded with fingerprints [47], the mask bit at the DC coefficient’s

position is skipped and only the 63 mask bits at the AC coefficients’

positions are encoded.

– Observing that most of the embeddable coefficients are in the low fre-
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quencies, the 63 mask bits are zigzag scanned in the same way as in the

JPEG baseline compression.

– Run length coding is applied to the zigzag scanned mask bits followed

by huffman coding.

– An “End of Block” (EOB) marker is inserted after encoding the last

mask bit whose value is 1 in the block.

Communication Cost Ratio

We choose three representative sequences: “miss america” with large smooth re-

gions, “carphone” that is moderately complicated and “flower” that has large high

frequency coefficients. Listed in Table 7.1 are the coding parameters, the unicast

ratios and the communication cost ratios of these sequences at R = 1.3bpp. Figure

7.2 (a) also shows the communication cost ratios of the three sequences.

For M in the range between 1000 and 10000, compared with the pure unicast

scheme, the general fingerprint multicast scheme reduces the communication cost

by 48% to 84%, depending on the values of M and the characteristics of sequences.

Given a sequence and a targeted bit rate R, the performance of the general fin-

Table 7.1: Performance of the general fingerprint multicast scheme at R = 1.3bpp.

Sequence
Parameters γfm(γmo) M̄

CP UR M = 1000 M = 5000 M = 104 γ̄ = 0.7 γ̄ = 0.8

miss america 1.23 0.07 0.23 0.18 0.16 8 5

carphone 1.40 0.19 0.41 0.35 0.34 25 13

flower 1.65 0.23 0.52 0.46 0.44 76 32

multicast only – – 0.13 0.08 0.06 – –
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gerprint multicast scheme improves as the multicast group size M increases. For

example, for the “carphone” sequence at R = 1.3bpp, γfm = 0.41 when there are a

total of M = 1000 users, and it drops to 0.34 when M is increased to 10000. Also,

given M , the performance of the general fingerprint multicast scheme depends on

the characteristics of video sequences. For sequences with large smooth regions,

the embedded fingerprints are shorter. Therefore, fewer bits are needed to encode

the positions of the embeddable coefficients, and fewer DCT coefficients are trans-

mitted through unicast channels. So the general fingerprint multicast scheme is

more efficient. On the contrary, for sequences where the high frequency band has

large energy, more DCT coefficients are embeddable. Thus, the general fingerprint

multicast scheme is less efficient since the coding parameter and the unicast ratio

are larger. When there are a total of M = 5000 users, the communication cost

ratio is 0.18 for sequence “miss america” and is 0.46 for sequence “flower”.

From Table 7.1 and Figure 7.2, if we compare the communication cost of the

general fingerprint multicast with that of the “multicast only” scenario, enabling

traitor tracing in video streaming applications introduces an extra communication

overhead of 10% to 40%, depending on the characteristics of video sequences. For

sequences with fewer embeddable coeffients, e.g, “miss america”, the length of

the embedded fingerprints is shorter, and applying digital fingerprinting increases

the communication cost by a smaller percentage (around 10%). For sequences

that have much more embeddable coefficients, e.g., “flower”, more DCT coeffi-

cients have to be transmitted through unicast channels in the general fingerprint

multicast scheme, and it increases the communication cost by a larger percentage

(approximately 40%).

In addition, the general fingerprint multicast scheme performs worse than the
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Figure 7.2: Performance of the general fingerprint multicast scheme at R = 1.3bpp.

pure unicast scheme when M is small. Therefore, given the coding parameter and

the unicast ratio, the pure unicast scheme is preferred when the communication

cost ratio γ is larger than a threshold γ̄, i.e., when M is smaller than M̄ where

M̄ =

⌈(
1− UR

γ̄/CP − UR

)10/3⌉
. (7.5)

The ceil function dxe returns the minimum integer that is not smaller than x. M̄

of different sequences for different γ̄ are listed in Table 7.1 and shown in Figure

7.2 (b). For γ̄ = 0.8 and R = 1.3bpp, M̄ is 5 for sequence “miss america”, 13 for

“carphone” and 32 for “flower”.

7.1.3 Joint Fingerprint Design and Distribution Scheme

For a given video sequence and a targeted bit rate R, we assume that in the

joint fingerprint design and distribution scheme, the bit stream that is multicasted

to all users is of length Lenjoint
multi where Lenjoint

multi = Lenfm
multi. For any two nodes

[i1, · · · , il] 6= [j1, · · · , jl] at level l in the tree, we further assume that the bit

streams that are transmitted to the users in the subgroups Ui1,··· ,il and Uj1,··· ,jl are
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approximately of the same length Lenjoint
l .

In the joint fingerprint design and distribution scheme, all the fingerprinted

coefficients inside one frame are variable length coded together. Therefore, the

histograms of the (run length, value) pairs in the joint fingerprint design and dis-

tribution scheme are the same as that in the general fingerprint multicast scheme.

If we ignore the impact of the headers/markers that are inserted in each bit stream,

we have

Lenjoint
1 + · · ·+ Lenjoint

L ≈ Lenfm
uni,

and
Lenjoint

multi +
∑L

l=1 Lenjoint
l

Lenpu
≈ CP. (7.6)

Furthermore, fingerprints at different levels are embedded into the host signal

periodically. In the simple example shown in Figure 6.4, the period is 4 seconds.

If this period is small compared with the overall length of the video sequence, we

can have the approximation that

Lenjoint
1 : · · · : Lenjoint

L ≈ N1 : · · · : NL,

and Lenjoint
l ≈ Nl

N
· Lenfm

uni, 1 ≤ l ≤ L. (7.7)

In the joint fingerprint design and distribution scheme, to multicast the non-

embeddable DCT coefficients and other shared side information to all users, the

communication cost is

Cjoint
multi = Cunit

multi(M)× Lenjoint
multi/Lenunit, (7.8)

where M is the total number of users. For l ≤ L′, to multicast the fingerprinted

coefficients in X
(i1,··· ,il)
l to the users in Ui1,··· ,il , the communication cost is

Cjoint
l = Cunit

multi(Ml)× Lenjoint
l /Lenunit, (7.9)
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where Ml
4
=

∏L
m=l+1 Dm. There are M/Ml such subgroups. For L′ < l ≤ L− 1, to

distribute the fingerprinted coefficients in X
(i1,··· ,iL′ ,··· ,il)
l to the users in the subgroup

Ui1,··· ,iL′ ,··· ,il , the communication cost is

Cjoint
l = min

{
Cunit

multi(ML′)× Lenjoint
l /Lenunit , Ml · Cunit

uni (Ml)× Lenjoint
l /Lenunit

}
,

(7.10)

where the first term is the communication cost if they are multicasted to users in

the subgroup Ui1,··· ,iL′ , and the second term is the communication cost if they are

unicasted to each user in the subgroup Ui1,··· ,iL′ ,··· ,il . Finally, the communication

cost of distributing the fingerprinted coefficients in X
(i1,··· ,iL)
L to user u(i1,··· ,iL) is

Cjoint
L = M · Cunit

uni (M)× Lenjoint
L /Lenunit. (7.11)

The overall communication cost of the joint fingerprint design and distribution

scheme is

Cjoint = Cjoint
multi +

L∑

l=1

M

Ml

· Cjoint
l , (7.12)

and the communication cost ratio γjoint4=Cjoint

Cpu is

γjoint ≈ CP

{
(1− UR) ·M−0.3 + UR ·

L′∑

l=1

Nl

N
·M−0.3

l

+UR ·
L−1∑

l=L′+1

Nl

N
·min

(
M0.7

L′

Ml

, 1

)
+ UR · NL

N

}
. (7.13)

Listed in Table 7.2 are the communication cost ratios of the joint fingerprint

design and distribution scheme under different L′ for sequence “miss america”,

“carphone” and “flower”. L′ = 0 corresponds to the general fingerprint multicast

scheme. We consider three scenarios where the numbers of users are 1000, 5000 and

10000 respectively. The tree structures of the three scenarios are listed in Table

7.2. In the three cases considered, compared with the pure unicast scheme, the
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Table 7.2: The communication cost ratios of the joint fingerprint design and dis-

tribution scheme. L′ = 0 is the general fingerprint multicast scheme. R = 1.3bpp,

p = 0.95.

L′ MG RB miss

america

carphone flower multicast

only

M = 1000, L = 3,

D = [2, 5, 100],

ρ = [1/4, 1/4, 1/2]

0 1 2 0.23 0.41 0.52

0.131 3 3 0.22 0.34 0.43

2 13 4 0.20 0.31 0.39

M = 5000, L = 4,

D = [2, 5, 5, 100],

ρ = [1/6, 1/6, 1/6, 1/2]

0 1 2 0.18 0.35 0.46

0.081 3 3 0.16 0.30 0.39

2 13 4 0.15 0.27 0.35

3 65 5 0.14 0.25 0.32

M = 10000, L = 4,

D = [4, 5, 5, 100],

ρ = [1/6, 1/6, 1/6, 1/2]

0 1 2 0.16 0.34 0.43

0.061 5 3 0.14 0.28 0.37

2 25 4 0.13 0.26 0.33

3 125 5 0.13 0.23 0.30

169



joint fingerprint design and distribution scheme reduces the communication cost

by 57% to 87%, depending on the total number of users, network and computation

constraints, and the characteristics of video sequences.

Given a sequence, the larger the L′, i.e., the larger the MG and RB, the

more efficient the joint fingerprint design and distribution scheme. This is because

more fingerprinted coefficients can be multicasted. Take the “carphone” sequence

with M = 1000 users as an example, in the general fingerprint multicast scheme,

γfm = 0.41. If L′ = 1, the joint fingerprint design and distribution scheme reduces

the communication cost ratio to 0.34, and it is further dropped to 0.31 if MG ≥ 13

and RB ≥ 4.

Also, compared with the general fingerprint multicast scheme, the extra com-

munication cost saved by the joint fingerprint design and distribution scheme varies

from sequence to sequence. For sequences that have more embeddable coefficients,

the joint fingerprint design and distribution improves the bandwidth efficiency by

a much larger percentage. For example, for M = 5000 and L′ = 2, compared with

the general fingerprint multicast scheme, the joint fingerprint design and distribu-

tion scheme further reduces the communication cost by 10% for sequence “flower”,

while it only further improves the bandwidth efficiency by 3% for sequence “miss

america”. However, for sequence “miss america” with M = 5000 users, the general

fingerprint multicast scheme has already reduced the communication cost by 82%.

Therefore, for sequences with fewer embeddable coefficients, the general fingerprint

multicast scheme is recommended to reduce the bandwidth requirement at a low

computation cost. The joint fingerprint design and distribution scheme is preferred

on sequences with much more embeddable coefficients to achieve the bandwidth

efficiency under network and computation constraints.
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Compared with the “multicast only” scenario, the joint fingerprint design and

distribution scheme enables the traitor tracing capability by increasing the commu-

nication cost by 6% to 30%, depending on the characteristics of the video sequence

as well as the network and computation constraints. Compared with the “multi-

cast only”, for sequences with fewer embeddable coefficients, the joint fingerprint

design and distribution scheme increases the communication cost by a smaller per-

centage (around 6% to 10% for sequence “miss america”); while for sequences with

much more embeddable coefficients, the extra communication overhead introduced

is larger (around 24% to 30% for sequence “flower”).

7.2 Robustness of the Embedded Fingerprints

In this section, we take the tree based fingerprint design as an example, and com-

pare the robustness of the embedded fingerprints in different schemes. In the pure

unicast scheme and the general fingerprint multicast scheme, we use the CDMA

based fingerprint modulation to be robust against interleaving based collusion at-

tacks; and in the joint fingerprint design and distribution scheme, the joint TDMA

and CDMA fingerprint modulation scheme proposed in Section 6.5.2 In Chapter

6 is used. In this section, we compare the collusion resistance of the fingerprints

embedded using the joint TDMA and CDMA fingerprint modulation scheme with

that of the fingerprints embedded using the CDMA based fingerprint modulation.

7.2.1 Digital Fingerprinting System Model

Spread spectrum embedding [14,47] is widely used in digital fingerprinting systems

due to its robustness against many single-copy attacks. In spread spectrum em-
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bedding, the fingerprint is additively embedded into the host signal, and human

visual models are used to control the energy and the imperceptibility of the the

embedded fingerprints. In this chapter, we use the the block based human visual

models and follow the embedding method in [47].

At the attackers’ side, since spread spectrum embedding has been proven to

be robust against attacks on a single copy, e.g., compression and lower pass filter-

ing, we focus on the multiuser collusion which is more challenging. Under those

single-copy attacks, the performance of the joint TDMA and CDMA fingerprint

modulation is similar to that of the watermarking systems in [14, 47] and is not

repeated here.

During collusion, we assume that there are a total of K colluders and SC is the

set containing the indices of all colluders. In the joint TDMA and CDMA finger-

print modulation, the colluders can apply the interleaving based collusion attacks,

where the colluders divide themselves into L subgroups and {SCl ⊆ SC}l=1,··· ,L

contain the indices of the colluders in the L subgroups, respectively. The colluders

in subgroup SCl generate the lth part of the colluded copy by Vl = g
(
{X(i)

l }i∈SCl

)

where g(·) is the collusion function. In the CDMA based fingerprint modulation,

the colluders cannot distinguish fingerprints at different levels in the tree and can-

not apply interleaving based collusion attacks. Consequently, SC1 = · · · = SCL =

SC for collusion attacks on the CDMA based fingerprint modulation.

In a recent investigation [63], we have shown that nonlinear collusion attacks

can be modeled as the averaging collusion attack followed by an additive noise.

Under the constraint that the perceptual quality of the attacked copies under

different collusion attacks are the same, different collusion attacks have almost

identical performance. Therefore, we only consider the averaging collusion attack.
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At the detector’s side, we consider a non-blind detection scenario, where the

host signal S is available to the detector and is first removed from the colluded copy

V before fingerprint detection and colluder identification. Note that different from

other data hiding applications where the host signal is not available to the detector

and blind detection is preferred or required, in many fingerprinting applications,

the fingerprint verification and colluder identification process is usually handled by

the content owner or an authorized third party who can have access to the original

host signal. In addition, prior work has shown that the non-blind detection has a

better performance than the blind detection [58], [63]. Therefore, in this chapter,

we consider non-blind detection to improve the detection performance and the

collusion resistance of the fingerprinting systems.

From the other point of view, with spread spectrum embedding, in the blind

detection, the host signal serves as an additional noise with very large energy

during the detection process, and the blind detection can be regarded as a non-

blind scenario with very low watermark to noise ratio (WNR). Thus, the analysis

of the detection statistics for the blind scenario will be similar, and we will observe

similar trend. Consequently, for the purpose of comparing the robustness of the

joint TDMA and CDMA fingerprint modulation with that of the CDMA based

modulation, our assumption of the non-blind detection scenario is justified.

7.2.2 Performance Criteria

To measure the robustness of the joint TDMA and CDMA fingerprint modulation

scheme against collusion attacks, we adopt the commonly used criteria in the

literature [58], [63]: the probability of capturing at least one colluder (Pd), and the

probability of accusing at least one innocent user (Pfp).
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In this chapter, we assume that the colluders collude under the fairness con-

straint, i.e., all colluders share the same risk and are equally likely to be detected.

Assume that A and B are two non-overlapping subgroups of colluders, and SCA

and SCB are the sets containing the indices of the colluders in A and B, respec-

tively. SCA ∩ SCB = ∅, and we define the fairness parameter FP (SCA, SCB)

as

FP (SCA, SCB)
4
=

Fd(SCA)

Fd(SCB)
,

where Fd(SCA) =

∑
i∈SCA

I[i ∈ ŜC]

|SCA|

and Fd(SCB) =

∑
i∈SCB

I[i ∈ ŜC]

|SCB| . (7.14)

In (7.14), I[·] is the indication function, |SCA| and |SCB| are the number of col-

luders in SCA and SCB, respectively, and ŜC is the estimated colluder set output

by the detector. If FP (SCA, SCB) ≈ 1 for any (SCA, SCB) with SCA ∩ SCB = ∅,
then the collusion attack is fair and each colluder is equally likely to be detected.

If FP (SCA, SCB) À 1 or FP (SCA, SCB) ¿ 1 for some pair of (SCA, SCB), some

colluders are more likely to be detected than others and the collusion attack is not

fair.

7.2.3 Statistical Analysis of the Probability of Detection

The work in [62] provided detailed analysis of the probability of detection for the

CDMA based fingerprint modulation, and it is not repeated here. In this section,

we focus on the analysis of the joint TDMA and CDMA fingerprint modulation.

At the detector’s side, given the lth part of the colluded copy Vl, the detector
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first extracts the fingerprint

Yl =
1

Kl

∑

i=[i1,··· ,iL]∈SCl

√
p1,l · ai1

l +
√

p2,l · ai1,i2
l + · · ·+√

pl,l · ai1,··· ,il
l + nl

=
1

Kl

l∑

k=1

∑
i1,··· ,ik

K i1,··· ,ik
l

√
pk,l · ai1,··· ,ik

l + nl. (7.15)

In (7.15), Ki1,··· ,ik
l

4
=

∑
j=[j1,··· ,jL]∈SCl

I[j1 = i1, · · · , jk = ik] is the number of collud-

ers in SCl that are in the subregion represented by [i1, · · · , ik], Kl =
∑

i1,··· ,ik Ki1,··· ,ik
l

is the number of colluders in SCl, and nl is the additive noise that the colluders

add to the colluded copy Vl to further hinder the detection performance. In this

chapter, for simplicity, we assume that the additive noise nl are i.i.d. and follow

Gaussian distribution N (0, σ2
n).

Following the statistical analysis in [62], given PJoint as in (6.11) and {Nl}l=1,··· ,L

as in (6.16), we can show that at level l, T i1,··· ,il can be approximated by a normal

distribution

T i1,··· ,il ∼ N (
µi1,··· ,il , σ2

n

)
,

where µi1,··· ,il =

{
L∑

r=l

√
pl,r

(
K i1,··· ,il

r

Kr

·Nr

)}
σW�

√√√√
L∑

t=l

Nt. (7.16)

In (7.16), σ2
W is the variance of {a}, and σ2

n is the variance of the additive noise

nl. The analysis of Pd and Pfp is similar to that in [62] and is omitted.

We then analyze the robustness of the joint TDMA and CDMA fingerprint

modulation scheme under the interleaving based collusion attacks. From (7.16), if

σ2
n and the thresholds used during detection {hl} are fixed, comparing the proba-

bility of detection is equivalent to comparing the means of the detection statistics.

Therefore, in this paper, we focus on the analysis of the detection statistics’ means.

We first analyze the means of the detection statistics when detecting guilty

regions at upper levels in the fingerprint tree. Under the interleaving based col-
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lusion attacks, we consider a colluder u(i) where i = [i1, · · · , ik, · · · iL] ∈ SCl. For

a guilty node [i1, · · · , ik] at upper level k < l in the tree, we have K i1,··· ,ik
l > 0.

Consequently, from (7.16), even if i 6∈ SCk and K i1,··· ,ik
k = 0, we still have

µi1,··· ,ik ≥ √
pk,l

(
K i1,··· ,ik

l

Kl

·Nl

)
σW�

√√√√
l∑

t=l

Nt > 0. (7.17)

Therefore, in the joint TDMA and CDMA fingerprint modulation scheme, the

guilty region [i1, · · · , ik] at the upper level of the tree can be detected even under

the interleaving based collusion.

We then analyze the means of the detection statistics when detecting guilty re-

gions at lower levels in the fingerprint tree. Assume that the depth of the fingerprint

tree is L. First, we consider a Type I interleaving based collusion attacks where

colluders in subgroup SCL−1 and colluders in subgroup SCL are under different

branches of the tree and SCL−1∩SCL = ∅. In addition, for any [i1, · · · , iL−1, iL] ∈
SCL−1 and [j1, · · · , jL−1, jL] ∈ SCL, [i1, · · · , iL−1] 6= [j1, · · · , jL−1]. The example

shown in Figure 6.5 belongs to this type of collusion attacks.

We consider two colluder u(i) and u(j) where i = [i1, · · · , iL] /∈ SCL and j =

[j1, · · · , jL] ∈ SCL. At level L in the tree, for colluder u(i) who is not in the

subgroup SCL, Ki1,··· ,iL
L = 0; while Kj1,··· ,jL

L > 0 for colluder u(j) who is in the

subgroup SCL. Therefore, from (7.16), at level L in the tree, the means of the

detection statistics for user u(i) and user uj) are

µi1,··· ,iL = 0 and µj1,··· ,jL =

√
ρL,LNL σ2

W

KL

> 0 (7.18)

respectively. Consequently, in the joint TDMA and CDMA fingerprint modulation

scheme, under the Type I interleaving based collusion attacks, the colluders in the

subgroup SCL are more likely to be detected than other colluders. So the Type I

interleaving based collusion attacks are not fair collusion attacks.
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Then, we consider a Type II interleaving based collusion attacks where SCL =

SC but SCl ⊂ SC for some l < L. As an example, we consider the scenario where

SCL−1 ⊂ SCL = SC, and for any i ∈ SCL−1 and j ∈ SCL\SCL−1, [i1, · · · , iL−1] 6=
[j1, · · · , jL−1].

1 This corresponds to the scenario where all colluders participate in

the generation of VL, but some of the colluders do not participate in the generation

of VL−1. Take the fingerprint tree in Figure 6.2 as an example, if user u(1),u(2),u(4)

and u(7) are the colluders, and if the colluders choose SC1 = {7}, SC2 = {4} and

SC3 = {1, 2, 4, 7}, then this is a Type II interleaving based collusion attack.

We consider two colluders u(i) and u(j), where i ∈ SCL−1, i ∈ SCL and j 6∈
SCL−1, j ∈ SCL. Under the Type II interleaving based collusion, for colluder u(i)

K
i1,··· ,iL−1

L−1 > 0 and K
i1,··· ,iL−1

L > 0, (7.19)

and for colluder u(j),

K
i1,··· ,iL−1

L−1 = 0 and K
i1,··· ,iL−1

L > 0. (7.20)

Consequently, from (7.16), when detecting guilty regions at level L− 1 in the tree,

µi1,··· ,iL−1 =
K

i1,··· ,iL−1

L−1

KL−1

√
pL−1,L−1

NL−1 + NL

·NL−1σW

+
K

i1,··· ,iL−1

L

KL

√
pL−1,L

NL−1 + NL

·NLσW ,

and µj1,··· ,jL−1 =
K

j1,··· ,jL−1

L

KL

√
pL−1,L

NL−1 + NL

·NLσW . (7.21)

Since K
(i)
L−1 > 0, we have µj1,··· ,jL−1 < µi1,··· ,iL−1 in almost all cases. So in the joint

TDMA and CDMA fingerprint modulation, under the Type II interleaving based

collusion attacks, the colluders in SCL−1 are more likely to be detected than other

colluders. Consequently, the Type II interleaving based collusion attacks are not

fair collusion attacks either.

1For two sets A and B where A ⊇ B, A \B
4
={i : i ∈ A, i 6∈ B}.
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Figure 7.3: Performance of the joint TDMA and CDMA fingerprint modulation

scheme under interleaving based collusion attacks. L = 4, [D1, D2, D3, D4] =

[4, 5, 5, 100] and [ρ1, ρ2, ρ3, ρ4] = [1/6, 1/6, 1/6, 1/2]. N = 106, σ2
n = 2σ2

W and

Pfp = 10−2. p = 0.95. Top: under Type I interleaving based collusion attacks,

bottom: under Type II interleaving based collusion attacks.
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7.2.4 Simulation Results

Resistance to Interleaving Based Collusion Attacks

Figure 7.3 shows the simulation results of the joint TDMA and CDMA fingerprint

modulation scheme under both types of interleaving based collusion attacks. Our

simulation is set up as follows. For the tested video sequences, the number of

embeddable coefficients is in the order of 106 per second. So we choose N = 106

and assume that there are a total of M = 104 users. Following the tree based

fingerprint design in [61], [62], we consider a symmetric tree structure with L = 4

levels, [D1, D2, D3, D4] = [4, 5, 5, 100] and [ρ1, ρ2, ρ3, ρ4] = [1/6, 1/6, 1/6, 1/2]. In

our simulations, the basis fingerprints {a} in the fingerprint tree follow Gaussian

distribution N (0, σ2
W ) with σ2

W = 1/9. In the joint TDMA and CDMA fingerprint

modulation scheme, for simplicity, we let p2,2 = · · · = pL,L = p for the matrix

PJoint in (6.11) and choose p = 0.95 for the above fingerprint tree structure. A

smaller value of p should be used if L is larger or the total number of nodes at the

upper L− 1 levels in the tree is larger.

At the attackers’ side, we consider the most effective collusion pattern on the

tree based fingerprint design, where colluders are from all the 100 subgroups at level

3. We assume that each of the 100 subgroups has the same number of colluders.

In the joint TDMA and CDMA fingerprint modulation scheme, for both types of

interleaving based collusion attacks, we choose different subgroups of colluders as

SC1 = {i = [i1, i2, i3, i4] ∈ SC : i1 = 1}, SC2 = {i = [i1, i2, i3, i4] ∈ SC : i1 = 2}
and SC3 = {i = [i1, i2, i3, i4] ∈ SC : i1 = 3}. In the Type I interleaving based

collusion attacks, we choose SC4 = SC \ SC3. In the Type II interleaving based

collusion attacks, SC4 = SC. In the CDMA based fingerprint modulation scheme,

similarly, we assume that colluders are from all the 100 subgroups at level 3 in the
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tree, and each subgroup at level 3 in the tree has equal number of colluders. In the

CDMA based fingerprint modulation, the colluders cannot distinguish fingerprints

at different levels, and they apply the pure averaging collusion attack where SC1 =

· · · = SCL = SC. Also, we choose σ2
n = 2σ2

W for all collusion attacks in (7.16).

Other values of σ2
n give the same trend and are not shown here.

Figure 7.3 (a) and (b) show the simulation results of the Type I interleaving

base collusion, while Figure 7.3 (c) and (d) show the simulation results of the Type

II interleaving based collusion.

In Figure 7.3 (a) and (c), given the total number of colluders K, we compare Pd

of the joint TDMA and CDMA fingerprint modulation under the interleaving based

collusion attacks with that of the CDMA based fingerprint modulation scheme

under the pure averaging collusion attacks. As an example, we fix Pfp as 10−2.

From Figure 7.3 (a) and (c), the performance of the joint TDMA and CDMA

fingerprint modulation under the interleaving based collusion is approximately the

same or even better than that of the CDMA based fingerprint modulation under

the pure averaging collusion attacks.

Figure 7.3 (b) and (d) show the fairness parameters of the two types of inter-

leaving based collusion attacks in the joint TDMA and CDMA fingerprint modu-

lation. From Figure 7.3 (b), under the Type I interleaving based collusion attacks,

FP (SCL−1, SCL) ¿ 1. Therefore, the colluders in the subgroup SCL are much

more likely to be detected than those in SCL−1, which is in agreement with our

analysis. From 7.3 (d), under the Type II interleaving based collusion attacks,

FP (SCL−1, SC \SCL−1) ≈ 1.9, and the colluders in the subgroup SCL−1 are more

likely to be detected than other colluders, which is also consistent with the analysis.

Therefore, the performance of the joint TDMA and CDMA fingerprint modu-
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lation scheme under the interleaving based collusion attacks is approximately the

same as, and may be even better than, that of the CDMA fingerprint modulation

scheme under the pure averaging collusion attacks. Furthermore, we have shown

that neither of the two types of interleaving based collusion attacks are fair in the

joint TDMA and CDMA fingerprint modulation scheme, and some colluders are

more likely to be captured than others. Consequently, to guarantee the fairness

of the collusion attacks, the colluders cannot use the interleaving based collusion

attacks in the joint TDMA and CDMA fingerprint modulation.

Resistance to the Pure Averaging Collusion Attacks

In this section, we study the detection performance of the joint TDMA and CDMA

fingerprint modulation under the pure averaging collusion attacks where SC1 =

SC2 = · · · = SCL = SC. We compare the detection performance of the Joint

TDMA and CDMA fingerprint modulation with that of the CDMA fingerprint

modulation. In both fingerprint modulation schemes, all colluders have equal

probability of detection under this type of collusion, and the pure averaging attacks

are fair collusion attacks. The simulation setup is the same as in the previous

section and Figure 7.4 shows the simulation results. We consider two possible

collusion patterns. In the first one, we assume that one region at level 1 is guilty

and it has two guilty sub-regions at level 2. For each of the two guilty regions at

level 2, we assume that all its five children at level 3 are guilty and colluders are

present in 10 out of 100 subgroups at level 3. This collusion pattern corresponds

to the case where the fingerprint tree matches the hierarchical relationship among

users. In the second one, we assume that all the 100 subgroups at level 3 are guilty,

and this collusion pattern happens when the fingerprint tree does not reflect the
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Figure 7.4: Pd of the joint TDMA and CDMA fingerprint modulation scheme

under the pure average attacks. L = 4, [D1, D2, D3, D4] = [4, 5, 5, 100] and

[ρ1, ρ2, ρ3, ρ4] = [1/6, 1/6, 1/6, 1/2]. N = 106, σ2
n = 2σ2

W and Pfp = 10−2. p = 0.95.

Left: colluders are from 10 subgroups at level 3 in the tree, right: colluders are

from all the 100 subgroups at level 3 in the tree.

real hierarchical relationship among users. We further assume that each guilty

subgroup at level 3 has the same number of colluders in both collusion patterns.

From Figure 7.4, the joint TDMA and CDMA fingerprint modulation scheme

has approximately the same performance as the CDMA based fingerprint modula-

tion scheme under the pure averaging collusion attacks. Both fingerprint modula-

tion schemes perform better when the fingerprint tree design matches the hierar-

chical relationship among users and the colluders are present in fewer subgroups

in the tree.

To summarize, under the constraint that all colluders share the same risk and

have equal probability of detection, the joint TDMA and CDMA fingerprint mod-

ulation has approximately identical performance as the CDMA based fingerprint

modulation, and the embedded fingerprints in the three secure fingerprint distri-

bution schemes have the same collusion resistance.

182



7.3 Fingerprint Drift Compensation

In both the general fingerprint multicast scheme and the joint fingerprint design

and distribution scheme, the video encoder and the decoder use the reconstructed

unfingerprinted and fingerprinted copies, respectively, as references for motion

compensation. The difference, which is the embedded fingerprint, will propagate to

the next frame. Fingerprints from different frames will accumulate and cause the

perceptual quality degradation of the reconstructed frames at the decoder’s side.

A drift compensation signal, which is the embedded fingerprint in the reference

frame(s) with motion, has to be transmitted to each user. It contains confidential

information of the embedded fingerprint in the reference frame(s) and is unique to

each user. Therefore, it has to be transmitted seamlessly with the host signal to

the decoder through unicast channels. Since the embedded fingerprint propagates

not only to the embeddable coefficients but also to the non-embeddable ones, fully

compensating the drifted fingerprint will significantly increase the communication

cost.

To reduce the communication overhead introduced by full drift compensation,

we propose to compensate the drifted fingerprint that propagates to the embed-

dable coefficients only and ignore the rest. Shown in Figure 7.5 is the fingerprint

drift compensation scheme in the general fingerprint multicast scheme for video

on demand applications. The one in the joint fingerprint design and distribution

scheme is similar and omitted. The calculation of the drift compensation signal

is similar to that in [26]. Step 3 in the fingerprint embedding and distribution

process is modified as follows. For each DCT coefficient, if it is not embeddable, it

is variable length coded with other non-embeddable coefficients. Otherwise, first,

it is inversely quantized. Then for each user, the corresponding fingerprint compo-
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Figure 7.5: The proposed fingerprint drift compensation scheme in the general

fingerprint multicast for VoD applications.

nent is embedded, the corresponding drift compensation component is added, and

the resulting fingerprinted and compensated coefficient is quantized and variable

length coded with other fingerprinted and compensated coefficients.

In Table 7.3, we compare the quality of the reconstructed sequences at the de-

coder’s side in three scenarios: PSNRf is the average PSNR of the reconstructed

frames with full drift compensation; PSNRn is the average PSNR of the recon-

structed frames without drift compensation; and PSNRp is the average PSNR

of the reconstructed frames in the proposed drift compensation scheme. Com-

pared with the reconstructed frames with full drift compensation, the reconstructed

frames without drift compensation have an average of 1.5 ∼ 2dB loss in PSNR,

and those using the proposed drift compensation have an average of 0.5dB loss.

Therefore, the proposed drift compensation scheme improves the quality of the
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Table 7.3: Perceptual quality of the reconstructed frames at the decoder’s side at

bit rate R = 1.3bpp.

Sequence PSNRf (dB) PSNRn(dB) PSNRp(dB)

miss america 44.89 42.73 44.31

carphone 40.45 38.05 39.88

flower 31.53 30.01 30.92

reconstructed frames at the decoder’s side without extra communication overhead.

7.4 Chapter Summary

In this chapter, we have analyzed the performance of the two fingerprint multicast

schemes proposed in Chapter 6, including the bandwidth efficiency, the robust-

ness of the embedded fingerprints, and the perceptual quality of the reconstructed

sequence at the decoder’s side.

We first analyzed the bandwidth efficiency of the two fingerprint multicast

schemes. Compared with the pure unicast scheme, the general fingerprint multicast

scheme reduces the communication cost by 48% to 84%, depending on the total

number of users and the characteristics of sequences; and the joint fingerprint

design and distribution scheme reduces the bandwidth requirement by 57% to 87%,

depending on the number of users, the characteristics of sequences, and network

and computation constraints.

If we compare the three distribution schemes: the pure unicast scheme, the

general fingerprint multicast scheme, and the joint fingerprint design and distribu-

tion scheme, the pure unicast scheme is preferred when there are only a few users
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in the system, e.g., around ten or twenty users; and the other two schemes should

be used when there are a large number of users, e.g., thousands of users. Com-

pared with the general fingerprint multicast scheme, the joint fingerprint design

and distribution scheme further improves the bandwidth efficiency by increasing

the complexity of the underlying network and that of the receivers. Therefore, for

sequences that have fewer embeddable coefficients, e.g., sequence “miss america”,

the general fingerprint multicast scheme is preferred to achieve the bandwidth ef-

ficiency at a low computation cost. For sequences with much more embeddable

coefficients, e.g., sequence “flower”, the joint fingerprint design and distribution

scheme is recommended to reduce the communication cost under network and

computation constraints.

We then analyzed the collusion resistance of the embedded fingerprints in dif-

ferent schemes. We have shown that with the joint TDMA and CDMA fingerprint

modulation, although the colluders can still apply the interleaving based collusion,

some colluders have larger probability to be detected than the others. To guar-

antee that all colluders share the same risk and have equal probability of being

captured, the colluders can only apply the pure averaging collusion, under which

the proposed joint TDMA and CDMA fingerprint modulation has approximately

identical performance as the CDMA based fingerprint modulation scheme.

Finally, we analzyed the perceptual quality of the reconstructed sequences at

the receiver’s side. We have shown that the proposed fingerprint drift compensation

scheme improves PSNR of the reconstructed frames by an average of 1 ∼ 1.5 dB

without increasing the communication cost.
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Chapter 8

Conclusions and Future Research

In this thesis, we have examined and explored various aspects of multimedia finger-

printing, including the analysis of collusion resistance as well as secure fingerprint

multicast for video streaming.

We first investigated order statistics based nonlinear collusion attacks and an-

alyzed their effectiveness in defeating multimedia fingerprinting systems. We also

analyzed the detection performance of several commonly used detectors in the lit-

erature and compared their performance under nonlinear collusion attacks. To

improve the performance of the detection statistics under collusion attacks, during

fingerprint detection, we utilized the statistical features of the extracted finger-

prints and proposed a preprocessing technique specifically for collusion scenario.

We showed that the preprocessing techniques improve the collusion resistance of

multimedia fingerprinting systems.

We then investigated collusion attacks on scalable fingerprinting systems, where

users received copies of different quality due to bandwidth and computation con-

straints. We first analyzed the fairness constraints on the collusion attacks, which

requires all colluders share the same risk and have equal probability of detection.
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We then investigated the tradeoff between the probability of detection and the

perceptual quality during collusion. Finally, we analyzed the collusion resistance

of the scalable fingerprinting systems for different applications with different re-

quirements, and provided the lower and upper bounds of Kmax.

We also investigated the traitors within traitors problem in multimedia fin-

gerprinting, where selfish colluders process their received copies before multiuser

collusion to further reduce their own probability of detection. We explored the

possible strategy by those selfish colluders, analyzed their performance, and in-

vestigated the optimal pre-collusion processing technique for selfish colluders to

minimize their risk of being captured under the quality constraints. For other

colluders who wish to protect their own interest, we also provided preliminary

countermeasures to detect and prevent such pre-collusion processing.

In this thesis, we also address the secure distribution of uniquely fingerprinted

copies for video streaming applications with stringent latency constraints. We pro-

posed two secure fingerprint multicast schemes: the general fingerprint multicast

scheme that can be used with most spread spectrum embedding based fingerprint-

ing systems, and the joint fingerprint design and distribution scheme that explores

the special structure of fingerprint design to further reduce the communication

cost. We compared their performance, including the communication cost and the

robustness against collusion attacks, and analyzed the tradeoff between the band-

width efficiency and computation complexity. We also proposed a fingerprint drift

compensation scheme to improve the quality of the reconstructed sequences at the

decoder’s side without extra communication overhead.

Digital fingerprinting and traitor tracing in multimedia forensics is at its young

age, and there are many more interesting research directions that need to be further
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investigated.

First, our current work on secure fingerprint multicast considered a simple sce-

nario where all users receive copies of the same quality. As we have pointed out

in Chapter 4, scalability is usually required for video coding and transmission to

address the heterogeneity of networks as well as the variation of users’ compu-

tation capability. Consequently, it is important to investigate secure fingerprint

multicast for scalable video fingerprinting and coding, which is more realistic and

practical. In addition, observing that both Internet and wireless networks change

dynamically over time, the service provider is obliged to adjust the distribution

schemes according to the bandwidth fluctuations, and it is crucial to have flexible

secure fingerprint multicast schemes that can address both the heterogeneity and

the dynamically changing nature of networks.

In addition, in our work, we assumed that the networks are error-free for sim-

plicity and considered simple scenarios where users receive bit streams correctly.

In practice, data transmitted through networks suffer from bit errors and packet

losses, especially for wireless networks. For video applications, the extensive use

of predictive and variable-length coding in video compression techniques renders

the compressed bit streams especially vulnerable to transmission errors, and the

sender has to undergo a channel encoding stage to protect compressed video from

transmission errors. Therefore, it is important to investigate the error control

and error concealment mechanisms in secure fingerprint multicast, and examine

the Quality of Service (QoS) management for secure distribution of fingerprinted

copies in video streaming applications.

Finally, in digital rights management systems, traditional cryptography and

multimedia forensics are tightly connected with each other, and neither can stand
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alone. It will be fruitful to investigate the combination of multimedia forensics and

traditional cryptography, and examine the benefit of this combination in order to

complement each other. This investigation will lead to the general framework of

digital rights management for multimedia, and provide a basis for the design of

multimedia security systems.
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