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Recently, there has been much interest in modulation techniques to achieve

transmit diversity motivated by the increased capacity of multiple-input multiple-

output (MIMO) channels. To achieve transmit diversity the transmitter needs to

be equipped with more than one antenna. The antennas should be well separated

to have uncorrelated fading among the different antennas; hence, higher diversity

orders and higher coding gains are achievable. It is affordable to equip base sta-

tions with more than one antenna, but it is difficult to equip the small mobile

units with more than one antenna with uncorrelated fading. In such a case, trans-

mit diversity can only be achieved through user cooperation leading to what is

known as cooperative diversity. Cooperative diversity provides a new dimension

over which higher diversity orders can be achieved. In this thesis, we consider

the design of protocols that allow several terminals to cooperate via forwarding



each others’ data, which can increase the system reliability by achieving spatial

cooperative diversity. We consider the problem of “how to achieve and where to

exploit diversity in cooperative networks?”

We first propose a cooperation protocol for the multi-node amplify-and-forward

protocol. We derive symbol error rate (SER) and outage probability bounds for

the proposed protocol. We derive an upper-bound for the SER of any multi-node

amplify-and-forward protocol. We prove that the proposed protocol, where each

rely only forwards the source signal, will achieve the SER upper-bound if the relays

are close to the source node. Then, we consider the problem of power allocation

among the source and relay nodes based on the derived SER and outage probability

bounds to further enhance the system performance.

We consider the design of distributed space-time and distributed space-frequency

codes in wireless relay networks is considered for different schemes, which vary in

the processing performed at the relay nodes. We consider the problem of whether a

space-time code that achieves full diversity and maximum coding gain over MIMO

channels will achieve the same if used in a distributed fashion. Then, we consider

the design of diagonal distributed space-time code (DDSTC) which relaxes the

stringent synchronization requirement by allowing only one relay to transmit at

any time slot. Then, we consider designing distributed space-frequency codes for

the case of multipath fading relay channels that can exploit the multipath as well

as the cooperative diversity of the channel.

Then, we consider studying systems that exhibit diversity of three forms: source

coding diversity (when using a dual description encoder), channel coding diversity,

and user-cooperation diversity. We derive expressions for the distortion exponent

of several source-channel diversity achieving schemes. We analyze the tradeoff



between the diversity gain (number of relays) to the quality of the source encoder

and find the optimum number of relays to help the source. Then, we consider

comparing source coding diversity versus channel coding diversity.

Finally, we will consider the use of relay nodes in sensor networks. We will

consider the use of relay nodes instead of some of the sensor nodes that are

less-informative to the fusion center to relay the information for the other more-

informative sensor nodes. Allowing some relay nodes to forward the measurements

of the more-informative sensors will increase the reliability of these measurements

at the expense of sending fewer measurements to the fusion center. This will create

a tradeoff between the number of measurements sent to the fusion center and the

reliability of the more-informative measurements.
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Chapter 1

Introduction

The advent of future wireless multimedia services, requiring high signal quality and

high data rate, has increased the attention toward the study of wireless channels.

The wireless resources such as bandwidth and energy are scarce and it is difficult to

meet the high data rate requirement unless some efficient techniques are employed.

Also, the wireless channels have a lot of impairments such as fading, shadowing,

and multiuser interference which can highly degrade the system performance. This

has increased the thrill toward the study of wireless channels to overcome their

impairments.

1.1 Wireless Fading Channels

One of the major challenges for communicating over wireless channels is the fading

nature of that channels. Fading means the random fluctuations in the amplitude

and phase of the received signal and is due to the effect of the reflections of the

transmitted signal [1, 2]. As shown in Fig. 1.1, the received signal will be a

superposition of reflected versions of the transmitted signal. If the transmitted

1



Figure 1.1: The wireless fading channel.

signal is x(t) then the received signal y(t) can be given by

y(t) =
L∑

l=1

hl(t)x(t− τl) + n(t), (1.1)

where hl(t) is the channel coefficient for the l-th path at time t, L is the number of

paths, τl is the delay of the l-th path and n(t) is the receiver additive noise. The

delay spread of the channel is defined as the time difference between the maximum

and minimum delays of the channel paths, i.e., ∆τ = maxl τl−minl τl where ∆τ is

the channel delay spread. According to the value of the delay spread of the channel

as compared to the transmitted symbol duration the channel can be either flat

(frequency nonselective) fading channel or multipath (frequency selective) fading

channel.

1.1.1 Flat-Fading Wireless Channels

If the delay spread of the channel is small compared to the symbol duration of the

transmitted signal the channel is known to be flat (frequency nonselective) fading

2



channel. In this case the channel can be represented by a single parameter that

multiplies the transmitted signal. In this case, the received signal can be given by

y(t) = h(t)x(t− τl) + n(t), (1.2)

where h(t) is the channel coefficient.

1.1.2 Multipath Fading Wireless Channels

If the channel delay spread is larger than the symbol duration the channel can be

represented by a linear filter with more than one non-zero tap. This will result

in inter-symbol interference (ISI). In this case, the different frequency components

of the transmitted signal will experience different fading values; therefore, the

channel in this case is known as frequency selective fading channel. In this case, an

equalizer is needed at the receiver side to remove the effect of ISI. Also, there exists

some transmission schemes, such as orthogonal frequency-division multiplexing

(OFDM), that can simplify the equalization at the receiver side.

Although the multipath fading channel causes ISI, which is undesirable phe-

nomenon, however the multipath nature of the channel can be used to enhance the

system performance. If we are able to resolve the different paths of the received

signal we will have more than one copy of the transmitted signal and this can be

considered as some form of achieving Diversity.

1.2 Diversity Schemes

One solution to the fading nature of the wireless channels is the use of diversity

achieving schemes. Diversity means to provide the destination node with more

than one copy of the transmitted data so if one or more copy is highly degraded

3



due to severe fading then the destination will be still able to decode the source

signal using the other received copies. Diversity in the wireless system can be

achieved through time diversity, frequency diversity, spatial diversity, etc. Time

diversity can be achieved through the transmission of the same signal at different

time slots; these time slots should be well separated to ensure that the channel

coefficients at these slots are uncorrelated. This will cause a loss in the system data

rate as well as an increase in the transmission delay. Frequency diversity can be

achieved through the transmission of the same data on different frequency bands.

In this case, there will a bandwidth loss due to the transmission of the same data

on different frequency bands. Spatial diversity can be achieved through the use of

multiple transmit and/or multiple receive antennas. Spatial diversity has proved

to be an eminent candidate for achieving the signal quality and high data rate

promised by the future multimedia services since it does not increase the overhead

in the system in terms of the bandwidth or delay.

The diversity of any scheme is measured through the diversity order D of the

system and is defined as

D = lim
SNR→∞

− log SER

log SNR
, (1.3)

where SER is the scheme symbol error rate (SER) and SNR is the system signal-

to-noise ratio (SNR). The diversity order D measures the rate of decay of the

system SER as a function of the SNR as the SNR tends to infinity.

1.2.1 Multiple-Input Multiple-Output (MIMO) Channels

The seminal works [3] and [4] revealed the increased capacity of the wireless chan-

nels by employing Multiple-Input Multiple-Output (MIMO) channels. The MIMO

channels are constructed through the use of multiple transmit and/or multiple re-

4



Figure 1.2: Multiple-Input Multiple-Output Channels.

ceive antennas as shown in Fig. 1.2. For the case of having M transmit antennas

and N receive antennas, and assuming that the fading coefficients between the dif-

ferent antennas are Rayleigh distributed and uncorrelated, space-time codes can

be designed such that the SER behaves as c · SNR−MN at high SNRs for some

constant c [5, 6]. In this case the maximum diversity order of the system is given

by the product M ×N .

1.2.2 Cooperative Diversity

In wireless applications, it is affordable to have multiple antennas at the base

station but it is difficult to equip the small mobile units with more than one antenna

due to space constraints of the mobile units1. Hence, the use of multiple antennas

at the mobile units is limited. This gave rise to what is known as cooperative

diversity in which several nodes try to form a virtual multiple element transmit

antenna. Cooperative diversity can be achieved through relay nodes helping the

source by forwarding its information.

The classical relay channel model based on additive white Gaussian noise

(AWGN) channels was presented in [7]. In this paper, the authors considered

1If the antennas are located close to each other, the channel fades may have some correlation

which reduces the achievable diversity and/or coding gain.
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Figure 1.3: The single-relay channel.

calculation of the capacity of the single-relay channels. In this work, an upper-

bound on the capacity based the cut-set upper bound has been provided. Also,

achievable rates based on some schemes, which under certain conditions achieve

the cut-set bound, have been provided. Recent results regarding the capacity of

the multi-node relay channels can be found in [8].

Lately, the study of cooperative diversity achieving techniques has gained a

lot of interest. The techniques of cooperative diversity have been introduced, for

example, by Sendonaris in the context of Code-Division Multiple Access (CDMA)

systems [9], [10]. In [11], different protocols were proposed to achieve spatial

diversity through node cooperation and outage analyses for these protocols have

been provided. Among those protocols are the decode-and-forward (DAF) and

amplify-and-forward (AAF) protocols.

In the decode-and-forward protocol with one relay node shown in Fig. 1.3 the

relay node decodes the source symbol before re-transmitting to the destination.

In order to achieve a diversity of order two for the single-relay DAF protocol, the

relay should be able to decide whether or not it has decoded correctly. This can be

achieved through the use of error detecting codes or the use of appropriate SNR

threshold at the relay node [12]. If the relay always forwards the source signal the

system will achieve a diversity of order limited by errors at the relay node(s) and

this is known as error propagation [13]. Symbol error rate performance analyses

6



for the single-node and multi-node decode-and-forward cooperation protocols were

provided in [12,14].

In the amplify-and-forward protocol with one relay node, the relay amplifies the

received signal before retransmission to the destination. The amplify-and-forward

protocol does not suffer from the error propagation problem because the relays do

not perform any hard-decision operation on the received signal; however, in the

AAF protocol noise accumulates with the desired signal along the transmission

path.

The problem with the multi-node decode-and-forward protocol and the multi-

node amplify-and-forward protocol is the loss in the data rate as the number of

relay nodes increases. The use of orthogonal subchannels for the relay nodes trans-

missions, either through Time-Division Multiple Access (TDMA) or Frequency-

Division Multiple Access (FDMA), results in a high loss of the system spectral

efficiency. This leads to the use of what is known as distributed space-time coding,

where relay nodes are allowed to simultaneously transmit over the same channel

by emulating a space-time code. The term distributed comes from the fact that the

virtual multi-antenna transmitter is distributed between randomly located relay

nodes. It was proposed in [15] to use relay nodes to form a virtual multi-antenna

transmitter to achieve diversity through the use of distributed space-time codes.

In addition, an outage analysis was presented for the system. Several works have

considered the application of the existing space-time codes in a distributed fashion

for the wireless relay network [16–19].
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Figure 1.4: The interaction between the different blocks of a general cooperative

system.

1.3 Dissertation Outline

In this thesis, we propose to develop and analyze efficient cooperation protocols

over the wireless relay channels. Figure 1.4 shows the blocks of a general coopera-

tive communication system. We try to answer the questions of how to achieve and

where to exploit diversity in cooperative networks.

For the case of multimedia communication, where the most important perfor-

mance measure is the end-to-end distortion, we study whether the source encoder

resolution or the channel encoder redundancy is more important. We develop a

general framework for the tradeoff between the source and channel encoders over

relay channels. This framework will be used for optimal rate allocation between

the source and channel encoders to minimize the end-to-end distortion as well as

for selecting the optimal number of relay nodes for cooperation.

For data communication, where SER is the performance measure, we no more

have the notion of source encoder. We consider achieving diversity through node

cooperation. We develop and analyze efficient cooperation protocols based on the

use of distributed space-time and space-frequency codes.
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1.3.1 Multi-Node Amplify-and-Forward Cooperative Com-

munications (Chapter 2)

In Chapter 2, we investigate the performance of the multi-node amplify-and-

forward relay network protocol. We provide a symbol error rate (SER) bound

for the multi-node amplify-and-forward protocol in Rayleigh fading channels in

which each relay node only amplifies the source signal. The obtained SER bound is

shown to be tight at high SNR. We prove that the multi-node amplify-and-forward

protocol achieves a diversity of order N + 1 for N relay nodes helping the source.

We then provide an analysis for a hypothetical system that represents an SER

upper-bound for any multi-node amplify-and-forward protocol SER performance.

We also prove that multi-node amplify-and-forward protocol, with each relay only

amplifying the source signal, approximately achieves this SER upper-bound if the

relay nodes are close to the source. Then, we provide outage probability analy-

sis for the multi-node amplify-and-forward protocol. Based on the derived SER

and outage probability bounds for the multi-node amplify-and-forward protocol,

optimal power allocation is provided.

1.3.2 Distributed Space-Time and Space-Frequency Cod-

ings (Chapter 3)

In Chapter 3, the design of distributed space-time codes for wireless relay networks

is considered. Distributed space-time coding (DSTC) can be achieved through

node cooperation to emulate multiple antennas transmitter. First, the decode-

and-forward protocol, in which each relay node decodes the symbols received from

the source node before retransmission, is considered. A space-time code designed
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to achieve full diversity and maximum coding gain over multiple-input multiple-

output (MIMO) channels is proved to achieve full diversity but not necessarily

maximizing the coding gain if used with the decode-and-forward protocol. Next,

the amplify-and-forward protocol is considered; each relay node can only perform

simple operations such as linear transformation of the received signal and then

amplify the signal before retransmission. A space-time code designed to achieve full

diversity and maximum coding gain over MIMO channels is proved to achieve full

diversity and maximum coding gain if used with the amplify-and-forward protocol.

Next, the design of DSTC that can mitigate the relay nodes synchronization er-

rors is considered. Most of the previous works on cooperative transmission assume

perfect synchronization between the relay nodes, which means that the relays’

timings, carrier frequencies, and propagation delays are identical. Perfect synchro-

nization is difficult to achieve among randomly located relay nodes. To simplify the

synchronization in the network, a diagonal structure is imposed on the space-time

code used. The diagonal structure of the code bypasses the perfect synchronization

problem by allowing only one relay node to transmit at any time slot. Hence, it is

not necessary to synchronize simultaneous “in-phase” transmissions of randomly

located relay nodes, which greatly simplifies the synchronization among the relay

nodes. The code design criterion for distributed space-time codes based on the

diagonal structure is derived. The work shows that the code design criterion is to

maximize the minimum product distance.

Next, we consider the problem of the design of distributed space-frequency

codes. Designing diversity achieving schemes over the wireless broadband fading

relay channels is crucial to achieve higher diversity gains. These gains are achieved

by exploiting the multipath (frequency) and cooperative diversities to combat the
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fading nature of wireless channels. The challenge is how to design space-frequency

codes, distributed among randomly located nodes that can exploit the frequency

diversity of the wireless broadband channels. In this Chapter, the design of dis-

tributed space-frequency codes (DSFCs) for wireless relay networks is considered.

The proposed DSFCs are designed to achieve the frequency and cooperative diver-

sities of the wireless relay channels. The use of DSFCs with the decode-and-forward

(DAF) and amplify-and-forward (AAF) protocols is considered. The code design

criteria to achieve full diversity, based on the pairwise error probability (PEP) anal-

ysis, are derived. For DSFC with the DAF protocol, a two-stage coding scheme,

with source node coding and relay nodes coding, is proposed. We derive suffi-

cient conditions for the proposed code structures at the source and relay nodes to

achieve full diversity of order NL, where N is the number of relay nodes and L is

the number of paths per channel. For the case of DSFC with the AAF protocol, a

structure for distributed space-frequency coding is proposed.

1.3.3 Source-Channel Diversity for Multi-Hop and Relay

Channels (Chapter 4)

A key challenge in the design of real-time wireless multimedia systems is the pres-

ence of fading coupled with strict delay constraints. A very effective answer to this

problem is the use of diversity achieving techniques. Chapter 4 focuses on study-

ing systems that exhibit diversity of three forms: source coding diversity, chan-

nel coding diversity, and user-cooperation diversity (implemented through either

relay channels or multi-hop channels, each with amplify-and-forward or decode-

and-forward user cooperation). Consistent with the focus on real-time multimedia

communications, performance is measured through the distortion exponent, which
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measures the rate of decay of the end-to-end distortion at high signal-to-noise ratio

(SNR). The results show that for both relay and multi-hop channels, channel cod-

ing diversity provides the best performance, followed by source coding diversity.

The results also show a tradeoff between the quality (resolution) of the source en-

coder and the amount of cooperation, in that, as the bandwidth expansion factor

increases (higher bandwidth) user cooperation diversity is the main limiting factor,

not the source encoding distortion. Thus, the distortion exponent is improved by

increasing the number of relays (increasing the diversity order). At low bandwidth

expansion factor the source average end-to-end distortion is limited by the source

encoder distortion and, in this case, using higher resolution source encoder will im-

prove the performance, in terms of the distortion exponent, more than increasing

the number of relay nodes.

1.3.4 Distributed Detection in Wireless Networks: A Sen-

sor or a Relay? (Chapter 5)

In this Chapter, the problem of deploying relay nodes in sensor networks will

be considered. A system consisting of a set of sensor nodes communicating to a

fusion center, where decisions are made, is considered. As some sensor nodes pro-

vide “less-informative” measurements to the fusion center, assigning the system

resources allocated for these sensors to relay nodes to forward the measurements

of the other “more-informative” sensor nodes is considered. This introduces a new

tradeoff in the system design between the number of measurements sent to the

fusion center and the reliability of the more-informative measurements, which is

enhanced by deploying more relay nodes in the network. We will analyze the per-

formance of two protocols. In Protocol I, each sensor node directly transmits its
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measurement to the fusion center. In Protocol II, instead of having each sensor di-

rectly transmitting its measurement, relay nodes will be used instead of some of the

less-informative sensor nodes to forward the measurements of the more-informative

sensor nodes. Hence, in Protocol II, the reliability of the more-informative mea-

surements is enhanced at the expense of having fewer measurements sent to the

fusion center and this creates the tradeoff between the number of measurements

available at the fusion center and the reliability of the measurements. We an-

alyze the performance of the two protocols over additive white Gaussian noise

(AWGN) and Rayleigh flat-fading channels. Based on the analysis, the regions

where the performance of one protocol is superior to the other are characterized.

Also, asymptotic comparison results when the communication noise variance or the

measurement noise variance tends to zero are provided. The results show that in

some cases it is better to allocate some of the system resources to relay nodes, not

to sensor nodes, to increase the reliability of the more-informative measurements

and this leads to a better overall detection performance at the fusion center.
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Chapter 2

Multi-Node Amplify-and-Forward

Cooperative Communications

In the amplify-and-forward protocol with one relay node, the relay normalizes

the received signal and then amplifies it before re-transmission. The amplify-and-

forward protocol does not suffer from the error propagation problem because the

relays do not perform any hard-decision operation to the received signal but noise

accumulates with the desired signal along the transmission.

In this Chapter, the symbol error rate (SER) expressions for the multi-node

amplify-and-forward protocol are derived. The SER analyses for the single-relay

amplify-and-forward and decode-and-forward protocols can be found in [14] and for

the multi-node decode-and-forward protocol can be found in [12]. The approach we

adopt in this Chapter is based on deriving the exact moment generating function

(MGF) of the scaled harmonic mean of two exponential random variables1. These

exact MGF expressions can be used to get exact expressions for the SER.

1The harmonic mean of two numbers X1 and X2 is 2X1X2
X1+X2

.
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Also, an outage probability analysis of the multi-node amplify-and-forward

protocol with N relay nodes helping the source is presented. In [11], the outage

probability of the single relay amplify-and-forward network was obtained based

on the limiting behavior of the cumulative distribution function (CDF) of certain

combinations of exponential random variables. The case of a single relay amplify-

and-forward protocol in [11] can be considered as a special case of our analysis

with N = 1.

2.1 System Models

In this section, we introduce the multi-node source-only and the maximum ratio

combiner (MRC) based amplify-and-forward system models.

2.1.1 Source-Only Amplify-and-Forward System Model

The multi-node source-only amplify-and-forward system model is shown in Fig.

2.1. A cooperative strategy with two phases is considered. In phase 1, the source

transmits its information to the destination, and due to the broadcast nature of the

wireless channels the neighbor nodes receive the information. In phase 2, N users

help the source by amplifying the source signal. In both phases the users transmit

their information through orthogonal channels (through TDMA or FDMA). Perfect

synchronization is assumed among the cooperating nodes.

In phase 1, the source broadcasts its information to the destination and N relay

nodes. The received signals ys,d and ys,ri
at the destination and the i-th relay can

be written, respectively, as

ys,d =
√

Pshs,dx + ηs,d, (2.1)
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Figure 2.1: Multi-node amplify-and-forward system model.

ys,ri
=

√
Pshs,ri

x + ηs,ri
, i = 1, 2, ..., N, (2.2)

where Ps is the transmitted source power, x is the transmitted source symbol

with E{||x||2} = 1 where E{·} denotes the expectation operator, ηs,d and ηs,ri

denote the additive white Gaussian noise (AWGN) at the destination and the i-th

relay, respectively, and hs,d and hs,ri
are the channel coefficients from the source to

destination and the i-th relay node, respectively. Each relay amplifies the received

signal from the source and re-transmits it to the destination. The received signal

at the destination node in phase 2 due to the i-th relay transmission is given by

yri,d =

√
Pi√

Ps|hs,ri
|2 + N0

hri,dys,ri
+ ηri,d, (2.3)

where Pi is the i-th relay node power, hri,d is the channel coefficient from the i-th

relay node to the destination, and ηri,d is the destination AWGN. The channel

coefficients hs,d, hs,ri
, and hri,d are modeled as zero-mean circularly symmetric

complex Gaussian random variables with variances δ2
s,d, δ2

s,ri
, and δ2

ri,d
, respectively,

i.e., a Rayleigh flat-fading channel model is considered. The channel coefficients are

assumed to be available at the receiving nodes but not at the transmitting nodes.

The noise terms are modeled as zero-mean complex Gaussian random variables

with variance N0/2 per dimension. Jointly combining the signals received from
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the source in phase 1 and that from the relays in phase 2, the destination detects

the transmitted symbols by the use of MRC detector [20].

2.1.2 MRC-Based Amplify-and-Forward System Model

In this subsection, we introduce the multi-node MRC-based amplify-and-forward

system model. For simplicity of presentation, we will consider a system with two

relay nodes which can be easily extended to the N relay nodes case. This system

has three phases as follows. In phase 1, the source transmits its information to the

destination and the two relay nodes. In phase 2, the first relay helps the source

by amplifying and forwarding the received source signal in phase 1. In phase 3,

the second relay applies an MRC to the two received signals from the previous

two phases and sends to the destination an amplified version of the MRC output.

Therefore, for the case of having N relay nodes helping the source we will have

N + 1 phases. Each relay applies an MRC to the received signals from the source

and all of the previous relays. MRC has the advantage of maximizing the signal-

to-noise ratio (SNR) at the output of the detector under the condition that the

noise terms at the input of the MRC are uncorrelated [20].

The system model for the MRC-based AAF protocol can be formulated as

follows. In phase 1, the source broadcasts its information to the destination and

all of the relay nodes. The received signals ys,d and ys,ri
for i = 1, 2 are as given in

(2.1) and (2.2), respectively. In phase 2, the received data at the destination due

to the first relay node transmission is given as in (2.3). The received data at the

second relay node due to the first relay node transmission is given by

yr1,r2 =

√
P1√

Ps|hs,r1|2 + N0

hr1,r2ys,r1 + ηr1,r2 , (2.4)

where the inter-relay channel coefficient hr1,r2 is modeled as zero-mean circularly
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symmetric complex Gaussian random variable with variance δ2
r1,r2

. The receiver

noise ηr1,r2 is modeled as zero-mean complex Gaussian random variables with vari-

ance N0/2 per dimension.

In phase 3, the second relay node applies MRC to the received signals from

phases 1 and 2. With the assumption of channel knowledge at the second relay

node, the output of the MRC can be written as

ỹ = α̃sys,r2 + α̃1yr1,r2 , (2.5)

where α̃s =
√

Psh
∗
s,r2

/N0 and

α̃1 =

√
PsP1

Ps|hs,r1 |2+N0
h∗s,r1

h∗r1,r2(
P1|hr1,r2 |2

Ps|hs,r1 |2+N0
+ 1

)
N0

.

Then, the received signal at the destination in phase 3 is given by

yr2,d =
√

P2hr2,d
ỹ√

K2 + K
+ ηr2,d, (2.6)

where

K =

PsP1

Ps|hs,r1 |2+N0
|hs,r1|2|hr1,r2|2(

P1|hr1,r2 |2
Ps|hs,r1 |2+N0

+ 1
)

N0

+
Ps|hs,r2|2

N0

. (2.7)

Then the destination node applies an MRC-detector to the received signals from

the different phases.

2.2 SER Performance Analysis

In this section, we derive a closed-form symbol error rate (SER) bound for the

source-only amplify-and-forward cooperation protocol with M -PSK and square

M -QAM signals. We also consider two scenarios for the MRC-based protocol to

gain some insights into the performance of the MRC-based protocol.
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2.2.1 Source-Only Amplify-and-Forward Protocol

With the knowledge of the channel state information, the output of the MRC

detector can be written as

y = αsys,d +
N∑

i=1

αiyri,d, (2.8)

where αs =
√

Psh
∗
s,d/N0 and

αi =

√
PsPi

Ps|hs,ri |2+N0
h∗s,ri

h∗ri,d(
Pi|hri,d|2

Ps|hs,ri |2+N0
+ 1

)
N0

.

With our assumption of having source symbol x with unit average energy then the

SNR at the MRC-detector output is

γ = γs +
N∑

i=1

γi (2.9)

where γs = Ps|hs,d|2/N0, and

γi =
1

N0

PsPi|hs,ri
|2|hri,d|2

Ps|hs,ri
|2 + Pi|hri,d|2 + N0

. (2.10)

It has been shown in [21] that the instantaneous SNR γi can be tightly upper-

bounded as

γ̃i =
1

N0

PsPi|hs,ri
|2|hri,d|2

Ps|hs,ri
|2 + Pi|hri,d|2

, (2.11)

which is a scaled harmonic mean of Ps|hs,ri
|2/N0 and Pi|hri,d|2/N0.

If M -PSK modulation is used in the system with the instantaneous SNR γ in

(2.9) then the conditional SER given the channel state information (CSI) can be

given as [22]

PCSI
PSK = ΨPSK (γ)

=
1

π

∫ (M−1)π/M

0

exp

(
−bPSKγ

sin2 θ

)
dθ,

(2.12)
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where bPSK = sin2 (π/M).

If M -QAM (M = 2k with k even) constellation is used in the system, the

conditional SER is given by

PCSI
QAM = ΨQAM (γ) , (2.13)

where

ΨQAM (γ) = 4RQ
(√

bQAMγ
)
− 4R2Q2

(√
bQAMγ

)
, (2.14)

in which R = 1 − 1√
M

, bQAM = 3/ (M − 1), and Q (u) = 1√
2π

∫∞
u

exp
(
− t2

2

)
dt is

the Gaussian Q-function.

Averaging over the Rayleigh fading channel coefficients, the SER of the M -PSK

signals and M -QAM signals can be given, respectively, by

PPSK ≈ 1

π

∫ (M−1)π/M

0

Mγs

(
bPSK

sin2 θ

) N∏
i=1

Mγ̃i

(
bPSK

sin2 θ

)
dθ, (2.15)

and

PQAM ≈4R

π

∫ π/2

0

Mγs

(
bQAM

2 sin2 θ

) N∏
i=1

Mγ̃i

(
bQAM

2 sin2 θ

)
dθ

− 4R2

π

∫ π/4

0

Mγs

(
bQAM

2 sin2 θ

) N∏
i=1

Mγ̃i

(
bQAM

2 sin2 θ

)
dθ,

(2.16)

where MZ (s) denotes the moment generating function (MGF)2 of the random

variable Z.

We used the SNR approximation of γ̃i in (2.11) to get the expressions in (2.15)

and (2.16). To get the expression in (2.16), two special properties of the Gaussian

2The moment generating function (MGF) of a random variable Z is given by

MZ (s) =
∫ ∞

−∞
exp (−sz) pZ (z) dz, (2.17)

where pZ (z) is the probability density function (pdf) of the random variable Z.
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Q-function as Q (u) = 1
π

∫ π/2

0
exp

(
− u2

2 sin2 θ

)
dθ and Q2 (u) = 1

π

∫ π/4

0
exp

(
− u2

2 sin2 θ

)
dθ

for u ≥ 0 were used [22].

The MGF of γs, which is an exponential random variable, can be simply given

by

Mγs =
1

1 +
sPsδ2

s,d

N0

. (2.18)

The problem is how to get the MGF of γ̃i. It has been investigated in [21] by apply-

ing Laplace transform, in which a solution was given by using the hypergeometric

functions. These expressions are hard to be used for analysis and for optimal power

allocation. An alternative approach was proposed in [14] from which a closed-form

expression for the MGF of γ̃i can be obtained as follows.

Let X1 and X2 be two independent exponential random variables with param-

eters β1 and β2, respectively, and Z = X1X2

X1+X2
is a scaled harmonic mean of X1 and

X2. Then, the MGF of Z is

MZ (s) =
(β1 − β2)

2 + (β1 + β2) s

∆2
+

2β1β2s

∆3
ln

(β1 + β2 + s + ∆)2

4β1β2

, (2.19)

where

∆ =

√
(β1 − β2)

2 + 2 (β1 + β2) s + s2.

With β1 = N0/Psδ
2
s,ri

and β2 = N0/Piδ
2
ri,d

, the MGF of γ̃i is given by (2.19). At

high enough SNR, the MGF can be further simplified to [14]

MZ (s) ≈ β1 + β2

s
. (2.20)

Substituting in (2.15) and (2.16), we can get the following result.

At high enough SNR, the SER of the source-only multi-node amplify-and-

forward cooperative protocol with N relay nodes employing M -PSK or M -QAM
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signals can be approximated as

PSER ≈ C (N) NN+1
0

bN+1
.

1

Psδ2
s,d

N∏
i=1

Psδ
2
s,ri

+ Piδ
2
ri,d

PsPiδ2
s,ri

δ2
ri,d

, (2.21)

where in case of M -PSK signals, b = bPSK and

C (N) =
1

π

∫ (M−1)π/M

0

sin2(N+1) θdθ, (2.22)

while in case of M -QAM signals, b = bQAM/2 and

C (N) =
4R

π

∫ π/2

0

sin2(N+1) θdθ − 4R2

π

∫ π/4

0

sin2(N+1) θdθ. (2.23)

Theorem 1 The diversity order of source-only amplify-and-forward scheme with

N relay nodes helping the source is N + 1.

Proof To calculate the diversity order of the scheme, let P denote the total

power and let Ps = asP and Pi = aiP, i = 1, ..., N where as +
∑N

i=1 ai = 1, as >

0, ai > 0, i = 1, ..., N . Define the SNR as SNR = P/N0. The diversity order of

the protocol is defined as dAF = limSNR→∞− log PSER

log SNR
= N + 1 in our source-only

multi-node amplify-and-forward protocol with N relay nodes helping the source.

2.2.2 MRC-based Amplify-and-Forward Protocol

In this subsection, we try to gain some insights into the performance of the MRC-

based amplify-and-forward protocol. For the simple example of two relay nodes

network and with the knowledge of the channel state information, the output of

the MRC-detector at the destination node can be written as

y = αsys,d + α1yr1,d + α2yr2,d, (2.24)

where αs, α1 are the same as the source-only amplify-and-forward protocol and α2

is given by

α2 =

√
P2h

∗
r2,d

K√
K2+K

P2|hr2,d|2 K
K2+K

+ N0

,
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where K is as defined in (2.7).

The SER analysis of this protocol is very complicated and intractable. Al-

though this protocol is thought of to give better performance than the source-only

amplify-and-forward protocol, it does not. The reason behind this is that the

system suffers from the noise propagation problem [13]. For the simple example

of two relays network, the noise terms at the destination in phases 2 and 3 con-

tain a contribution from the noise generated at the first relay, ηs,r1 , in phase 1.

So the noise components in the received signals during the several phases are no

more uncorrelated and the MRC-detector is no more optimal. This noise propaga-

tion problem causes a degradation in the SER performance of the protocol. The

problem is more severe for increased number of relays because we will have more

correlated noise components that will propagate to the destination. The optimum

receiver in this case is to apply a pre-whitening filtering to the received signals

and then apply the MRC-detector. Of course the analysis of the system will be-

come more complicated if we consider the noise propagation problem. Although

the source-only amplify-and-forward protocol is less complex than the MRC-based

amplify-and-forward protocol, we will show that it can give approximately the

same, if not better, SER performance. This is because the benefit that we get

from applying MRC at each relay node in the MRC-based protocol is diminished

by the correlated noise propagation problem as will be described later. To see

the effect of the noise propagation on the MRC-based protocol, we consider two

extreme scenarios for the two relays network and compare the performances of the

two protocols under these two scenarios.

1. |hr1,d| = 0: In this case, we do not have the noise propagation problem

because the noise term ηs,r1 will be received only once in phase 3. In this
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case the SNR at the destination of the MRC-based protocol can be written

as

SNRMRC ' Ps|hs,d|2
N0

+
K

P2|hr2,d|2
N0

K +
P2|hr2,d|2

N0

, (2.25)

Similarly, the SNR at the destination of the source-only based protocol can

be written as

SNRsource−only ' Ps|hs,d|2
N0

+

Ps|hs,r2 |2
N0

.
P2|hr2,d|2

N0

Ps|hs,r2 |2
N0

+
P2|hr2,d|2

N0

. (2.26)

Clearly, SNRMRC > SNRsource−only because K >
Ps|hs,r2 |2

N0
. Intuitively, be-

cause we do not have noise propagation in this case, it is better for relay 2 to

combine the signals it received from both the source and relay 1 using MRC

to maximize the SNR at its output instead of using only the source signal.

Under this scenario the MRC-based protocol is better than the source-only

protocol because it results in a higher SNR at the destination.

2. |hr1,d| >>, |hr2,d| >>, |hr1,r2| >> and |hs,r2| = 0: In this case, the relay-

destination links can be approximated to be noise free. The output of the

destination detector in the MRC-based protocol can be written as

yMRC '
(

Ps|hs,d|2
N0

+ 2
Ps|hs,r1|2

N0

)
x +

√
Psh

∗
s,d

N0

ηs,d + 2

√
Psh

∗
s,r1

N0

ηs,r1 , (2.27)

because the signal at the first relay in phase 1 is transmitted twice in phases

2 and 3. The output of the destination detector in the source-only based

protocol can be written as

ysource−only '
(

Ps|hs,d|2
N0

+
Ps|hs,r1|2

N0

)
x +

√
Psh

∗
s,d

N0

ηs,d +

√
Psh

∗
s,r1

N0

ηs,r1 .

(2.28)
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Clearly, we have

SNRsource−only ' Ps|hs,d|2
N0

+
Ps|hs,r1|2

N0

> SNRMRC '

(
Ps|hs,d|2

N0
+ 2

Ps|hs,r1 |2
N0

)2

Ps|hs,d|2
N0

+ 4
Ps|hs,r1 |2

N0

.

(2.29)

In this case, the source-only based protocol achieves better performance than

the MRC-based protocol. This is because the MRC-based protocol combines

the same signal twice (signals received in phases 2 and 3). Thus in this case,

the noise propagation problem is highly severe and causes a high degradation

in the system SER performance.

The above two scenarios give some insights about how the system performance

is affected by the different channel coefficients. From the above two scenarios,

intuition suggests that the source-only based protocol will give better performance

than the MRC-based protocol if the relays become closer to the destination, be-

cause scenarios similar to the second scenario will dominate (occurs with higher

probability). In the simulation section, we will simulate a system in which the re-

lays are close to the destination and we will see that the source-only based protocol

is always better than the MRC-based protocol, which proves our claim here.

2.2.3 SER Upper-Bound

In this section, we derive an SER upper-bound for any amplify-and-forward strat-

egy. We will prove that this bound is achieved by the source-only amplify-and-

forward protocol if the relays are close to the source. That is the source-only

amplify-and-forward protocol will achieve the best performance that any amplify-

and-forward protocol can achieve if the relay nodes are very close to the source.

The best system that one can think of is a system in which the relay nodes from
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2 to N , after power normalization, send the source symbol x. So the relay nodes

from 2 to N will appear as source nodes. This does not apply to the first relay

because it has only one copy of the transmitted data that is received from the

source node so for any protocol it can not do better than what it does in the

source-only amplify-and-forward protocol. But the relays from 2 to N may have

more than one received signal that they could combine or do some processing to

reduce the noise in the amplified transmitted signal. Of course this system is hy-

pothetical and no system can achieve this noise suppression at the output of the

relay nodes. But the SER performance of this system can be thought of as an SER

upper-bound. In what follows we perform an SER performance analysis of this

hypothetical system and prove that the source-only amplify-and-forward protocol

will achieve this bound if the relays are close to the source. We assume that the

relays from 2 to N transmit the source symbol x. With the knowledge of the

channel state information, the of the MRC-detector can be written as

y = αsys,d + α1yr1,d +
N∑

i=2

αiyri,d, (2.30)

where αs =
√

Psh
∗
s,d/N0,

α1 =

√
PsP1

Ps|hs,r1 |2+N0
h∗s,r1

h∗r1,d(
P1|hr1,d|2

Ps|hs,r1 |2+N0
+ 1

)
N0

,

and αi =
√

Pih
∗
ri,d

/N0 for i = 2, · · · , N .

The SNR at the MRC-detector output is

γ = γs + γ1 +
N∑

i=2

γi, (2.31)

where γs = Ps|hs,d|2/N0,

γ1 =
1

N0

PsP1|hs,r1|2|hr1,d|2
Ps|hs,r1|2 + P1|hr1,d|2 + N0

, (2.32)
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and γi = Pi|hri,d|2/N0, i = 2, · · · , N . Following the analysis in Section 2.2.1, we

can write the SER bound at high enough SNR of that system as

PSER ≈ C (N) NN+1
0

bN+1
.

1

Psδ2
s,d

.
Psδ

2
s,r1

+ P1δ
2
r1,d

PsP1δ2
s,r1

δ2
r1,d

N∏
i=2

1

Piδ2
ri,d

, (2.33)

where in case of M -PSK signals, b = bPSK and C (N) is the same as in (2.22).

While in case of M -QAM signals, b = bQAM/2 and C (N) is the same as in (2.23).

In the expression of (2.33), it is clear that the relays from 2 to N appear as sources

with the term 1
Piδ2

ri,d
. For the source-only amplify-and-forward protocol, each relay

has a contribution in the SER by the term
Psδ2

s,ri
+Piδ

2
ri,d

PsPiδ2
s,ri

δ2
ri,d

. If the relays are close to

the source then
Psδ

2
s,ri

+ Piδ
2
ri,d

PsPiδ2
s,ri

δ2
ri,d

δ2
s,ri

↑−→ 1

Piδ2
ri,d

.

Intuitively, in the source-only amplify-and-forward protocol, the SNR of each

source-relay-destination link is a scaled harmonic mean of the source-relay and

relay-destination links SNR. If the relays are close to the source, the performance

will be limited by the relay-destination link and the source-relay-destination link

SNR is approximately that of the relay-destination link. So, in this case the relay

nodes appear to be sources and they tend to transmit, after power normalization,

the source symbols.

2.3 Source-Only Amplify-and-Forward Outage Prob-

ability Analysis

In this section, we provide the outage probability analysis of the source-only multi-

node amplify-and-forward protocol.
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2.4 Multi-node Amplify-and-Forward Relay Net-

work Mutual Information

In this section, the source-only multi-node amplify-and-forward system model will

be presented again but in a slightly different way to enable the calculation of

the mutual information. In phase 1, the source broadcasts its information to the

destination and N relay nodes. The received signals are the same as in (2.1) and

(2.2). Each relay amplifies the received signal from the source and re-transmits to

the destination. The received signal at the destination in phase 2 due to the i-th

relay transmission is given by

yri,d = hri,dβiys,ri
+ ηri,d, (2.34)

and βi satisfies the power constraint, that is [11]

βi ≤
√

Pi

Ps|hs,ri
|2 + N0

, (2.35)

where all the channel coefficients and noise components are modeled as in Section

2.1.

Define the (N + 1) × 1 received data vector y = [ys,d, yr1,d, ..., yrN ,d]
T . To cal-

culate the mutual information expression, a simple trick is applied. We start by

applying MRC to y. The output of the MRC is given by

r = αsys,d +
N∑

i=1

αiyri,d, (2.36)

where now αs =
√

Psh
∗
s,d/N0 and

αi =

√
Psβih

∗
ri,d

h∗s,ri

(β2
i |hri,d|2 + 1) N0

.
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We can write r in terms of x as

r =

(
Ps|hs,d|2

N0

+
N∑

i=1

Psβ
2
i |hri,d|2|hs,ri

|2
(β2

i |hri,d|2 + 1) N0

)
x

+

√
Psh

∗
s,d

N0

ηs,d +
N∑

i=1

√
Psβih

∗
ri,d

h∗s,ri

(β2
i |hri,d|2 + 1) N0

(ηri,d + hri,dβiηs,ri
) .

(2.37)

The SNR at the MRC output is

SNRMRC = γs +
N∑

i=1

γi (2.38)

where γs = Ps|hs,d|2/N0, and

γi =
Psβ

2
i |hri,d|2|hs,ri

|2
(β2

i |hri,d|2 + 1) N0

. (2.39)

The probability density function (pdf) of y given x and the channel coefficients

represents an exponential family of distributions [23]. Then, it can be easily shown

that r, given the channel coefficients, is a sufficient statistics for x, that is

py/x,r (y/x, r) = py/r (y/r) , (2.40)

where py/x,r (y/x, r) is the pdf of y given x and r, and py/r (y/r) is the pdf of y

given r. Since r is a sufficient statistics for x, then the mutual information between

x and y equals the mutual information between x and r [24], that is

I (x; r) = I (x;y) . (2.41)

Then, the average mutual information satisfies

IAF ≤ I (x; r) ≤ log

(
1 +

Ps|hs,d|2
N0

+
N∑

i=1

Psβ
2
i |hri,d|2|hs,ri

|2
(β2

i |hri,d|2 + 1) N0

)
, (2.42)

with equality for x zero-mean, circularly symmetric complex Gaussian random

variable [3]. It is clear that (2.42) is increasing in βi’s, so to maximize the mutual

information the constraint in (2.35) should be satisfied with equality yielding

IAF = log

(
1 + |hs,d|2SNRs,d +

N∑
i=1

f
(|hs,ri

|2SNRs,ri
, |hri,d|2SNRri,d

)
)

, (2.43)
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where SNRs,d = SNRs,ri
= Ps/N0, i = 1, · · · , N and SNRri,d = Pi/N0, i =

1, · · · , N and

f (v, u) =
uv

u + v + 1
.

2.5 Outage Analysis of the Source-Only Multi-

node Amplify-and-Forward Relay Network

In this subsection, the outage probability analysis of the source-only multi-node

amplify-and-forward relay network of N relay nodes helping the source is provided.

The outage probability for spectral efficiency R is defined as

P out
AF (R) = Pr

{
1

N + 1
IAF < R

}
, (2.44)

and the 1/ (N + 1) factor comes from the fact that the relays help the source

through N uses of orthogonal channels. Defining the vector p = [Ps, P1, P2, ..., PN ]T ,

equation (2.44) can be rewritten as

P out
AF (p, R) = Pr

{(
Ps

N0

|hs,d|2 +
N∑

i=1

f

(
Ps

N0

|hs,ri
|2, Pi

N0

|hri,d|2
))

<
(
2(N+1)R − 1

)
}

.

(2.45)

At high SNR we can neglect the 1 term in the denominator of the f (., .) function

[21]. We can now write the outage probability as

P out
AF (p, R) ' Pr

{(
Ps

N0

|hs,d|2 +
N∑

i=1

Ps

N0
|hs,ri

|2 Pi

N0
|hri,d|2

Ps

N0
|hs,ri

|2 + Pi

N0
|hri,d|2

)
<

(
2(N+1)R − 1

)
}

.(2.46)

Define the random variables w1 = Ps

N0
|hs,d|2 and wi+1 =

Ps
N0
|hs,ri |2

Pi
N0
|hri,d|2

Ps
N0
|hs,ri |2+

Pi
N0
|hri,d|2

, i =

1, · · · , N . The outage probability can now be given as

P out
AF (p, R) ' Pr

{
N+1∑
j=1

wj <
(
2(N+1)R − 1

)
}

. (2.47)
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The random variable w1 is an exponential r.v. with rate λ1 = N0

Psδ2
s,d

. To

calculate the outage probability in (2.47), it is quite challenging to follow the

approach in [11]. We consider an alternative approach based on approximating

the scaled harmonic mean of two exponential random variables to be exponential

random variable.

Each of the wj’s for j = 2, · · · , N + 1 is a scaled harmonic mean of two ex-

ponential random variables. The cumulative density function (CDF) for wj, j =

2, ..., N + 1 is given by [21]

Pwj
(w) = Pr {wj < w} = 1− 2w

√
ζj1ζj2e

−w(ζj1+ζj2)K1

(
2w

√
ζj1ζj2

)
, (2.48)

where ζj1 = N0

Psδ2
s,rj−1

, ζj2 = N0

Pj−1δ2
s,rj−1

and K1 (.) is the first order modified Bessel

function of the second kind defined in [25]. The function K1 (.) can be approxi-

mated as K1 (x) ' 1
x

for small x [25], from which we can approximate the CDF of

wj at high SNR as

Pwj
(w) = Pr {wj < w} ' 1− e−w(ζj1+ζj2), (2.49)

which is the CDF of an exponential random variable of rate λj = N0

Psδ2
s,rj−1

+

N0

Pj−1δ2
rj−1,d

. Defining the random variable W =
∑N+1

j=1 wj, the CDF of W , assuming

the λi’s to be distinct, can be proved to be given by

Pr {W ≤ w} '
N+1∑

k=1

(
N+1∏

m=1,m6=k

λm

λm − λk

)
(
1− e−λkw

)
. (2.50)

The outage probability can be expressed in terms of the CDF of W as

P out
AF (p, R) ' Pr

{
W ≤ (

2(N+1)R − 1
)}

. (2.51)

The CDF of W can now be written as

Pr {W ≤ w} =
N+1∑

k=1

(
N+1∏

m=1,m6=k

λm

λm − λk

)(
N+1∑
n=1

(−1)n+1 λn
k

wn

n!

)
+ H.O.T., (2.52)
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where H.O.T. stands for the higher order terms. Rearranging the terms in (2.52)

we get

Pr {W ≤ w} =
N+1∑
n=1

(
N+1∑

k=1

(
N+1∏

m=1,m6=k

λm

λm − λk

)
λn

k

)
(−1)n+1 wn

n!
+ H.O.T. (2.53)

To prove that the system achieves a diversity of order N + 1 we need to have

the coefficients of wn’s to be zeros for n = 1, · · · , N . This requirement can be

reformulated in a matrix form as



λ1 . . . λN+1

λ2
1 . . . λ2

N+1

...
...

...

λN+1
1 . . . λN+1

N+1




︸ ︷︷ ︸
V




∏N+1
m=2

λm

λm−λ1

∏N+1
m=1,m6=2

λm

λm−λ2

...

∏N
m=1

λm

λm−λN+1




︸ ︷︷ ︸
q

=




0

0

...

c1




. (2.54)

To prove (2.54) consider the following system of equations

Va = [0, 0, · · · , 1]T︸ ︷︷ ︸
c

, (2.55)

where c1 is some non-zero constant, and prove that q = c1a. Noting that the

columns of the V matrix are scaled versions of the columns of a Vandermonde

matrix, i.e., it is a nonsingular matrix, the solution for the system of equations in

(2.55) can be found as

a = V−1c =
1

det (V)
adj (V) c. (2.56)

The determinant of a Vandermonde matrix is given by [26]

det




1 1 . . . 1

λ1 λ2 . . . λN+1

...
...

...
...

λN
1 λN

2 . . . λN
N+1




=
N+1∏

k=1

N+1∏

m>k

(λm − λk) , (2.57)
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from which we can express the determinant of the V matrix as

det (V) =

(
N+1∏
j=1

λj

)
N+1∏

k=1

N+1∏

m>k

(λm − λk) . (2.58)

Due to the structure of the c vector, we are only interested in the last column of

the adj (V) matrix. The i-th element of the a vector can be obtained as

ai =
(−1)N+i−1

(∏N+1
j=1,j 6=i λj

) ∏N+1
k=1,k 6=i

∏N+1
m>k,m6=i (λm − λk)(∏N+1

j=1 λj

) ∏N+1
k=1

∏N+1
m>k (λm − λk)

=
(−1)N

λi

N+1∏

j=1,j 6=i

1

(λj − λi)
.

(2.59)

From (2.59), it is clear that q = c1a where

c1 = (−1)N
N+1∏
i=1

λi. (2.60)

The outage probability can now be expressed as

P out
AF (p, R) 'Pr

{
W <

(
2(N+1)R − 1

)}

=
1

(N + 1)!

(
N+1∏
i=1

λi

)
(
2(N+1)R − 1

)N+1
+ H.O.T.

(2.61)

Substituting for the λi’s we get

P out
AF (p, R) ∼ 1

(N + 1)!
.

1

Psδ2
s,d

.

N∏
i=1

Psδ
2
s,ri

+ Piδ
2
ri,d

PsPiδ2
s,ri

δ2
ri,d

(
2(N+1)R − 1

)N+1
NN+1

0 . (2.62)

For the special case of single relay node (N = 1) and let SNR = Ps/N0 = P1/N0,

we get

P out
AF (SNR, R) ∼ 1

2
.

1

δ2
s,d

.
δ2
s,r1

+ δ2
r1,d

δ2
s,r1

δ2
r1,d

(
22R − 1

SNR

)2

, (2.63)

which is consistent with the result obtained in [11] for that simple case of single-

relay amplify-and-forward protocol.

From the expression in (2.62), let P be the total power and let Ps = asP and

Pi = aiP where as +
∑N

i=1 ai = 1, as > 0, ai > 0, i = 1, ..., N . Define the SNR as

33



SNR = P/N0, the diversity order of the system, based on the outage probability,

is defined as dout
AF = limSNR→∞− log P out

AF (SNR,R)

log SNR
= N + 1. So the system achieves a

diversity of order N + 1, in terms of outage probability, for N relay nodes helping

the source [27].

2.6 Optimal Power Allocation

The optimal power allocation is based on minimizing the outage probability bound

in (2.62) under a total power constraint. Removing the fixed terms from the outage

probability bound, our optimization problem can be written as

popt = min
p

1

PN+1
s

N∏
i=1

Psδ
2
s,ri

+ Piδ
2
ri,d

Pi

, (2.64)

subject to Ps +
∑N

i=1 Pi ≤ P, Pi ≥ 0 ∀i,

where p is as defined in the previous section and P is the maximum allowable total

power for one symbol transmission.

It can be easily shown that the cost function in (2.64) is convex in p over the

convex feasible set defined by the linear power constraints. The Lagrangian of this

optimization problem can be written as

L =
1

PN+1
s

N∏
i=1

Psδ
2
s,ri

+ Piδ
2
ri,d

Pi

+ λ̃

(
Ps +

N∑
i=1

Pi − P

)
+

N∑
i=1

µi (0− Pi) , (2.65)

where the µi’s serve as the slack variables. To minimize the outage probability

bound, it is clear that we must have Pi > 0 ∀i. The complementary slackness

imply that since Pi > 0 then µi = 0 ∀i. Knowing that the log function is a

monotone function and defining the (N + 1) × 1 vector a = [as, a1, ..., aN ], where

as = Ps/P and ai = Pi/P i = 1, · · · , N , the Lagrangian of the optimization
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problem in (2.64) can now be given as

f = − log as +
N∑

i=1

log

(
1

ai

δ2
s,ri

+
1

as

δ2
ri,d

)
+ λ

(
aT1N+1 − 1

)
, (2.66)

where 1N+1 is an all 1 (N + 1) × 1 vector. Applying first order optimality condi-

tions, aopt must satisfy

∂f

∂as

=
∂f

∂ai

= 0, i = 1, · · · , N, (2.67)

from which we get

1

as

[
1 +

N∑
j=1

δ2
rj ,d

δ2
rj ,d + as

aj
δ2
s,rj

]
=

1

ai

[
δ2
s,ri

δ2
s,ri

+ ai

as
δ2
ri,d

]
. (2.68)

Since as > 0 and aj > 0, then we can easily show that as > ai i.e., Ps > Pi ∀i. This

is due to the fact that the source power appears in all the SNR terms in (2.62)

either through the source-destination direct link or through the scaled harmonic

mean of the source-relay and relay-destination links.

Using (2.67) we have

1

aj

[
δ2
s,rj

δ2
s,rj

+
aj

as
δ2
rj ,d

]
=

1

ai

[
δ2
s,ri

δ2
s,ri

+ ai

as
δ2
ri,d

]
, ∀i, j. (2.69)

Define ci = ai

as
= Pi

Ps
, i = 1, · · · , N and using (2.68), we get

δ2
ri,d

δ2
s,ri

c2
i + ci − c = 0, i = 1, · · · , N, (2.70)

for some constant c. From (2.69), the constant c should satisfy the following

equation

f (c) = c− 1

1 +
∑N

j=1

δ2
rj ,d

δ2
rj ,d+ 1

cj(c)
δ2
s,rj

= 0. (2.71)

Since Pi < Ps, ∀i, then ci < 1, ∀i. Hence, using (2.70), we have c ∈
(

0, 1 + mini

δ2
ri,d

δ2
s,ri

)
.

So we have reduced the (N + 1)-dimensional problem to a single-dimension search
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over the parameter c which can be done using a simple numerical search or any

other standard method such as the Newton’s method.

Convexity of both the cost function and the feasible set in (2.64) imply global

optimality of the solution of (2.71) over the desired feasible set. It is worth noting

that minimizing the outage probability bound derived in this Chapter will also

result in minimizing the SER bound in (2.21).

Table 2.1 gives numerical results for the optimal power allocation for one and

two relays helping the source. From the results in Table 2.1, it is clear that equal

power allocation is not optimal. As the relays get closer to the source the equal

power allocation scheme tends to be optimal. If the relays are close to the destina-

tion optimal power allocation can result in a significant performance improvement,

in terms of SER, compared to the conventional equal power allocation scheme as

will be seen in the simulation section.

Table 2.1: Optimal power allocation for one and two relays (δ2
s,d = 1 in all cases).

δ2
s,ri

= 10,δ2
ri,d

= 1 δ2
s,ri

= 1,δ2
ri,d

= 10

relays close to the source relays close to the destination

one relay Ps/P = 0.5393 Ps/P = 0.8333

P1/P = 0.4607 P1/P = 0.1667

two relays Ps/P = 0.3830 Ps/P = 0.75

P1/P = P2/P = 0.3085 P1/P = P2/P = 0.125

2.7 Simulation Results

In this section, we present extensive simulations to prove the theoretical analysis

presented in the previous sections. We will compare the performance of the differ-
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Figure 2.2: SER performance for BPSK signals, δ2
s,d = 1, δ2

s,ri
= 1, δ2

ri,d
= 1, δ2

ri,rl
=

1, and equal power allocation.

ent amplify-and-forward strategies. In all simulations, unless otherwise stated, we

assume equal power assignment between the source and the relay nodes. Fig. 2.2

shows the performance for binary phase shift keying (BPSK) signals (M = 2) for

the case of having two relay nodes and three relay nodes helping the source. In Fig.

2.2 all the channels variances are equal to 1 (including the inter-relay channels).

From that figure it is clear that the MRC based protocol, although more complex,

does not give any performance improvement over the source-only amplify-and-

forward protocol even if we used pre-whitening before applying the destination

MRC detector. This is due to the correlated noise propagation problem discussed

before which causes a degradation in the system performance.

Next, we simulate BPSK for relay nodes that are close to the source. Relay

node close to the source means that the source-relay channel variance is high.
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Figure 2.3: SER performance for BPSK signals with relays close to the source,

δ2
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= 10, δ2

ri,d
= 1, δ2

ri,rl
= 10, and equal power allocation.

Fig. 2.3 shows that case of relay nodes close to the source. The channel variance

between the source and any relay is taken to be δ2
s,ri

= 10 ∀i and each inter-relay

channel has a variance of 10. From that figure it is clear that the bound in (2.21)

is tight at high SNR. Again there is no improvement in the performance by using

the MRC-based protocol. Furthermore, in the case of relays close to the source,

the system achieves the SER upper-bound given in (2.33). So in this case the

source-only amplify-and-forward protocol achieves the best you can get from any

amplify-and-forward protocol and there is approximately no gain in going to a

more complex combining techniques.

Fig. 2.4 shows the performance for quadrature phase shift keying (QPSK)

signals (M = 4) for the case of having two relay nodes and three relay nodes

helping the source. In Fig. 2.4, all the channels variances are equal to 1 (including
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Figure 2.4: SER performance for QPSK signals,δ2
s,d = 1, δ2

s,ri
= 1, δ2

ri,d
= 1, δ2

ri,rl
=

1, and equal power allocation.

the inter-relay channels). Again we have the same observations clarified before of

no gain in using MRC-based amplify-and-forward protocol.

Then, we simulate QPSK for relay nodes that are close to the source. Fig. 2.5

shows that case of relay nodes close to the source. The channel variance between

the source and any relay is taken to be δ2
s,ri

= 10 ∀i and each inter-relay channel

has a variance of 10. From that figure it is clear that the bound in (2.21) is tight at

high SNR. Again there is no performance gain by using the MRC-based protocol.

Furthermore, in this case of relays close to the source, the protocol achieves the

SER upper-bound given in (2.33).

Fig. 2.6 shows the performance for 16-QAM signals (M = 16) for the case of

having two relay nodes and three relay nodes helping the source. In Fig. 2.6, all

the channels variances are equal to 1 (including the inter-relay channels). Again we
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have the same observations of having approximately no gain in using MRC-based

amplify-and-forward protocol.

Then, we simulate 16-QAM for relay nodes that are close to the source. Fig.

2.7 shows the case of having relay nodes close to the source. The channel variance

between the source and any relay is taken to be δ2
s,ri

= 10 ∀i and each inter-relay

channel has a variance of 10. From that figure it is clear that the bound in (2.21)

is tight at high SNR. Again there is no significant performance gains by using

the MRC-based protocol. Similarly, in this case of relays close to the source the

protocol achieves the SER upper-bound given in (2.33).

Next, to illustrate the severity of the correlated noise propagation problem when

the relays become close to the destination, we simulate QPSK for two and three

relay nodes. Fig. 2.8 shows that case of relay nodes close to the destination. The
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channel variance between any relay and the destination is taken to be δ2
ri,d

= 10 ∀i
and each inter-relay channel has a variance of 10. From this figure it is clear that the

source-only based protocol gives a better SER performance than the MRC-based

protocol. This is because of the correlated noise propagation problem becomes

more severe as claimed in Section 2.2.2.

Fig. 2.9 shows the outage probability for one, two and three relay nodes helping

the source versus SNRnorm defined as [28]

SNRnorm =
SNR

2R − 1
, (2.72)

which is the SNR normalized by the minimum SNR required to achieve spectral

efficiency R for complex additive white Gaussian noise (AWGN) channel. In the

simulations, we used R = 1 (small R regime). For the single relay case all the

channel variances are taken to be 1. For the case of two relay nodes all the channel
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Figure 2.9: Outage probability for one, two and three nodes source-only amplify-

and-forward relay network.

variances are taken to be 1 except for the channel between the source and the

second relay for which the channel variance is taken to be δ2
s,r2

= 10, which means

that the second relay is close to the source. For the case of three relay nodes all

the channel variances are taken to be 1 except for the channel between the source

and the second relay for which the channel variance is taken to be δ2
s,r2

= 10 and

the channel between the source and the third relay for which the channel variance

is taken to be δ2
s,r3

= 5. From Fig. 2.9 it is clear that the bound in (2.62) is tight

at high SNR and that the source-only amplify-and-forward protocol achieves full

diversity of order N + 1 in terms of outage probability.

Next we illustrate the gains of using our optimal power allocation scheme as

compared to the equal power allocation scheme. Fig. 2.10 shows a comparison

between the equal power and optimal power allocation schemes for relays close to

43



0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P/N
0
 (dB)

S
E

R

SER for QPSK (relays are close to the destination)

1 relay, equal power P
s
/P=0.5.

1 relay, optimal power P
s
/P=0.8333

2 relays, equal power P
s
/P=0.3333

2 relays, optimal power P
s
/P=0.75

Figure 2.10: Comparison of the SER for QPSK modulation using equal power

allocation and the optimal power allocation for relays close to the destination.

the destination (δ2
s,r1

= δ2
s,r2

= 1, δ2
r1,d = δ2

r2,d = 10 and δ2
s,d = 1). From Fig. 2.10

we can see that, using the optimal power allocation scheme, we can get about 1

dB improvement for the single relay case and about 2 dB improvement for the two

relays case over the equal power assignment scheme.
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Chapter 3

Distributed Space-Time and

Space-Frequency Codings

The main problem with the multi-node decode-and-forward (DAF) protocol and

the multi-node amplify-and-forward (AAF) protocol, presented in Chapter 2, is the

loss in the data rate as the number of relay nodes increases. The use of orthogonal

subchannels for the relay node transmissions, either through TDMA or FDMA, re-

sults in a high loss of the system spectral efficiency. This leads to the use of what is

known as distributed space-time coding (DSTC) and distributed space-frequency

coding (DSFC), where relay nodes are allowed to simultaneously transmit over

the same channel by emulating a space-time or a space-frequency code. The term

distributed comes from the fact that the virtual multi-antenna transmitter is dis-

tributed between randomly located relay nodes. Employing DSTCs or DSFCs

reduces the data rate loss due to relay nodes transmissions without sacrificing the

system diversity order as will be seen in this Chapter [29–34].
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3.1 Distributed Space-Time Coding (DSTC)

Several works have considered the application of the existing space-time codes in a

distributed fashion for the wireless relay network [16–19]. All of these works have

considered a two-hop relay network where a direct link between the source and

the destination nodes does not exist. In [16], space-time block codes were used in

a completely distributed fashion. Each relay node transmits a randomly selected

column from the space-time code matrix. This system achieves a diversity of order

one, as the signal-to-noise (SNR) tends to infinity, limited by the probability of

having all of the relay nodes selecting to transmit the same column of the space-

time code matrix. In [17], distributed space-time coding based on the Alamouti

scheme and amplify-and-forward cooperation protocol was analyzed. An expres-

sion for the average symbol error rate (SER) was derived. In [18], a performance

analysis of the gain of using cooperation among nodes was considered assuming

that the number of relays available for cooperation is a Poisson random variable.

The authors compared the performance of different distributed space-time codes

designed for the MIMO channels under this assumption. In [19], the performance

the linear dispersion (LD) space-time codes of [35] was analyzed when used for

distributed space-time coding in wireless relay networks. These works did not

account for the code design criteria for the space-time codes when employed in

a distributed fashion. In this section, we answer the question of whether or not

a space-time code, which achieves full diversity and maximum coding gain over

MIMO channels, can also achieve full diversity and maximum coding gain if used

in a distributed fashion.

In this section, the design of distributed space-time codes for wireless relay

networks is considered. A two-hop relay network model depicted in Fig. 3.1,
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Figure 3.1: Simplified system model for the two-hop distributed space-time codes.

where the system lacks a direct link from the source to destination node, is con-

sidered. Distributed space-time (space-frequency) coding can be achieved through

node cooperation to emulate multiple antennas transmitter. First, the decode-

and-forward protocol, in which each relay node decodes the symbols received from

the source node before retransmission, is considered. A space-time code designed

to achieve full diversity and maximum coding gain over multiple-input multiple-

output (MIMO) channels is shown to achieve full diversity but not necessarily

maximizing the coding gain if used with the decode-and-forward protocol. Next,

the amplify-and-forward protocol is considered; each relay node can only perform

simple operations such as linear transformation of the received signal and then am-

plify the signal before retransmission. A space-time code designed to achieve full

diversity and maximum coding gain over MIMO channels is shown to achieve full

diversity and maximum coding gain if used with the amplify-and-forward protocol.

Next, the design of DSTC that can mitigate the relay nodes synchronization er-

rors is considered. Most of the works on cooperative transmission assume perfect
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synchronization between the relay nodes, which means that the relays’ timings,

carrier frequencies, and propagation delays are identical. Perfect synchronization

is difficult to achieve among randomly located relay nodes. To simplify the syn-

chronization in the network, a diagonal structure is imposed on the space-time

code used. The diagonal structure of the code bypasses the perfect synchroniza-

tion problem by allowing only one relay to transmit at any time slot (assuming

TDMA). Hence, it is not necessary to synchronize simultaneous in-phase transmis-

sions of randomly located relay nodes, which greatly simplifies the synchronization

among the relay nodes.

3.1.1 DSTC with the Decode-and-Forward Protocol

In this section, the system model for DSTC with decode-and-forward cooperation

protocol is presented, and a system performance analysis is provided. The notation

x ∼ CN (m,C) is used to denote that the random vector x is a circularly symmetric

complex Gaussian random vector with mean m and covariance matrix C.

DSTC with the Decode-and-Forward Protocol System Model

The source node is assumed to have n relay nodes assigned for cooperation. The

system has two phases given as follows. In phase 1, the source transmits data to

the relay nodes with power P1. The received signal at the k-th relay is modeled as

ys,rk
=

√
P1hs,rk

s + vs,rk
, k = 1, 2, · · · , n, (3.1)

where s is an L × 1 transmitted data vector with a power constraint ||s||2F ≤ L,

where || · ||2F denotes the Frobenius norm1 and hs,rk
∼ CN (0, δ2

s,rk
) denotes the

1The Frobenius norm of the m × n matrix A is defined as ||A||2F =
∑m

i=1

∑n
j=1 |A(i, j)|2 =

TR(AAH) = TR(AHA), where TR(·) is the trace of a matrix and AH is the Hermitian transpose
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channel gain between the source node and the k-th relay node. The channel gains

from the source node to the relay nodes are assumed to be independent. All

channel gains are fixed during the transmission of one data packet and can vary

from one packet to another, i.e., a block flat-fading channel model is assumed. In

(3.1), vs,ri
∼ CN (0, NoIn) denotes additive white Gaussian noise (AWGN), where

In denotes the n× n identity matrix.

The n relay nodes try to decode the received signals from the source node. Each

relay node is assumed to be capable of deciding whether or not it has decoded

correctly. If a relay node decodes correctly, it will forward the source data in

the second phase of the cooperation protocol; otherwise, it remains idle. This

can be achieved through the use of cyclic redundancy check (CRC) codes [36].

Alternatively, this performance can be approached by setting a SNR threshold at

the relay nodes, and the relay will only forward the source data if the received SNR

is larger than that threshold [12]. For the analysis in this section, the relay nodes

are assumed to be synchronized either by a centralized or a distributed algorithm.

In phase 2, the relay nodes that have decoded correctly re-encode the data

vector s with a pre-assigned code structure. In the subsequent development no

specific code design will be assumed, instead a generic space-time (ST) code struc-

ture is considered. The ST code is distributed among the relays such that each

relay will emulate a single antenna in a multiple-antenna transmitter. Hence, each

relay will generate a column in the corresponding ST code matrix. Let Xr denote

the K × n space-time code matrix with K ≥ n. Column k of Xr represents the

code transmitted from the k-th relay node. The signal received at the destination

of A.
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is given by

yd =
√

P2XrDIhd + vd, (3.2)

where

hd = [hr1,d, hr2,d, · · · , hrn,d]
T

is an n × 1 channel gains vector from the n relays to the destination, hrk,d ∼
CN (0, δ2

rk,d), and P2 is the relay node power where equal power allocation among

the relay nodes is assumed. The channel gains from the relay nodes to the desti-

nation node are assumed to be statistically independent as the relays are spatially

separated. The K×1 vector vd ∼ CN (0, NoIK) denotes AWGN at the destination

node. The matrix DI is the state matrix, which will be defined later.

The state of the k-th relay, i.e., whether it has decoded correctly or not, is

denoted by the random variable Ik (1 ≤ k ≤ n), which takes values 1 or 0 if the

relay decodes correctly or erroneously, respectively. Let

I = [I1, I2, · · · , In]T

denote the state vector of the relay nodes and nI denote the number of relay nodes

that have decoded correctly corresponding to a certain realization I. The random

variables Ik’s are statistically independent as the state of each relay depends only

on its channel conditions to the source node, which are independent from other

relays. The matrix

DI = diag (() I1, I2, · · · , In)

in (3.2) is defined as the state matrix of the relay nodes. An energy constraint is

imposed on the generated ST code such that ||Xr||2F ≤ L, and this guarantees that

the transmitted power per source symbol is less than or equal to P1 + P2.
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DSTC with the Decode-and-Forward Protocol Performance Analysis

In this section, the pairwise error probability (PEP) performance analysis for the

cooperation scheme described in Section 3.1.1 is provided. The diversity and coding

gain achieved by the protocol are then analyzed.

The random variable Ik can be easily seen to be a Bernoulli random variable.

Therefore, the probability distribution of Ik is given by

Ik =





0 with probability = 1− (1− SERk)
L

1 with probability = (1− SERk)
L,

(3.3)

where SERk is the un-coded SER at the k-th relay node and is modulation de-

pendent. For M -ary quadrature amplitude modulation (M -QAM, M = 2p with p

even), the exact expression can be shown to be upper-bounded by [37]

SERk ≤ 2Nog

bP1δ2
s,rk

, (3.4)

where b = 3/(M − 1) and g = 4R
π

∫ π/2

0
sin2 θdθ − 4R2

π

∫ π/4

0
sin2 θdθ, in which R =

1− 1√
M

.

The destination is assumed to have perfect channel state information (CSI) as

well as the relay nodes state vector. The destination applies a maximum likelihood

(ML) receiver, which will be a minimum distance rule. The conditional pairwise

error probability (PEP) is given by

Pr (X1 → X2|I, hd) =

Pr
(
‖yd −

√
P2X1DIhd‖2

F > ‖yd −
√

P2X2DIhd‖2
F |I, hd, X1was transmitted

)
,

(3.5)

where X1 and X2 are two possible transmitted codewords. The conditional PEP

can be expressed as quadratic form of a complex Gaussian random vector as

Pr (X1 → X2|I, hd) = Pr (q < 0|I, hd) , (3.6)
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where

q =

[
wH

1 wH
2

]



In 0

0 −In







w1

w2


 ,

w1 =
√

P2 (X1 −X2)DIhd +vd, w2 = vd. The random vectors hd and I are mutu-

ally independent as they arise from independent processes. First, the conditional

PEP was averaged over the channel realizations hd. By defining the signal matrix

CI = (X1 −X2)DIdiag (() δ2
r1,d, δ

2
r2,d, · · · , δ2

rn,d)DI (X1 −X2)
H , (3.7)

the conditional PEP in (3.6) can be tightly upper-bounded by [38]

Pr (X1 → X2|I) ≤




2∆(I)− 1

∆(I)− 1


 N

∆(I)
0

P
∆(I)
2

∏∆(I)
i=1 λI

i

, (3.8)

where ∆(I) is the number of nonzero eigenvalues of the signal matrix and λI
i ’s

are the nonzero eigenvalues of the signal matrix corresponding to the state vector

I. The non-zero eigenvalues of the signal matrix are the same as the nonzero

eigenvalues of the matrix [26]

Γ (X1,X2) = diag (δr1,d, δr2,d, · · · , δrn,d) DIΦ (X1,X2)DI diag (δr1,d, δr2,d, · · · , δrn,d) ,

where

Φ (X1,X2) = (X1 −X2)
H (X1 −X2) .

The employed space-time code is assumed to achieve full diversity and maximum

coding gain over MIMO channels, which means that the matrix Φ (X1,X2) is full

rank of order n for any pair of distinct codewords X1 and X2. Achieving maximum

coding gain means that the minimum of the products
∏n

i=1 λi, where the λi’s are

the eigenvalues of the matrix Φ (X1,X2), is maximized over all the pairs of distinct

codewords [5].
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Clearly, if the matrix Φ (X1,X2) has a rank of order n then the matrix Γ (X1,X2)

will have a rank of order nI, which is the number of relays that have decoded cor-

rectly. Equation (3.8) can now be rewritten as

Pr (X1 → X2|I) ≤




2nI − 1

nI − 1


 NnI

0

P nI
2

∏nI

i=1 λI
i

. (3.9)

Second, the conditional PEP was averaged over the relays’ state vector I. The

dependence of the expression in (3.9) on I appears through the set of nonzero

eigenvalues
{
λI

i

}nI

i=1
, which depends on the number of relays that have decoded

correctly and their realizations. The state vector I of the relay nodes determines

which columns from the ST code matrix are replaced with zeros and thus affect

the resulting eigenvalues.

The probability of having a certain realization of I is given by

Pr(I) =


 ∏

k∈CR(I)

(1− SERk)
L





 ∏

k∈ER(I)

(
1− (1− SERk)

L
)

 , (3.10)

where CR(I) is the set of relays that have decoded correctly and ER(I) is the

set of relays that have decoded erroneously corresponding to the I realization.

For simplicity of presentation symmetry is assumed between all relays, that is

δ2
s,rk

= δ2
s,r and δ2

rk,d = δ2
r,d for all k. Averaging over all realizations of the states of

the relays, gives the PEP at high SNR as

PEP = Pr(X1 → X2)

≤
n∑

k=0

(
(1− SER)L

)k (
1− (1− SER)L

)n−k
∑

I: nI=k




2k − 1

k − 1


 Nk

0

P k
2

∏k
i=1 λI

i

,

(3.11)
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where SER is now the symbol error rate at any relay node due to the symmetry

assumption.

The diversity order of a system determines the average rate with which the

error probability decays at high enough SNR. In order to compute the diversity

order of the system, the PEP in (3.11) is rewritten in terms of the SNR defined as

SNR = P/No, where P = P1+P2 is the transmitted power per source symbol. Let

P1 = αP and P2 = (1−α)P , where α ∈ (0, 1). Substituting these definitions along

with the SER expressions at the relay nodes from (3.4) into (3.11) and considering

high SNR, the PEP can be upper-bounded as

Pr(X1 → X2 ) ≤ SNR−n

n∑

k=0

(
2Lg

bαδ2
s,r

)n−k ∑

I: nI=k




2k − 1

k − 1




(1− α)k
∏k

i=1 λI
i

,

(3.12)

where at high SNR 1− (1−SER)L ≈ L ·SER and upper-bounding 1−L ·SER by

1. The diversity gain is defined as d = lim
SNR→∞

− log(PEP )
log(SNR)

. Applying this definition

to the PEP in (3.12), when the number of cooperating nodes is n, gives

dDF = lim
SNR→∞

− log(PEP )

log(SNR)
= n. (3.13)

Hence, any code that is designed to achieve full diversity over MIMO channels will

achieve full diversity in the distributed relay network if it is used in conjunction

with the decode-and-forward protocol. Some of these codes can be found in [5, 6,

35,39,40].
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If full diversity is achieved, the coding gain is

CDF =




n∑

k=0

(
2ng

bαδ2
s,r

)n−k ∑

I: nI=k




2k − 1

k − 1




(1− α)k
∏k

i=1 λI
i




− 1
n

, (3.14)

which is a term that does not depend on the SNR. To minimize the PEP bound

the coding gain of the distributed space-time code needs to be maximized. This is

different from the determinant criterion in the case of MIMO channels [5]. Hence,

a space-time code designed to achieve full diversity and maximum coding gain

over MIMO channels will achieve full diversity but not necessarily maximizing the

coding gain if used in a distributed fashion with the decode-and-forward protocol.

Intuitively, the difference is due to the fact that in the case of distributed space-time

codes with decode-and-forward protocol, not all of the relays will always transmit

their corresponding code matrix columns. The design criterion used in the case of

distributed space-time codes makes sure that the coding gain is significant over all

sets of possible relays that have decoded correctly. Although it is difficult to design

codes to maximize the coding gain as given by (3.14), this expression gives insight

on how to design good codes. The code design should take into consideration the

fact that not all of the relays will always transmit in the second phase.

3.1.2 DSTC with the Amplify-and-Forward Protocol

In this section, the distributed space-time coding based on the amplify-and-forward

protocol is introduced. In this case, the relay nodes do not perform any hard-

decision operation on the received data vectors. The system model is presented

and a performance analysis is provided.
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DSTC with the Amplify-and-Forward Protocol System Model

The system has two phases as follows. In phase 1, if n relays are assigned for

cooperation, the source transmits data to the relays with power P1 and the signal

received at the k-th relay is as modeled in (3.1) with L = n. For simplicity of

presentation, symmetry of the relay nodes is assumed, i.e., hs,rk
∼ CN (0, δ2

s,r), ∀k
and hrk,d ∼ CN (0, δ2

r,d), ∀k. In the amplify-and-forward protocol, relay nodes do

not decode the received signals. Instead, the relays can only amplify the received

signal and perform simple operations such as permutations of the received symbols

or other forms of unitary linear transformations. Let Ak denote the n × n uni-

tary transformation matrix at the k-th relay node. Each relay will normalize the

received signal by the factor
√

P2/n
P1δ2

s,r+N0
to satisfy a long term-power constraint.

It can be easily shown that this normalization will give a transmitted power per

symbol of P = P1 + P2.

The n × 1 received data vector from the relay nodes at the destination node

can be modeled as

yd =

√
P2/n

P1δ2
s,r + N0

X̃rhd + vd, (3.15)

where hd = [hr1,d, hr2,d, · · · , hrn,d]
T is an n × 1 vector channel gains from the n

relays to the destination where hri,d ∼ CN (0, δ2
r,d), X̃r is the n × n code matrix

given by

X̃r = [hs,r1A1s, hs,r2A2s, · · · , hs,rnAns] ,

and vd denotes additive white Gaussian noise. Each element of vd given the channel

coefficients has the distribution of CN
(
0, N0

(
1 + P2/n

P1δ2
s,r+No

∑n
i=1 |hri,d|2

))
, and vd

accounts for both the noise propagated from the relay nodes as well as the noise

generated at the destination. It can be easily shown that restricting the linear

transformations at the relay nodes to be unitary causes the elements of the vector
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vd, given the channel coefficients, to be mutually independent.

Now, the received vector in (3.15) can be rewritten as

yd =

√
P2P1/n

P1δ2
s,r + N0

Xrh + vd, (3.16)

where

h = [ hs,r1hr1,d, hs,r2hr2,d, · · · , hs,rnhrn,d]
T

and

Xr = [A1s,A2s, · · · ,Ans]

plays the role of the space-time codeword.

DSTC with the Amplify-and-Forward Protocol Performance Analysis

In this section, a pairwise error probability analysis is made to derive the code

design criteria. With the ML decoder, the PEP of mistaking X1 by X2 can be

upper-bounded by the following Chernoff bound

Pr(X1 → X2) ≤

E

{
exp

(
− P1P2/n

4N0

(
P1δ2

s,r + No + P2

n

∑n
i=1 |hri,d|2

)hH(X1 −X2)
H(X1 −X2)h

)}
,

(3.17)

where the expectation is over the channel coefficients. Taking the expectation in

(3.17) over the source-to-relay channel coefficients, which are complex Gaussian

random variables, gives

Pr(X1 → X2) ≤ E





det−1

[
In +

δ2
s,rP1P2/n

4N0

(
P1δ2

s,r + No + P2

n

∑n
i=1 |hri,d|2

)

(X1 −X2)
H(X1 −X2)diag (() |hr1,d|2, |hr2,d|2, · · · , |hrn,d|2)

]




,

(3.18)
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where In is the n× n identity matrix.

To evaluate the expectation in (3.18), define the matrix

M =
δ2
s,rP1P2/n

4N0

(
P1δ2

s,r + No + P2

n

∑n
i=1 |hri,d|2

)

× Φ(X1,X2)diag (() |hr1,d|2, |hr2,d|2, · · · , |hrn,d|2),

where

Φ(X1,X2) = (X1 −X2)
H(X1 −X2).

The bound in (3.18) can be written in terms of the eigenvalues of M as

Pr(X1 → X2) ≤ E

{
1∏n

i=1(1 + λMi
)

}
, (3.19)

where λMi
is the i-th eigenvalue of the matrix M. If P1 = αP and P2 = (1− α)P ,

where P is the power per symbol for some α ∈ (0, 1) and define SNR = P/N0, the

eigenvalues of M increase with the increase of the SNR. Now assuming that the

matrix M has full rank of order n the following approximations hold at high SNR

n∏
i=1

(1 + λMi
) ' 1 +

n∏
i=1

λMi

= 1 +

(
δ2
s,rP1P2/n

4N0

(
P1δ2

s,r + No + P2

n

∑n
i=1 |hri,d|2

)
)n n∏

i=1

λi

n∏
i=1

|hri,d|2

'
n∏

i=1

(
1 +

δ2
s,rP1P2/n

4N0

(
P1δ2

s,r + No + P2

n

∑n
i=1 |hri,d|2

)λi|hri,d|2
)

,

(3.20)

where λi’s are the eigenvalues of the matrix Φ(X1,X2). The determinant of a

matrix equals the product of the matrix eigenvalues and that the determinant of

the multiplication of two matrices equals the product of the individual matrices’

determinants.
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The PEP in (3.19) can now be approximated at high SNR as

Pr(X1 → X2) ≤ E





1
∏n

i=1(1 +
δ2
s,rP1P2/n

4N0(P1δ2
s,r+No+

P2
n

∑n
i=1 |hri,d|2)

λi|hri,d|2)





. (3.21)

Consider now the term h =
∑n

i=1 |hri,d|2 in (3.21), which can be reasonably approx-

imated as
∑n

i=1 |hri,d|2 ≈ nδ2
r,d, especially for large n [19] (by the strong law of large

numbers). Averaging the expression in (3.21) over the exponential distribution of

|hri,d|2 gives

Pr(X1 → X2) ≤
n∏

i=1

(
(δ2

s,rδ
2
r,dP1P2/n)λi

4N0

(
P1δ2

s,r + No + P2δ2
r,d

)
)−1

×
n∏

i=1

[
− exp

(
−4N0

(
P1δ

2
s,r + No + P2δ

2
r,d

)

(δ2
s,rδ

2
r,dP1P2/n)λi

)
Ei

(
−4N0

(
P1δ

2
s,r + No + P2δ

2
r,d

)

(δ2
s,rδ

2
r,dP1P2/n)λi

)]
,

(3.22)

where Ei(.) is the exponential integral function defined as [41]

Ei(µ) =

∫ µ

−∞

exp(t)

t
dt, µ < 0. (3.23)

The exponential integral function can be approximated as µ tends to 0 as−Ei(µ) ≈
ln

(
− 1

µ

)
, µ < 0 [41]. At high SNR (high P ) exp

(
−4N0(P1δ2

s,r+No+P2δ2
r,d)

(δ2
s,rδ2

r,dP1P2/n)λi

)
≈ 1, and

using the approximation for the Ei(.) function provides the bound in (3.22) as

Pr(X1 → X2) ≤
n∏

i=1

(
(δ2

s,rδ
2
r,dP1P2/n)λi

4N0

(
P1δ2

s,r + P2δ2
r,d

)
)−1 n∏

i=1

ln

(
(δ2

s,rδ
2
r,dP1P2/n)λi

4N0

(
P1δ2

s,r + P2δ2
r,d

)
)

.

(3.24)

Let P1 = αP and P2 = (1 − α)P , where P is the power per symbol, for some

α ∈ (0, 1). With the definition of the SNR as SNR = P/N0, the bound in (3.24)

can be given as

Pr(X1 → X2) ≤ aAF
1∏n

i=1 λi

SNR−n

n∏
i=1

(ln(SNR) + ln (Ci))

w aAF
1∏n

i=1 λi

SNR−n (ln(SNR))n ,

(3.25)
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where

Ci =
(δ2

s,rδ
2
r,dα(1− α)/n)λi

4
(
αδ2

s,r + (1− α)δ2
r,d

) , i = 1, · · · , n,

are constant terms that do not depend on the SNR and aAF is a constant that

depends on the power allocation parameter α and the variances of the channels.

The ln (Ci) terms are neglected at high SNRs resulting in the last bound in (3.25).

The diversity order of the system can be calculated as dAF = lim
SNR→∞

− log(PEP )
log(SNR)

= n.

The system will achieve a full diversity of order n if the matrix M is full rank, that

is the code matrix Φ(X1,X2) must be full rank of order n over all distinct pairs of

codewords X1 and X2. It can be easily shown, following the same approach, that

if the code matrix Φ(X1,X2) is rank deficient, then the system will not achieve

full diversity. So any code that is designed to achieve full diversity over MIMO

channels will achieve full diversity in the case of amplify-and-forward distributed

space-time coding scheme.

If full diversity is achieved, the coding gain is given as

CAF =

(
aAF

1∏n
i=1 λi

)− 1
n

.

To maximize the coding gain of the amplify-and-forward distributed space-time

codes the product
∏n

i=1 λi needs to be maximized, which is the same as the deter-

minant criterion used over MIMO channels [5]. So if a space-time code is designed

to maximize the coding gain over MIMO channels, it will also maximize the cod-

ing gain if it can be used in a distributed fashion with the amplify-and-forward

protocol.

3.1.3 Synchronization-Aware Distributed Space-Time Codes

In this section, the design of distributed space-time codes that relax the stringent

synchronization requirement is considered. Most of the work on cooperative trans-
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mission assumed perfect synchronization between the relay nodes, which means

that the relays’ timings, carrier frequencies, and propagation delays are identical.

To simplify the synchronization in the network a diagonal structure is imposed on

the space-time code used (refer to the diagonal space-time codes presented in Sec-

tion 2.1.2). Fig. 3.2 shows the time frame structure for the conventional decode

-and-forward (amplify-and-forward) distributed space-time codes and the diago-

nal distributed space-time codes (DDSTCs). The diagonal structure of the code

bypasses the perfect synchronization problem by allowing only one relay to trans-

mit at any time slot. Hence, synchronizing simultaneous in-phase transmissions of

randomly distributed relay nodes is not necessary.

This greatly simplifies the synchronization since nodes can maintain slot syn-

chronization, which means that coarse slot synchronization is available2. However,

fine synchronization is more difficult to be achieved. Guard intervals are intro-

duced to ensure that the transmissions from different relays are not overlapped.

One relay is allowed to consecutively transmit its part of the space-time code from

different data packets. This allows the overhead introduced by the guard intervals

to be neglected. Fig 3.3 shows the effect of propagation delay on the received signal

from two relays. The sampling time in Fig 3.3 is the optimum sampling time for

the first relay signal, but clearly it is not optimal for the second relay signal.

DDSTC System Model

In this subsection, the system model with n relay nodes, which helps the source

by emulating a diagonal STC, is introduced. The system has two phases with the

2For example, any synchronization scheme that is used for TDMA systems can be employed

to achieve synchronization in the network.
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Relay 1
 Relay 2
 Relay 
n
Source Node Transmission


(b)


In-phase  Transmissions of Relay Nodes
Source Node Transmission


Phase 1 Transmission


(a)


Phase 2 Transmission


Phase 1 Transmission
 Phase 2 Transmission


Figure 3.2: Time frame structure for (a) decode-and-forward (amplify-and-

forward) based system (b) DDSTC based system.

Sampling point


Signal from first relay

Signal from second relay


Figure 3.3: Baseband signals (each is raised cosine pulse-shaped) from two relays

at the receiver.
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time frame structure shown in Fig. 3.2(b). In phase 1, the received signals at the

relay nodes are modeled as in (3.1) with L = n.

In phase 2, the k-th relay applies a linear transformation tk to the received

data vector, where tk is an 1× n row vector, as

yrk
= tkys,rk

=
√

P1hs,rk
tks + tkvs,rk

=
√

P1hs,rk
xk + vrk

,

(3.26)

where xk = tks and vrk
= tkvs,rk

. If the linear transformations are restricted to

have unit norm, i.e., ||tk||2 = 1 for all k, then vrk
is CN (0, No). The relay then

multiplies yrk
by the factor

βk ≤
√

P2

P1|hs,rk
|2 (3.27)

to satisfy a power constraint of P = P1 + P2 transmitted power per source symbol

[11]. The received signal at the destination due to the k-th relay transmission is

given by

yk = hrk,dβk

√
P1hs,rk

xk + hrk,dβkvrk
+ ṽk

= hrk,dβk

√
P1hs,rk

xk + zk, k = 1, · · · , n,

(3.28)

where ṽk is modeled as CN (0, N0) and hence, zk, given the channel coefficients is

CN (0, (β2
k|hrk,d|2 + 1)N0), k = 1, · · · , n.

3.1.4 DDSTC Performance Analysis

In this subsection, the code design criterion of the DDSTC based on the PEP

analysis is derived. In the following, the power constraint in (3.27) is set to be

satisfied with equality.
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Now, we start deriving a PEP upper-bound to derive the code design criterion.

Let σ2
k denote the variance of zk in (3.28) and is given as

σ2
k =

(
P2|hrk,d|2
P1|hs,rk

|2 + 1

)
N0, k = 1, · · · , n. (3.29)

Then, define the codeword vector x from (3.26) as

x =
[
tT
1 , tT

2 , · · · , tT
n

]T

︸ ︷︷ ︸
T

s = Ts, (3.30)

where T is an n × n linear transformation matrix. From x define the n × n

code matrix X = diag (()x), which is a diagonal matrix with the elements of x

on its diagonal. Let y = [y1, y2, · · · , yn]T denote the received data vector at the

destination node as given from (3.28).

Using our system model assumptions, the pdf of y given the source data vector

s and the channel state information (CSI) is given by

p(y|s, CSI) =

(
n∏

i=1

1

πσ2
i

)
exp


−

n∑
i=1

1

σ2
i

∣∣∣∣∣yi −
√

P1P2

P1|hs,ri
|2hs,ri

hri,dxi

∣∣∣∣∣

2

 . (3.31)

From which, the maximum likelihood (ML) decoder can be expressed as

arg max
s∈S

p(y|s, CSI) = arg min
s∈S

n∑
i=1

1

σ2
i

∣∣∣∣∣yi −
√

P1P2

P1|hs,ri
|2hs,ri

hri,dxi

∣∣∣∣∣

2

, (3.32)

where S is the set of all possible transmitted source data vectors.

The PEP of mistaking X1 by X2 can be upper-bounded as [23]

Pr(X1 → X2) ≤ E {exp (λ[ln p(y|s2)− ln p(y|s1)])} , (3.33)

where X1 and X2 are the code matrices corresponding to the source data vectors

s1 and s2, respectively. Equation (3.33) applies for any λ which is a parameter
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that can be adjusted to get the tightest bound. Now, the PEP can be written as

Pr(X1 → X2) ≤ E





exp


− λ

[
n∑

i=1

1

σ2
i




√
P1P2

P1|hs,ri
|2hs,ri

hri,d(x1i − x2i)z
∗
i

+

√
P1P2

P1|hs,ri
|2h∗s,ri

h∗ri,d
(x1i − x2i)

∗zi +
P1P2

P1|hs,ri
|2 |hs,ri

|2|hri,d|2|x1i − x2i|2



]







,

(3.34)

where the expectation is over the noise and channel coefficients statistics and xij

is the j-th element of the i-th code vector.

To average the expression in (3.34) over the noise statistics, define the receiver

noise vector z = [z1, z2, · · · , zn]T , where zi’s are as defined in (3.28). The pdf of z

given the channel state information is given by

p(z|CSI) =

(
n∏

i=1

1

πσ2
i

)
exp

(
−

n∑
i=1

1

σ2
i

ziz
∗
i

)
. (3.35)

Taking the expectation in (3.34) over z given the channel coefficients yields

Pr(X1 → X2) ≤ E





exp

(
−λ(1− λ)

n∑
i=1

1

σ2
i

P1P2

P1|hs,ri
|2

(|hs,ri
|2|hri,d|2|x1i − x2i|2

)
)

∫

z

(
n∏

i=1

1

πσ2
i

)
exp

(
−

n∑
i=1

1

σ2
i

|zi + λ

√
P1P2

P1|hs,ri
|2hs,ri

hri,d(x1i − x2i)|2
)

dz





= E

{
exp

(
−λ(1− λ)

n∑
i=1

1

σ2
i

P1P2

P1|hs,ri
|2

(|hs,ri
|2|hri,d|2|x1i − x2i|2

)
)}

.

(3.36)

Choose λ = 1/2 that maximizes the term λ(1−λ), i.e., minimizes the PEP upper-
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bound. Substituting for σ2
i ’s from (3.29), the PEP can be upper-bounded as

Pr(X1 → X2) ≤ E

{
exp

(
−1

4

n∑
i=1

P1|hs,ri
|2P2|hri,d|2

(P1|hs,ri
|2 + P2|hri,d|2)N0

|x1i − x2i|2
)}

.

(3.37)

To get the expression in (3.37), let us define the variable

γi =
P1|hs,ri

|2P2|hri,d|2
(P1|hs,ri

|2 + P2|hri,d|2)N0

, i = 1, ..., n,

which is the scaled harmonic mean3 of the two exponential random variables

P1|hs,ri |2
N0

and
P2|hri,d|2

N0
. Averaging the expression in (3.37) over the channel coef-

ficients, the upper-bound on the PEP can be expressed as

Pr(X1 → X2) ≤
n∏

i=1,x1i 6=x2i

Mγi

(
1

4
|x1i − x2i|2

)
, (3.38)

where Mγi
(.) is the moment generating function (MGF) of the random variable

γi. The problem now is to get an expression for Mγi
(.). To get Mγi

(.), let y1 and

y2 be two independent exponential random variables with parameters α1 and α2,

respectively. Let y = y1y2

y1+y2
be the scaled harmonic mean of y1 and y2. Then the

MGF of y is [14]

My(s) =
(α1 − α2)

2 + (α1 + α2)s

∆2
+

2α1α2s

∆3
ln

(α1 + α2 + s + ∆)2

4α1α2

, (3.39)

where

∆ =
√

(α1 − α2)2 + 2(α1 + α2)s + s2.

Using the expression in (3.39), the MGF for γi can be approximated at high enough

SNR to be [14]

Mγi
(s) ' ζi

s
, (3.40)

3The scaling factor is 1/2 since the harmonic mean of two numbers, g1 and g2, is 2g1g2
g1+g2

.
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where

ζi =
N0

P1δ2
s,r

+
N0

P2δ2
r,d

.

The PEP can now be upper-bounded as

Pr(X1 → X2) ≤ Nn
0

(
n∏

i=1,x1i 6=x2i

(
1

P1δ2
s,r

+
1

P2δ2
r,d

))(
n∏

i=1,x1i 6=x2i

1

4
|x1i − x2i|2

)−1

.

(3.41)

Let P1 = αP and P2 = (1 − α)P , where P is the power per symbol, for some

α ∈ (0, 1) and define SNR = P/N0. The diversity order dDDSTC of the system is

dDDSTC = lim
SNR→∞

− log(PEP )

log(SNR)
= min

m6=j
rank(Xm −Xj), (3.42)

where Xm and Xj are two possible code matrices. To achieve a diversity order

of n, the matrix Xm − Xj should be of full rank for any m 6= j (that is xmi 6=
xji ∀m 6= j, ∀i = 1, · · · , n). Intuitively, if two code matrices exist for which the

rank of the matrix Xm−Xj is not n this means that they have at least one diagonal

element that is the same in both matrices. Clearly, this element can not be used

to decide between these two possible transmitted code matrices and hence, the

diversity order of the system is reduced. This criterion implies that each element

in the code matrix is unique to that matrix and any other matrix will have a

different element at that same location and this is really the source of diversity.

Furthermore, to minimize the PEP bound in (3.41) we need to maximize

min
m6=j

(
n∏

i=1

|xmi − xji|2
)1/n

, (3.43)

which is called the minimum product distance of the set of symbols s = [s1, s2, ..., sn]T

[42], [43]. A linear mapping is used to form the transmitted codeword, that is

x = Ts. (3.44)
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Several works have considered the design of the n× n transformation matrix T to

maximize the minimum product distance. It was proposed in [44] and [45] to use

both Hadamard transforms and Vandermonde matrices to design the T matrix.

The transforms based on the Vandermonde matrices were shown to give larger

minimum product distance than the Hadamard-based transforms. Some of the

best known transforms based on the Vandermonde matrices [46] are summarized.

Two classes of optimum transforms were proposed in [44]

1. If n = 2k (k ≥ 1), the optimum transform is given by

Topt =
1√
n

vander(θ1, θ2, ..., θn),

where θ1, θ2, ..., θn are the roots of the polynomial θn−j over the field Q[j] ,

{c + dj : both c and d are rational numbers} and they are determined as

θi = ej 4i−3
2n

π, i = 1, 2, ..., n.

2. If n = 3.2k (k ≥ 0), the optimum transform is given by

Topt =
1√
n

vander(θ1, θ2, ..., θn),

where θ1, θ2, ..., θn are the roots of the polynomial θn+w over the field Q[w] ,

{c + dw : both c and d are rational numbers} and they are determined as

θi = ej 6i−1
3n

π, i = 1, 2, ..., n.

The signal constellation from Z[j] such as M -QAM, M -PSK and PAM constel-

lations are of practical interest. Moreover, in [45], some non-optimal transforms

were proposed for some n’s not satisfying any of the above two cases.

3.1.5 Simulation Results for DSTCs

In this section, simulation results for the distributed space-time coding schemes

from the previous sections are presented. In the simulations, the variance of any
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source-relay or relay-destination channel is taken to be 1. The performance of the

different schemes with two relays helping the source are compared. Fig. 3.4 shows

the simulations for two decode-and-forward systems using the Alamouti scheme

(DAF Alamouti) and the diagonal STC (DAF DAST), distributed space-time codes

based on the linear dispersion (LD) space-time codes (LD-DSTC) [19] which are

based on the AAF scheme, the orthogonal distributed space-time codes (O-DSTC)

proposed in [47] and [48], and DDSTC. The O-DSTCs are based on a generalized

AAF scheme where relay nodes apply linear transformation to the received data

as well as their complex conjugate. All of these systems have a data rate of

(1/2). QPSK modulation is used, which means that a rate of one transmitted

bit per symbol (1 bit/sym) is achieved. For the decode-and-forward system the

power of the relay nodes that have decoded erroneously is not re-allocated to other

relay nodes. Clearly, decode-and-forward based systems outperform amplify-and-

forward based systems 4 but this is under the assumption that each relay node can

decide whether it has decoded correctly or not. Intuitively, the decode-and-forward

will deliver signals that are less noisy to the destination. The noise is suppressed

at the relay nodes by transmitting a noise-free version of the signal. The amplify-

and-forward delivers more noise to the destination due to noise propagation from

the relay nodes. However, the assumption of correct decision at the relay nodes

imposes practical limitations on the decode-and-forward systems, otherwise, error

propagation [11] may occur caused by errors at the relay nodes. Error propagation

would highly degrade the system bit error rate (BER) performance. Fig. 3.5 shows

the simulation results for two decode-and-forward systems using the G3 ST block

code of [6] and the diagonal STC (DAF DAST), LD-DSTC, and the DDSTC. For

4DDSTC is based on amplify-and-forward protocol.
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Figure 3.4: BER for two relays with data rate 1 bit/sym.

fair comparison the number of transmitted bits per symbol is fixed to be 1 bit/sym.

The G3 ST block code has a data rate of (1/2) [6], which results in an overall system

data rate of (1/3). Therefore, 8-PSK modulation is employed for the system that

uses the G3 ST block code. For the other three systems QPSK modulation is

used as these systems have a data rate of (1/2). For the decode-and-forward

system the power of the relay nodes that decoded erroneously is not re-allocated.

Clearly, decode-and-forward based systems outperform amplify-and-forward based

systems under the same constraints stated previously. It is noteworthy that the

performance of the LD-DSTC is not optimized since the LD matrices are randomly

selected based on the isotropic distribution on the space of n× n unitary matrices

as in [19].

In the sequel, the effect of the synchronization errors on the system BER per-

formance is investigated. Fig. 3.6 shows the case of having two relays helping the

source and propagation delay mismatches of T2 = 0.2T, 0.4T and 0.6T , where T
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Figure 3.5: BER for three relays with data rate 1 bit/sym.

is the time slot duration. Raised cosine pulse-shaped waveforms were used with

roll-off factor of 0.2 and QPSK modulation. Clearly, the BER performance of the

system highly deteriorates as the propagation delay mismatch becomes larger. Fig.

3.7 shows the case of having three relays helping the source for different propaga-

tion delay mismatches. Decode-and-forward (DAF) system using the G3 ST block

code of [6] and the DDSTC were compared. For fair comparison the number of

transmitted bits per symbol is fixed to be 1 bit/sym. Again, the G3 ST block code

has a data rate of (1/2) [6], which results in an overall system data rate to be

(1/3). Therefore, 8-PSK modulation is employed for the system that uses the G3

ST block code. For the DDSTC, QPSK modulation is used as the system has a

data rate of (1/2). Raised cosine pulse-shaped waveforms with roll-off factor of

0.2 are used. Clearly, the system performance is highly degraded as the propaga-

tion delay mismatch becomes larger. From Figures 3.6 and 3.7 it is clear that the

synchronization errors can highly deteriorate the system BER performance. The
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Figure 3.6: BER performance with propagation delay mismatch: two relays case.

DDSTC bypasses this problem by allowing only one relay transmission at any time

slot.

3.2 Distributed Space-Frequency Coding (DSFC)

In this section, we will consider the design of distributed space-frequency coding

(DSFC) for broadband multipath fading channels to exploit the frequency diver-

sity of the channel. The presence of multipaths in broadband channels provides

another means for achieving diversity across the frequency axis. Exploiting the

frequency axis diversity can highly improve the system performance by achieving

higher diversity orders. The main problem for the wireless relay network is how

to design space-frequency codes distributed among spatially separated relay nodes

while guaranteeing to achieve full diversity at the destination node. The spatial

separation of the relay nodes presents other challenges for the design of DSFCs
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Figure 3.7: BER performance with propagation delay mismatch: three relays case.

such as time synchronization and carrier offset synchronization.

In this section, we will present some structures for distributed space-frequency

codes (DSFCs) over wireless broadband relay networks. The presented DSFCs are

designed to achieve the frequency and cooperative diversities of the wireless relay

channels. The use of DSFCs with the decode-and-forward (DAF) and amplify-

and-forward (AAF) protocols is considered. The code design criteria to achieve

full diversity, based on the pairwise error probability (PEP) analysis, are derived.

For DSFC with the DAF protocol, a two-stage coding scheme, with source node

coding and relay nodes coding, is presented. We derive sufficient conditions for the

code structures at the source and relay nodes to achieve full diversity of order NL,

where N is the number of relay nodes and L is the number of paths per channel.

For the case of DSFC with the AAF protocol, a structure for distributed space-

frequency coding will be presented and sufficient conditions for that structure to
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achieve full diversity will then be derived.

3.2.1 DSFC with the DAF Protocol

In this section, the design and performance analysis for DSFCs with the DAF

protocol are presented. A two-stage structure is proposed for the DSFCs with the

DAF protocol. Sufficient conditions for the proposed code structure to achieve full

diversity are derived.

System Model

In this section, the system model for the DSFCs with the DAF protocol is pre-

sented. We use bxc to denote the largest integer that is less that x. diag(y),

where y is a T × 1 vector, is the T × T diagonal matrix with the elements of y

on its diagonal. A ⊗ B denotes the tensor product of the two matrices A and

B. ||A||2F of the m × n matrix A is the Frobenius norm of the matrix defined as

||A||2F =
∑m

i=1

∑n
j=1 |A(i, j)|2 = T R (

AAH)
= T R (

AHA
)

where T R(·) is the

trace of a matrix.

Without loss of generality, we assume a two-hop relay channel model, where

there is no direct link from the source node to the destination node. The case

when a direct link exists between the source node and the destination node will be

discussed in Section 3.2.3. A schematic system model is depicted in Fig. 3.8. The

system is based on orthogonal frequency division multiplexing (OFDM) modula-

tion with K subcarriers. The channel between the source node and the n-th relay

node is modeled as a multipath fading channel with L paths as

hs,rn(τ) =
L∑

l=1

αs,rn(l)δ(τ − τl), (3.45)
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Figure 3.8: Simplified system model for the distributed space-frequency codes.

where τl is the delay of the l-th path, δ(·) is the Dirac delta function, and αs,rn(l)

is the complex amplitude of the l-th path. The αs,rn(l)’s are modeled as zero-

mean complex Gaussian random variables with variance E [|αs,rn(l)|2] = σ2(l),

where we assume symmetry between the relay nodes for simplicity of presentation;

the analysis can be easily extended to the asymmetric case. The channels are

normalized such that the channel variance
∑L

l=1 σ2(l) = 1. A cyclic prefix is

introduced to convert the multipath frequency-selective fading channels to flat

fading subchannels on the subcarriers.

The system has two phases as follows. In phase 1, the source node broadcasts

the information to the N relays. The received signal in the frequency domain on

the k-th subcarrier at the n-th relay node is given by

ys,rn(k) =
√

P1Hs,rn(k)s(k) + ηs,rn(k), k = 1, · · · , K; n = 1, · · · , N, (3.46)

where P1 is the transmitted source node power, Hs,rn(k) is the channel attenuation

of the source node to the n-th relay node channel on the k-th subcarrier, s(k) is

the transmitted source node symbol on the k-th subcarrier with E {|s(k)|2} = 1,
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and ηs,rn(k) is the n-th relay node additive white Gaussian noise on the k-th

subcarrier that is modeled as zero-mean circularly symmetric complex Gaussian

random variable with variance N0/2 per dimension. The subcarrier noise terms

are statistically independent assuming that the time-domain noise samples are

statistically independent and identically distributed5. In (3.46), Hs,rn(k) is given

by

Hs,rn(k) =
L∑

l=1

αs,rn(l)e−j2π(k−1)∆fτl , k = 1, · · · , K, (3.47)

where ∆f = 1/T is the subcarrier frequency separation and T is the OFDM symbol

duration. We assume perfect channel state information at any receiving node but

no channel information at transmitting nodes.

In phase 2, relays that have decoded correctly in phase 1 will forward the

source node information. Each relay is assumed to be able to decide whether

it has decoded correctly or not. This can be achieved through the use of error

detecting codes such as the Cyclic Redundancy codes (CRC) [36], [12].

The transmitted K × N space-frequency (SF) codeword from the relay nodes

5Fast Fourier Transform (FFT), which is used to transform the received data from the time-

domain to the frequency-domain, can be represented by a unitary matrix multiplication. Unitary

transformation of a Gaussian random vector, whose components are statistically independent and

identically distributed, results in a Gaussian random vector with statistically independent and

identically distributed components.
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is given by6

Cr =




Cr(1, 1) Cr(1, 2) · · · Cr(1, N)

Cr(2, 1) Cr(2, 2) · · · Cr(2, N)

...
...

. . .
...

Cr(K, 1) Cr(K, 2) · · · Cr(K, N)




, (3.48)

where Cr(k, n) is the symbol transmitted by the n-th relay node on the k-th sub-

carrier. The SF is assumed to satisfy the power constraint ||Cr||2F ≤ K.

The received signal at the destination node on the k-th subcarrier is given by

yd(k) =
√

P2

N∑
n=1

Hrn,d(k)Cr(k, n)In + ηrn,d(k), (3.49)

where P2 is the relay node power, Hrn,d(k) is the attenuation of the channel between

the n-th relay node and the destination node on the k-th subcarrier, ηrn,d(k) is the

destination additive white Gaussian noise on the k-th subcarrier, and In is the

state of the n-th relay. In will equal 1 if the n-th relay has decoded correctly in

phase 1, otherwise, In will equal 0.

Performance Analysis

It is now necessary to develop sufficient code design criteria for the DSFC to achieve

full diversity of order NL. Unlike the case of MIMO space-frequency coding, we

will need a two-stage coding to achieve full diversity at the destination node.

Therefore, the proposed DSFCs will have two stages of coding: the first stage is

coding at the source node and the second stage is coding at the relay nodes. The

transmitted source node code will be designed to guarantee a diversity of order L

6Cr will be SF code transmitted by the relay nodes if all of them have decoded correctly in

phase 1.
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at any relay node, and this will in turn cause the proposed DSFC to achieve full

diversity of order NL as will be shown later.

Source Node Coding

Due to the symmetry assumption, the pairwise error probability (PEP) is the same

at any relay node. For two distinct transmitted source node symbols, s and s̃, the

PEP can be tightly upper-bounded as [38,46]

PEP (s → s̃) ≤




2ν − 1

ν




(
ν∏

i=1

λi

)−1 (
P1

N0

)−ν

(3.50)

and ν is the rank of the matrix C ◦R where

C = (s− s̃)(s− s̃)H,

R = E
{
Hs,rnH

H
s,rn

}
,

and Hs,rn = [Hs,rn(1), · · · , Hs,rn(K)]T . Here λi’s are the non-zero eigenvalues of

the matrix C ◦R, where ◦ denotes the Hadamard product7.

The correlation matrix, R, of the channel impulse response can be found as

R = E
{
Hs,rnH

H
s,rn

}

= WE
{
αs,rnαHs,rn

}
WH

= Wdiag{σ2(1), σ2(2), · · · , σ2(L)}WH,

(3.51)

where

αs,rn = [αs,rn(1), αs,rn(2), · · · , αs,rn(L)]T ,

7If A = {ai,j} and B = {bi,j} are two m × n matrices, the Hadamard product is defined as

D = A ◦B = {di,j}, where di,j = ai,jbi,j .
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W =




1 1 · · · 1

wτ1 wτ2 · · · wτL

...
...

. . .
...

w(K−1)τ1 w(K−1)τ2 · · · w(K−1)τL




,

and w = e−j2π∆f .

The coding at the source node is implemented to guarantee a diversity of order

L, which is the maximum achievable diversity order at any relay node. We propose

to partition the transmitted K × 1 source node code into subblocks of length L

and we will design the subblocks to guarantee a diversity of order L at any relay

node as will be seen later. Let M = bK/Lc denote the number of subblocks in the

source node transmitted OFDM block. The transmitted K × 1 source node code

is given as

s = [s(1), s(2), · · · , s(K)]T = [FT
1 ,FT

2 , · · · ,FT
M ,0T

K−ML]T , (3.52)

where Fi = [Fi(1), · · · , Fi(L)]T is the i-th subblock of dimension L× 1. Zeros are

padded if K is not an integer multiple of L. For any two distinct source codewords,

s and s̃ = [F̃T
1 , F̃T

2 , · · · , F̃T
M ,0T

K−ML]T , at least one index p0 exists for which Fp0 is

not equal to F̃p0 .

Based on the proposed structure of the transmitted code from the source node,

sufficient conditions for the code to achieve a diversity of order L at the relay nodes

are derived. We assume for s and s̃ that Fp = F̃p for all p 6= p0, which corresponds

to the worst-case PEP. This does not decrease the rank of the matrix C ◦R [46].

Define the L × L matrix Q = {qi,j} as qi,j =
∑L

l=1 σ2(l)w(i−j)τ(l), 1 ≤ i, j ≤ L.

Note that the non-zero eigenvalues of the matrix C ◦R are the same as those of

79



the matrix
(
Fp0 − F̃p0

)(
Fp0 − F̃p0

)H
◦Q. Hence, we have

(
Fp0 − F̃p0

)(
Fp0 − F̃p0

)H
◦Q

=

[
diag

(
Fp0 − F̃p0

)
1L×Ldiag

(
Fp0 − F̃p0

)H]
◦Q

= diag
(
Fp0 − F̃p0

)
Q diag

(
Fp0 − F̃p0

)H
(3.53)

where 1L×L is the L × L matrix whose all elements are ones. The last equality

follows from a property of the Hadamard product ( [49], p.304).

If all of the eigenvalues of the matrix
(
Fp0 − F̃p0

)(
Fp0 − F̃p0

)H
◦Q are non-

zero, then their product can be calculated as

det

((
Fp0 − F̃p0

)(
Fp0 − F̃p0

)H
◦Q

)

= det
(
diag

(
Fp0 − F̃p0

))
det (Q) det

(
diag

(
Fp0 − F̃p0

)H
)

=
L∏

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣
2

(det(Q)) .

(3.54)

The matrix Q is non-singular. Hence, if the product
∏L

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣
2

is non-

zero over all possible pairs of distinct transmitted source codewords, s and s̃, then

a diversity of order L will be achieved at each relay node.

In phase 2, relays that have decoded correctly in phase 1 will forward the

source node information. The received signal at the destination node on the k-th

subcarrier is as given in (3.49). The state of the n-th relay node In is a Bernoulli

random variable with a probability mass function (pmf) given by

In =





0 with probability = SER

1 with probability = 1− SER,

(3.55)

where SER is the symbol error rate at the n-th relay node. Note that SER is the

same for any relay node due to the symmetry assumption. If the transmitted code
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from the source node is designed such that the product
∏L

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣
2

is

non-zero, for at least one index p0, over all the possible pairs of distinct transmitted

source codewords, s and s̃, then the SER at the n-th relay node can be upper-

bounded as

SER =
∑
s∈S

Pr{s}Pr{error given that s was transmitted}

≤
∑
s∈S

Pr{s}
∑

s̃∈S ,̃s6=s

PEP (s → s̃)

≤ c× SNR−L,

(3.56)

where S is the set of all possible transmitted source codewords and c is a constant

that does not depend on the SNR. The first inequality follows from the union

upper-bound and the second inequality follows from (3.50), where SNR is defined

as SNR = P1/N0.

Relay Nodes Coding

Next, the design of the SF code at the relay nodes to achieve a diversity of order NL

is considered. We propose to design SF codes constructed from the concatenation

of block diagonal matrices, which is similar to the structure used in [46] to design

full-rate, full-diversity space-frequency codes over MIMO channels. We will derive

sufficient conditions for the proposed code structure to achieve full diversity at the

destination node.

Let P = bK/NLc denote the number of subblocks in the transmitted OFDM

block from the relay nodes. The transmitted K ×N SF codeword from the relay

nodes, if all relays decoded correctly, is given by

Cr = [GT
1 ,GT

2 , · · · ,GT
P ,0T

K−PLN ]T , (3.57)
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where Gi is the i-th subblock of dimension NL × N . Zeros are padded if K is

not an integer multiple of NL. Each Gi is a block diagonal matrix that has the

structure

Gi =




X1L×1
0L×1 · · · 0L×1

0L×1 X2L×1
· · · 0L×1

...
...

. . .
...

0L×1 0L×1 · · · XNL×1




(3.58)

and let X = [XT
1 ,XT

2 , · · · ,XT
N ] = [x(1), x(2), · · · , x(NL)].

For two distinct transmitted source codewords, s and s̃, and a given realization

of the relays states I = [I1, I2, · · · , In]T , the conditional PEP can be tightly upper-

bounded as

PEP (s → s̃/I) ≤




2κ− 1

κ




(
κ∏

i=1

ηi

)−1 (
P2

N0

)−κ

, (3.59)

and κ is the rank of the matrix C(I) ◦R where

C(I) = (Cr − C̃r)diag(I)(C− C̃r)
H.

For two source codewords, s and s̃, at least one index p0 exists for which Gp0 6= G̃p0 .

We assume for s and s̃ that Gp = G̃p for all p 6= p0. As for the source node coding

case, this does not decrease the rank of the matrix C(I) ◦R that corresponds to

any realization I of the relays states.

Define the NL×NL matrix S = {si,j} as

si,j =
L∑

l=1

σ2(l)w(i−j)τ(l), 1 ≤ i, j ≤ NL.

Note that the non-zero eigenvalues of the matrix C(I)◦R are the same as the non-

zero eigenvalues of the matrix
(
Gp0(I)− G̃p0(I)

)(
Gp0(I)− G̃p0(I)

)H
◦ S where
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Gp0(I) is formed from Gp0 by setting the columns corresponding to the relays that

have decoded erroneously to zeros. Hence,

(
Gp0(I)− G̃p0(I)

)(
Gp0(I)− G̃p0(I)

)H
◦ S

=


diag(X− X̃) (diag(I)⊗ 1L×1) (diag(I)⊗ 1L×1)

H diag(X− X̃)H


 ◦ S

=
(
diag(X− X̃) (diag(I)⊗ 1L×L)diag(X− X̃)H

)
◦ S

= diag(X− X̃) [(diag(I)⊗ 1L×L) ◦ S]diag(X− X̃)H,

(3.60)

where the second and the third equalities follow from the properties of the tensor

and Hadamard products [49].

Let nI =
∑N

n=1 In denote the number of relays that have decoded correctly

corresponding to a realization I of the relays states. Using (3.60), the product of

the non-zero eigenvalues of the matrix C(I) ◦R can be found as

κ∏
i=1

ηi =

(
NL∏

i=1, i∈I
|x(i)− x̃(i)|2

)
· (det(S0))

nI (3.61)

where I is the index set of symbols that are transmitted from the relays that have

decoded correctly corresponding to the realization I and S0 = {si,j}, 1 ≤ i, j ≤ L.

The result in (3.61) is based on the assumption that the product
∏NL

i=1, i∈I} |x(i)−
x̃(i)|2 is non-zero. The first product in (3.61) is over nIL terms. The matrix S0 is

always full rank of order L. Hence, designing the product
∏NL

i=1, i∈I |x(i)− x̃(i)|2 to

be non-zero will guarantee a rate of decay, at high SNR, of the conditional PEP

as SNR−nIL, where SNR is now defined as SNR = P2/N0. To guarantee that this

rate of decay, SNR−nIL, is always achieved irrespective of the state realization I

of the relay nodes then the product
∏NL

i=1 |x(i)− x̃(i)|2 should be non-zero. Hence,

designing the product
∏NL

i=1 |x(i) − x̃(i)|2 to be non-zero for any pair of distinct
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source codewords is a sufficient condition for the conditional PEP to decay as

SNR−nIL for any realization I, where nI is the number of relays that have decoded

correctly corresponding to I.

Now, we calculate the PEP at the destination node for our proposed DSFC

structure. Let cr denote the number of relays that have decoded correctly. Then

cr follows a Binomial distribution as8

Pr{cr = k} =




N

k


 (1− SER)kSERN−k, (3.62)

where SER is the symbol error rate at the relay nodes. The destination PEP is

given by

PEP (s → s̃) =
∑

I

Pr{I}PEP (s → s̃/I)

=
N∑

k=0

Pr{cr = k}
∑

{I:nI=k}
PEP (s → s̃/I)

=
N∑

k=0




N

k


 (1− SER)kSERN−k

∑

{I:nI=k}
PEP (s → s̃/I),

(3.63)

Using the upper-bound on the SER at the relay nodes given in (3.56) and the

expression for the conditional PEP at the destination node in (3.59), and upper-

bounding (1− SER) by 1, it can be shown that

PEP (s → s̃) ≤ constant× SNR−NL. (3.64)

Hence, our proposed structure for DSFCs with two-stage coding at the source node

and the relay nodes achieves a diversity of order NL, which is the rate of decay of

the PEP at high SNR.

8cr is a Binomial random variable as it is the sum of independent, identically distributed

Bernoulli random variables.
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3.2.2 DSFC with the AAF Protocol

In this section, the design and performance analysis for DSFCs with the AAF

protocol are presented. A structure is proposed and sufficient conditions for the

proposed structure to achieve full diversity are then derived for some special cases.

System Model

In this section, we describe the system model for DSFC with the AAF protocol.

The received signal model at the relay nodes and the channel gains are modeled

as in Section 3.2.1. The transmitted data from the source node is parsed into

subblocks of size NL × 1. Let P = bK/NLc denote the number of subblocks in

the transmitted OFDM block. The transmitted K × 1 source codeword is given

by

s = [s(1), s(2), · · · , s(K)]T = [BT
1 ,BT

2 , · · · ,BT
P ,0T

K−PLN ]T , (3.65)

where Bi is the i-th subblock of dimension NL× 1. Zeros are padded if K is not

an integer multiple of NL. For each subblock, Bi, the n-th relay only forwards the

data on L subcarriers. For example, relay 1 will only forward [Bi(1), · · · ,Bi(L)]

for all i’s and send zeros on the remaining set of subcarriers. In general, the n-th

relay will only forward [Bi((n− 1)L + 1), · · · ,Bi((n− 1)L + L)] for all i’s.

At the relay nodes, each node will normalize the received signal on the sub-

carriers that it will forward before retransmission and send zeros on the remain-

ing set of subcarriers. If the k-th subcarrier is to be forwarded by the n-th re-

lay, the relay will normalize the received signal on that subcarrier by the factor

β(k) =
√

1
P1|Hs,rn (k)|2+N0

[11]. The relay nodes will use OFDM modulation for

transmission to the destination node. At the destination node, the received signal
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on the k-th subcarrier, assuming it was forwarded by the n-th relay, is given by

y(k) =

Hrn,d(k)
√

P2




√
1

P1|Hs,rn(k)|2 + N0

(√
P1Hs,rn(k)s(k) + ηs,rn(k)

)

 + ηrn,d(k),

(3.66)

where P2 is the relay node power, Hrn,d(k) is the attenuation of the channel between

the n-th relay node and the destination node on the k-th subcarrier, and ηs,rn(k)

is the destination noise on the k-th subcarrier. The ηrn,d(k)’s are modeled as zero-

mean, circularly symmetric complex Gaussian random variables with a variance of

N0/2 per dimension.

Performance Analysis

In this section, the PEP of the DSFC with the AAF protocol is presented. Based

on the PEP analysis, code design criteria are derived. The received signal at

destination on the k-th subcarrier given by (3.66) can be rewritten as

y(k) = Hrn,d(k)
√

P2




√
1

P1|Hs,rn(k)|2 + N0

√
P1Hs,rn(k)s(k)


 + zrn,d(k), (3.67)

where zrn,d(k) accounts for the noise propagating from the relay node as well as

the destination noise. zrn,d(k) follows a circularly symmetric complex Gaussian

random variable with a variance δ2
z(k) of

(
P2|Hrn,d(k)|2

P1|Hs,rn (k)|2+N0
+ 1

)
N0. The probability

density function of zrn,d(k) given the channel state information (CSI) is given by

p(zrn,d(k)/CSI) =
1

πδ2
z(k)

exp

(
− 1

δ2
z(k)

|zrn,d(k)|2
)

. (3.68)
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The receiver applies a Maximum Likelihood (ML) detector to the received signal,

which is given as

ŝ = arg min
s

K∑

k=1

1

δ2
z(k)

∣∣∣∣∣y(k)−
√

P1P2Hs,rn(k)Hrn,d(k)√
P1|Hs,rn(k)|2 + N0

s(k)

∣∣∣∣∣

2

, (3.69)

where the n index (which is the index of the relay node) is adjusted according to

the k index (which is the index of the subcarrier).

Now, sufficient conditions for the proposed code structure to achieve full di-

versity are derived. The pdf of a received vector y = [y(1), y(2), · · · , y(K)]T given

that the codeword s was transmitted is given by

p(y/s, CSI) =

(
K∏

k=1

1

πδ2
z(k)

)
exp




K∑

k=1

− 1

δ2
z(k)

∣∣∣∣∣y(k)−
√

P1P2Hs,rn(k)Hrn,d(k)√
P1|Hs,rn(k)|2 + N0

s(k)

∣∣∣∣∣

2


.

(3.70)

The PEP of mistaking s by s̃ can be upper-bounded as [23]

PEP (s → s̃) ≤ E {exp (λ[ln p(y/s̃)− ln p(y/s)])} , (3.71)

and the relation applies for any λ, which can selected to get the tightest bound.

Any two distinct codewords s and s̃ = [B̃1, B̃2, · · · , B̃p]
T will have at least one

index p0 such that B̃p0 6= Bp0 . We will assume that s and s̃ will have only one

index p0 such that B̃p0 6= Bp0 , which corresponds to the worst case PEP.

Averaging the PEP expression in (3.71) over the noise distribution given in

87



(3.68) we get

PEP (s → s̃) ≤ E





exp


− λ(1− λ)

N∑
n=1

L∑

l=1




P1|Hs,rn(J + (n− 1)L + l)|2P2|Hrn,d(J + (n− 1)L + l)|2(
P1|Hs,rn(J + (n− 1)L + l)|2 + P2|Hrn,d(J + (n− 1)L + l)|2 + N0

)
N0




×
∣∣∣Bp0((n− 1)L + l)− B̃p0((n− 1)L + l)

∣∣∣
2








,

(3.72)

where J = (p0 − 1)NL. Take λ = 1/2 to minimize the upper-bound in (3.72),

hence, we get

PEP (s → s̃) ≤ E





exp


− 1

4

N∑
n=1

L∑

l=1




P1|Hs,rn(J + (n− 1)L + l)|2P2|Hrn,d(J + (n− 1)L + l)|2(
P1|Hs,rn(J + (n− 1)L + l)|2 + P2|Hrn,d(J + (n− 1)L + l)|2 + N0

)
N0




×
∣∣∣Bp0((n− 1)L + l)− B̃p0((n− 1)L + l)

∣∣∣
2








,

(3.73)

At high SNR, the term
P1|Hs,rn(k)|2P2|Hrn,d(k)|2

(P1|Hs,rn (k)|2+P2|Hrn,d(k)|2+N0)N0
can be approximated by

P1|Hs,rn (k)|2P2|Hrn,d(k)|2
(P1|Hs,rn(k)|2+P2|Hrn,d(k)|2)N0

[21], which is the scaled harmonic mean of the source-

relay and relay-destination SNRs on the k-th subcarrier9. The scaled harmonic

9The scaling factor is 1/2 since the harmonic mean of two number, X1 and X2, is defined as
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mean of two nonnegative numbers, a1 and a2, can be upper- and lower- bounded

as

1

2
min (a1, a2) ≤ a1a2

a1 + a2

≤ min (a1, a2) . (3.74)

Using the lower-bound in (3.74) the PEP in (3.73) can be further upper-bounded

as

PEP (s → s̃) ≤ E





exp


− 1

8

N∑
n=1

L∑

l=1

min




P1

N0

|Hs,rn((p0 − 1)NL + (n− 1)L + l)|2,

P2

N0

|Hrn,d((p0 − 1)NL + (n− 1)L + l)|2




∣∣∣Bp0((n− 1)L + l)− B̃p0((n− 1)L + l)
∣∣∣
2








.

(3.75)

If P2 = P1 and SNR is defined as P1/N0, then the PEP is now upper-bounded as

PEP (s → s̃) ≤ E





exp


− 1

8

N∑
n=1

L∑

l=1

min


SNR|Hs,rn((p0 − 1)NL + (n− 1)L + l)|2,

SNR|Hrn,d((p0 − 1)NL + (n− 1)L + l)|2




∣∣∣Bp0((n− 1)L + l)− B̃p0((n− 1)L + l)
∣∣∣
2








.

(3.76)

2X1X2
X1+X2

.
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PEP Analysis for L=1

The case of L equal to 1 corresponds to a flat, frequency nonselective fading chan-

nel. The PEP in (3.76) is now given by

PEP (s → s̃) ≤ E





exp


− 1

8

N∑
n=1

min


SNR|Hs,rn((p0 − 1)NL + (n− 1)L + 1)|2,

SNR|Hrn,d((p0 − 1)NL + (n− 1)L + 1)|2




∣∣∣Bp0((n− 1)L + 1)− B̃p0((n− 1)L + 1)
∣∣∣
2








.

(3.77)

It can be shown that the random variables SNR|Hs,rn(k)|2 and SNR|Hrn,d(k)|2 fol-

low an exponential distribution with rate 1/SNR for all k. The minimum of two ex-

ponential random variables is an exponential random variable with rate that is the

sum of the two random variables rates. Hence, min (SNR|Hs,rn(k)|2, SNR|Hrn,d(k)|2)
follows an exponential distribution with rate 2/SNR.

The PEP upper-bound is now given by

PEP (s → s̃) ≤
N∏

n=1

1

1 + 1
16

SNR
∣∣∣Bp0((n− 1)L + 1)− B̃p0((n− 1)L + 1)

∣∣∣
2 .

(3.78)

At high SNR, we neglect the 1 term in the denominator of (3.78). Hence, the PEP

can now be upper-bounded as

PEP (s → s̃) .
(

1

16
SNR

)−N
(

N∏
n=1

∣∣∣Bp0((n− 1)L + 1)− B̃p0((n− 1)L + 1)
∣∣∣
2
)−1

.

(3.79)

The result in (3.79) is under the assumption that the product

N∏
n=1

∣∣∣Bp0((n− 1)L + 1)− B̃p0((n− 1)L + 1)
∣∣∣
2
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is non-zero. Clearly, if that product is non-zero, then the system will achieve a

diversity of order NL, where L is equal to 1 in this case. From the expression in

(3.79) the coding gain of the space-frequency code is maximized when the product

mins6=s̃

∏N
n=1

∣∣∣Bp0((n− 1)L + 1)− B̃p0((n− 1)L + 1)
∣∣∣
2

is maximized. This prod-

uct is known as the minimum product distance [46].

PEP Analysis for L=2

The PEP in (3.76) can now be given as

PEP (s → s̃) ≤ E





exp


− 1

8

N∑
n=1

2∑

l=1

min


SNR|Hs,rn((p0 − 1)NL + (n− 1)L + l)|2,

SNR|Hrn,d((p0 − 1)NL + (n− 1)L + l)|2




∣∣∣Bp0((n− 1)L + l)− B̃p0((n− 1)L + l)
∣∣∣
2








,

(3.80)

where L = 2. The analysis in this case is more involved since the random variables

appearing in (3.80) are correlated. Signals transmitted from the same relay node

on different subcarriers will experience correlated channel attenuations. As a first

step in deriving the code design criterion, we prove that the channel attenuations,

|Hs,rn(k1)|2 and |Hs,rn(k2)|2 for any k1 6= k2, have a bivariate Gamma distribution

as their joint pdf [50]. The same applies for |Hrn,d(k1)|2 and |Hrn,d(k2)|2 for any

k1 6= k2. The proof of this result is given in the Appendix.

To evaluate the expectation in (3.80) we need the expression for the joint pdf

of the two random variables M1 = min

(
SNR|Hs,rn(k1)|2, SNR|Hrn,d(k1)|2

)
and

M2 = min (SNR|Hs,rn(k2)|2, SNR|Hrn,d(k2)|2) for some k1 6= k2. Although M1 and

M2 can be easily seen to be marginally exponential random variables, they are not
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jointly Gamma distributed. Define the random variables X1 = SNR|Hs,rn(k1)|2,
X2 = SNR|Hs,rn(k2)|2, Y1 = SNR|Hrn,d(k1)|2, and Y2 = SNR|Hrn,d(k2)|2. All of

these random variables are marginally exponential with rate 1/SNR. Under the

assumptions of our channel model, the pairs (X1, X2) and (Y1, Y2) are independent.

Hence, the joint pdf of (X1, X2, Y1, Y2), using the result in the Appendix, is given

by

fX1,X2,Y1,Y2(x1, x2, y1, y2)

=fX1,X2(x1, x2)fY1,Y2(y1, y2)

=
1

SNR2(1− ρx1x2)(1− ρy1y2)
exp

(
− x1 + x2

SNR(1− ρx1x2)

)
I0

(
2
√

ρx1x2

SNR(1− ρx1x2)

√
x1x2

)

× exp

(
− y1 + y2

SNR(1− ρy1y2)

)
I0

(
2
√

ρy1y2

SNR(1− ρy1y2)

√
y1y2

)
U(x1)U(x2)U(y1)U(y2),

(3.81)

where I0(·) is the modified Bessel function of the first kind of order zero and U(·)
is the Heaviside unit step function [41]. ρx1x2 is the correlation coefficient between

X1 and X2 and similarly, ρy1y2 is the correlation coefficient between Y1 and Y2. The

joint cumulative distribution function (cdf) of the pair (M1,M2) can be computed

as

FM1,M2(m1,m2)

, Pr [M1 ≤ m1,M2 ≤ m2]

= Pr [min (X1, Y1) ≤ m1, min (X2, Y2) ≤ m2]

= 2

∫ m1

y1=0

∫ ∞

x1=y1

∫ m2

y2=0

∫ ∞

x2=y2

fX1,X2(x1, x2)fY1,Y2(y1, y2)dy1dx1dy2dx2

+ 2

∫ m1

y1=0

∫ ∞

x1=y1

∫ m2

x2=0

∫ ∞

y2=x2

fX1,X2(x1, x2)fY1,Y2(y1, y2)dy1dx1dx2dy2,

(3.82)

where we have used the symmetry assumption of the source-relay and relay-
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destination channels. The joint pdf of (M1,M2) can now be given as

fM1,M2(m1,m2) =
∂2

∂m1∂m2

FM1,M2(m1,m2)

=2fY1,Y2(m1,m2)

∫ ∞

x1=m1

∫ ∞

x2=m2

fX1,X2(x1, x2)dx1dx2

+ 2

∫ ∞

x1=m1

∫ ∞

y2=m2

fX1,X2(x1, m2)fY1,Y2(m1, y2)dx1dx2.

(3.83)

To get the PEP upper-bound in (3.80) we need to calculate the expectation

E





exp


− 1

8


M1

∣∣∣B(k1)− B̃(k1)
∣∣∣
2

+ M2

∣∣∣B(k2)− B̃(k2)
∣∣∣
2











=

∫ ∞

m1=0

∫ ∞

m2=0

exp


− 1

8


m1

∣∣∣B(k1)− B̃(k1)
∣∣∣
2

+ m2

∣∣∣B(k2)− B̃(k2)
∣∣∣
2







fM1,M2(m1,m2)dm1dm2.

(3.84)

At high enough SNR I0

(
2
√

ρx1x2

SNR(1−ρx1x2 )

√
x1x2

)
can be approximated to be 1 [41].

Using this approximation, the PEP upper-bound can be approximated at high

SNR as

PEP (s → s̃) .
(

2N∏
m=1

∣∣∣Bp0(m)− B̃p0(m)
∣∣∣
2
)−1 (

1

16
(1− ρ)SNR

)−2N

, (3.85)

where ρ = ρx1x2 = ρy1y2 . Again, full diversity is achieved when the product

∏2N
m=1

∣∣∣∣∣Bp0(m)−B̃p0(m)

∣∣∣∣∣

2

is non-zero. The coding gain of the space-frequency code

is maximized when the product mins6=s̃

∏2N
m=1

∣∣∣∣∣Bp0(m)− B̃p0(m)

∣∣∣∣∣

2

is maximized.

The analysis becomes highly involved for any L ≥ 3. It is very difficult to

get closed-form expressions in this case due to the correlation among the summed

terms in (3.76) for which no closed-form pdf expressions, similar to (3.81), are

known [51].
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3.2.3 Code Construction and Discussions

A construction method for the proposed DSFCs is presented here. This construc-

tion is the one used to do the source node and relay nodes coding for DSFCs with

the DAF protocol. It is also used for designing DSFCs with the AAF protocol.

A linear mapping is used to form the transmitted subblocks, D = VT×T sG,

where sG is a T × 1 source symbols vector transmitted in the subblock D. sG is

carved from QAM or PSK constellations. We will use the transforms presented in

Section 3.1.3 to design DDSTCs.

It noteworthy that the proposed DSFCs for both the DAF and AAF protocols

achieve a data rate of K/2 symbols/OFDM block, where K is the number of

subcarriers. The 1/2 factor loss is due to the two-phase nature of the DAF and

AAF protocols.

3.2.4 Remarks

Here we summarize some remarks related to our proposed DSFCs

• Remark 1 : In our problem formulation, we have considered a two-hop system

model that lacks a direct link from the source node to the destination node.

If such a direct link between the source node and the destination node exists,

then the destination node can use its received signal from the source node

to help recovering the source symbols. Assuming that the channel from the

source node to the destination node has L paths, it can be shown that our

proposed DSFCs, with the proposed coding at the source node and the relay

nodes for both the DAF and AAF protocols, achieve a diversity of order

(N + 1)L.
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• Remark 2 : The proposed DSFCs with the DAF protocol can be easily mod-

ified to achieve full diversity for the asymmetric case where the number of

paths per fading channel is not the same for all channels. Let Ls,rn denote

the number of paths of the channel between the source node and n-th relay

and Lrn,d denote the number of paths of the channel between the n-th relay

node and the destination node. The proposed DSFC can be easily modified

to achieve a diversity d of order

d =
N∑

n=1

min(Ls,rn , Lrn,d),

which can be easily shown to be the maximal achievable diversity order. This

maximal diversity order can be achieved, for example, by designing the codes

at the source node and relay nodes using L = maxn min(Ls,rn , Lrn,d).

• Remark 3 : The proposed construction for the design of DSFCs can be easily

generalized to the case of multi-antenna nodes, where any node may have

more than one antenna. Each antenna can be treated as a separate relay

node and the analysis presented before directly applies.

• Remark 4 : As mentioned before, the presence of the cyclic prefix in the

OFDM transmission provides a mean for combating the relays synchroniza-

tion mismatches. Hence, our proposed DSFCs, which are based on OFDM

transmission, are robust against synchronization mismatches within the du-

ration of the cyclic prefix.

3.2.5 Simulation Results for DSFCs

In this section, some simulation results for the proposed DSFCs are presented. We

will compare the performance of DSFCs with the DAF protocol to DSFCs with the
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AAF protocol. In all simulations, the source is assumed to have two relay nodes

helping to forward its information. We use the two-hop channel model presented

in the previous sections.

Fig. 3.9 shows the case of a simple two-ray, L = 2, channel model with a

delay of τ = 5µsec between the two rays. The two rays have equal powers, i.e.,

σ2(1) = σ2(2). The number of subcarriers is K = 128 with a system bandwidth of

1 MHz. We use BPSK modulation and Vandermonde based linear transformations.

Fig. 3.9 shows the SER of the proposed DSFCs versus the SNR defined as SNR =

P1+P2

N0
, and we use P1 = P2, i.e., equal power allocation between the source and

relay nodes. We simulated three cases: all channel variances are ones, relays close

to source, and relays close to destination. For the case of relays close to source, the

variance of any source-relay channel is taken to be 10 and the variance of any relay-

destination channel is taken to be 1. For the case of relays close to destination,

the variance of any source-relay channel is taken to be 1 and the variance of any

relay-destination channel is taken to be 10. From Fig. 3.9, it is clear that DSFCs

with the DAF protocol have a better performance than DSFCs with the AAF

protocol. The reason is that DSFCs with DAF protocol deliver a less noisy code

to the destination node as compared to DSFCs with AAF protocol, where noise

propagation results from the transmissions of the relay nodes. Decoding at the

relay nodes, in the DAF protocol, has the effect of removing the noise before

retransmission to the destination node. As can be seen from Fig. 3.9, a gain of

about 3dB is achieved, for the case of relays close to the source, by employing

DSFCs with the DAF protocol as compared to DSFCs with the AAF protocol.

Fig. 3.10 shows the case of a simple two-ray, L = 2, with a delay of τ = 20µsec

between the two rays. The simulation setup is the same as that used in Fig.
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Figure 3.9: SER for DSFCs for BPSK modulation, L=2, and delay=[0, 5µsec]

versus SNR.

3.9. From Fig. 3.10, it is clear that DSFCs with the DAF protocol have a better

performance than DSFCs with the AAF protocol. Fig. 3.11 shows the case of

L = 4 with a path delay vector given by [0, 5µsec, 10µsec, 15µsec]. The rays

are assumed to be of equal powers, i.e., σ2(l) = σ2, l = 1, · · · , 4. The number

of subcarriers is K = 128 with a system bandwidth of 1 MHz. We use BPSK

modulation and Vandermonde based linear transformations. Fig. 3.11 shows the

SER of the proposed DSFCs versus the SNR defined as SNR = P1+P2

N0
and again

we use P1 = P2. We have simulated the same three cases as in Fig. 3.9. Fig. 3.11

shows that DSFCs with the DAF protocol have a better performance than DSFCs

with the AAF protocol. We can observe a gain of about 2dB for the case of relays

close to source.
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Figure 3.10: SER for DSFCs for BPSK modulation, L=2, and delay=[0, 20µsec]

versus SNR.
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Figure 3.11: SER for DSFCs for BPSK modulation, L=4, and delay=[0, 5µsec,

10µsec, 15µsec] versus SNR.
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Appendix

Consider the two random variables Hs,rn(k1) and Hs,rn(k2), we will assume without

loss of generality that τ1 = 0, i.e., the delay of the first path is zero. Hs,rn(k1) is

given by

Hs,rn(k1) = αs,rn(1) + αs,rn(2)e−j2π(k1−1)∆fτ2 = < (Hs,rn(k1)) + j= (Hs,rn(k1)) ,

(3.86)

where <(x), and =(x) are the real, and imaginary parts of x, respectively. From

(3.86) we have

< (Hs,rn(k1))

= <(αs,rn(1)) + <(αs,rn(2)) cos(2π(k1 − 1)∆fτ2) + =(αs,rn(2)) sin(2π(k1 − 1)∆fτ2)

= (Hs,rn(k1))

= =(αs,rn(1)) + =(αs,rn(2)) cos(2π(k1 − 1)∆fτ2)−<(αs,rn(2)) sin(2π(k1 − 1)∆fτ2).

(3.87)

Based on the channel model presented in Section 3.2.1 both < (Hs,rn(k1)) and

= (Hs,rn(k1)) are zero-mean Gaussian random variables with variance 1/2. The

correlation coefficient, ρri, between < (Hs,rn(k1)) and = (Hs,rn(k1)) can be calcu-

lated as

ρri = E {< (Hs,rn(k1))= (Hs,rn(k1))} = 0. (3.88)

Hence, Hs,rn(k1) is a circularly symmetric complex Gaussian random variable with

variance 1/2 per dimension and the same applies for Hs,rn(k2). To get the joint

probability distribution of |Hs,rn(k1)|2 and |Hs,rn(k2)|2, we can use the standard

techniques of transformation of random variables. Using transformation of random

variables and the fact that both Hs,rn(k1) and Hs,rn(k2) are circularly symmetric
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complex Gaussian random variables, it can be shown that X1 = |Hs,rn(k1)|2 and

X2 = |Hs,rn(k2)|2 are jointly distributed according to a bivariate Gamma distribu-

tion with pdf [51], [50]

fX1,X2(x1, x2) =
1

1− ρx1x2

exp

(
− x1 + x2

1− ρx1x2

)
I0

(
2
√

ρx1x2

1− ρx1x2

√
x1x2

)
U(x1)U(x2),

(3.89)

where I0(·) is the modified Bessel function of the first kind of order zero and U(·) is

the Heaviside unit step function [41]. ρx1x2 is the correlation between |Hs,rn(k1)|2

and |Hs,rn(k2)|2 and it can calculated as

ρx1,x2 =
Cov (X1, X2)√

Var (X1) Var (X2)
. (3.90)

Following tedious computations, it can be shown that

ρx1,x2 =
1

2
+ 2σ2(1)σ2(2) cos(2π(k2 − k1)∆fτ2), (3.91)

where the last equation applies under the assumption of having σ2(1) + σ2(2) = 1

and both, σ2(1) and σ2(2), are non-zeros. From (3.91) it is clear that 0 ≤ ρx1,x2 ≤
1.
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Chapter 4

Source-Channel Diversity for

Multi-Hop and Relay Channels

Diversity is not exclusive to implementations at the physical layer. As studied

in [52], diversity can also be formed when multiple channels are provided to the

application layer, where they are exploited through multiple description source

encoders. In Multiple Description Coding different descriptions of the source are

generated with the property that they can each be individually decoded or, if

possible, be jointly decoded to obtain a reconstruction of the source with lower

distortion [53]. The achievable rate-distortion performance of multiple description

codes was studied in [54]. Aiming at its application in communication systems,

multiple description coding had been studied for error resilient source coding ap-

plications [55], for communications over networks with packet losses [56], for com-

munications over parallel packet loss channels [57, 58] and as an alternative error

control scheme for communication over single physical channel in [59].

Considering the combination of source coding and user cooperation, [60] studied

the performance in terms of distortion exponent of a single description source

101



encoder transmitted with and without amplify-and-forward cooperation over a

single-relay channel. Also, [60] presented a scheme, named “partial cooperation”,

which was based on a two-layer, single description source encoder. Studies on the

transmission of layered source-coded sources over user-cooperation channels were

presented in [61] for coded cooperation and in [62] for amplify-and-forward and a

broadcast relaying strategy using broadcast code.

We focus on studying systems that exhibit diversity of three forms: source cod-

ing diversity (when using a dual description encoder), channel coding diversity, and

user-cooperation diversity (implemented through either relay channels or multi-hop

channels, each with amplify-and-forward or decode-and-forward user cooperation).

The presented analysis derives the distortion exponent for several source-channel

diversity achieving schemes. More specifically, we consider the cases where we have

a single or M relays helping the source by repeating its information either using

the amplify-and-forward or the decode-and-forward protocols. In these cases, we

analyze the tradeoff between the diversity gain (number of relays) to the quality

of the source encoder and find the optimum number of relays to help the source.

Then, we consider source coding diversity and channel coding diversity. For multi-

hop channels we find that channel coding diversity yields the best performance of

all schemes, followed by source coding diversity. Furthermore, we also show that

as the bandwidth expansion factor increases, the distortion exponent is improved

by increasing the number of relays because user cooperation diversity becomes the

dominating factor rather than the quality of the source encoder [63–65].
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4.1 System Model

We will focus on systems that communicate a source signal over a wireless multi-

hop or relay channel. Let the input to the system be a memoryless source. We will

assume that communication is performed over a complex additive white Gaussian

noise (AWGN) fading channel. Denoting by I the maximum average mutual infor-

mation between the channel input and output. For the single-input single-output

fading channel I = log(1 + |h|2SNR), where h is the fading value [24]. Because

of the random nature of the fading, I and the ability of the channel to support

transmission at some rate are themselves random. The probability of the channel

not being able to support a rate R is called the outage probability and is given by

P0 = Pr [I < R]. It will be convenient for us to work with the random function eI ,

which has a cumulative distribution function (cdf) FeI that can be approximated

at high SNR as [52]

FeI (t) ≈ c

(
t

SNR

)p

. (4.1)

Both c and p are model-dependant parameters. For example, for the case of

Rayleigh fading we have p = 1 and c depends on the channel variance1.

We consider a communication system consisting of a source, a source encoder

and a channel encoder. Let the input to the system be a memoryless source. The

source samples are fed into the source encoder for quantization and compression.

The output of the source encoder are fed into a channel encoder which outputs

N channel inputs. For K source samples and N channel inputs, we denote by

β , N/K, the bandwidth expansion factor or processing gain. We assume that K

1The value of the parameter c does not affect the analysis since we are interested in the

distortion exponent which measures the exponent for the end-to-end distortion at high SNRs.
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is large enough to average over the statistics of the source but N is not sufficiently

large to average over the statistics of the channel, i.e., we assume block fading

wireless channel. Here, we are specifically interested in systems where the source

signal average end-to-end distortion is the figure of merit. Thus, performance

will be measured in terms of the expected distortion E [D] = E [d(s, ŝ)], where

d(s, ŝ) = (1/K)
∑K

k=1 d(sk, ŝk) is the average distortion between a sequence s of K

source samples and its corresponding reconstruction ŝ and d(sk, ŝk) is the distortion

between a single sample sk and its reconstruction ŝk. We will assume d(sk, ŝk) to

be the mean-squared distortion measure.

Following the fading channels assumption, we will be interested in studying

the system behavior at large channel signal-to-noise ratios (SNRs) where system

performances can be compared in terms of the rate of decay of the end-to-end

distortion. This figure of merit called the distortion exponent, [52], is defined as

∆ , − lim
SNR→∞

log E [D]

log SNR
. (4.2)

We will consider two types of source encoders: a single description (SD) and a

dual description source encoder, i.e. the source encoder generates either one or

two coded descriptions of the source.

The performance of source encoders can be measured through its achievable

rate-distortion (R-D) function, which characterizes the tradeoff between source

encoding rate and distortion. The R-D function for SD source encoders is fre-

quently considered to be of the form R = (1/c2) log(c1/D), where we are taking

the logarithm with base e and hence, R, the source encoding rate, is measured in

nats per channel use. This form of R-D function can approximate or bound a wide

range of practical systems such as video coding with an MPEG codec [66], speech

using a CELP-type codec [67], or when the high rate approximation holds [52].
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Assuming that high resolution approximation can be applied to the source encod-

ing operation, each of the input samples can be modeled as a memoryless Gaussian

source, showing a zero-mean, unit-variance Gaussian distribution. In this case, the

R-D function can be approximated without loss of generality, as [24],

R =
1

2β
log

(
1

D

)
. (4.3)

For multiple description (MD) source encoders, the R-D region is only known

for the dual description source encoders [54]. In dual description encoders, source

samples are encoded into two descriptions. Each description can either be decoded

independently of the other, when the other is unusable at the receiver, or com-

bined to achieve a reconstruction of the source with lower distortion, when both

descriptions are received correctly. This fact is reflected in the corresponding R-D

function. Let R1 and R2 be the source encoding rates of descriptions 1 and 2,

respectively, and Rmd = R1 + R2. Let D1 and D2 be the reconstructed distortions

associated with descriptions 1 and 2, respectively, when each is decoded alone.

Let D0 be the source distortion when both description are combined and jointly

decoded. For the same source model and assumptions as in the single description

case, R1 and D1, and R2 and D2 are related through,

R1 =
1

2β
log

(
1

D1

)
,

R2 =
1

2β
log

(
1

D2

)
.

(4.4)

The R-D function when both descriptions can be combined at the source decoder

differs depending on whether distortions can be considered low or high [54]. The
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low distortion scenario corresponds to D1 + D2 −D0 < 1, in which case we have

Rmd =
1

2β
log

(
1

D0

)
+

1

2β
log


 (1−D0)

2

(1−D0)2 −
[√

(1−D1)(1−D2)−
√

(D1 −D0)(D2 −D0)
]2


 .

(4.5)

All the schemes we will consider in this Chapter present the same communication

conditions to each description. Therefore, it will be reasonable to assume R1 =

R2 = Rmd/2. Under this condition, it was shown in [52] that the following bounds

can be derived from (4.5)

(4D0D1)
−1/(2β) / eRmd / (2D0D1)

−1/(2β), (4.6)

where the lower-bound requires D0 → 0 and the upper-bound requires also D1 → 0.

In the case of the high distortion scenario, D1 +D2−D0 > 1, the R-D function

equals

Rmd =
1

2β
log

(
1

D0

)
. (4.7)

The channel-encoded message is then sent from the source node to a destination

node with or without user cooperation. In a setup with user cooperation, the relay

nodes are associated with the source node to achieve user-cooperation diversity.

Communication in a cooperative setup with one relay node takes place in two

phases. In phase 1, the source node sends information to its destination node. The

source node’s transmission can be overheard by the relay because of the broadcast

nature of wireless communications. In phase 2, the relay node cooperates by

forwarding to the destination the information received from its associated source

node. At the destination node, both signals received from the source and the relay

106



are combined and detected, thus creating a virtual spatial diversity setup. For each

additional relay used during transmission, a new phase, similar to phase 2, needs

to be added to allow transmission of the new relay. Because of this multi-phase

transmission, we need for fair comparison of the different schemes considered in

this Chapter to fix the total number of channel uses for a source block of size K and

change the bandwidth expansion factor accordingly to each scheme, as will be seen

in the sequel. We will consider two techniques that implement user cooperation,

amplify-and-forward and decode-and-forward, each differing in the processing done

at the relay.

4.2 Multi-Hop Channels

In this section, we consider the distortion exponents of multi-hop networks us-

ing amplify-and-forward and decode-and-forward user-cooperation protocols. The

multi-hop channel is a channel where there is no direct path between the source

and destination; i.e. the information path between source and destination contains

one or more relaying nodes. Without loss of generality we consider the two-hop

case. The analysis can be easily extended to scenarios with larger number of hops.

4.2.1 Multi-Hop Amplify-and-Forward Protocol

In this section, we will consider the analysis for multi-hop amplify-and-forward

schemes with different channel and source coding diversity achieving schemes. We

derive the distortion exponent for the two-hop single relay channel with a SD source

encoder and extend the result to the case of M relays with repetition channel

coding diversity. The result shows a tradeoff between the number of relays (user
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cooperation diversity) and the quality of the source encoder. We also derive the

distortion exponent when using the multiple description coding. Since we consider

the case of dual description source encoders we derive the distortion exponent for

the case of two relays helping the source. In addition, we consider channel coding

diversity with two relay nodes so as to be able to compare the results with the

source coding diversity scheme.

Single Relay

The system under consideration consists of a source, a relay and a destination as

shown in Fig. 4.1. Transmission of a message is done in two phases. In phase 1,

the source sends its information to the relay node. The received signal at the relay

node is given by

yr1 = hs,r1

√
Pxs + ns,r1 , (4.8)

where hs,r1 is the channel gain between the source and the relay node, xs is the

transmitted source symbol with E {||xs||2} = 1, P is the source transmit power,

and ns,r1 is the noise at the relay node modeled as zero-mean circularly symmetric

complex Gaussian noise with variance N0/2 per dimension.

In phase 2, the relay normalizes the received signal by the factor α1 ≤
√

P
P |hs,r1 |2+N0

[11] and retransmits to the destination. The received signal at the destination is

given by

yd = hr1,dα1yr1 + nr1,d = hr1,dα1hs,r1

√
Pxs + hr1,dα1ns,r1 + nr1,d, (4.9)

where nr1,d is the noise at the destination node and is modeled as zero-mean circu-

larly symmetric complex Gaussian noise with variance N0/2 per dimension. Mutual

information is maximized when xs, the transmitted source symbol, is distributed as
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Figure 4.1: Two-hop single relay system (a) system model (b) time frame structure.

a circularly symmetric complex Gaussian random variable with zero-mean and vari-

ance 1/2 per dimension [24]. Consequently, the mutual information is maximized

when α1 =
√

P
P |hs,r1 |2+N0

, i.e., satisfying the power constraint with equality [11].

The mutual information in this case was found to be [11]

I(xs, yd) = log

(
1 +

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR + 1

)
, (4.10)

where SNR = P/N0. At high SNR, we have

I(xs, yd) ≈ log

(
1 +

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR

)

≈ log

( |hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR

)
.

(4.11)

Equation (4.11) indicates that the two-hop amplify-and-forward channel appears as

a link with signal-to-noise ratio that is a scaled harmonic mean of the source-relay

and relay-destination channels signal-to-noise ratios. To calculate the distortion

exponent let Z1 = |hs,r1|2SNR and Z2 = |hr1,d|2SNR. Assuming symmetry be-
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tween the source-relay and relay-destination channels, we have

FZ1(t) ≈ c

(
t

SNR

)p

FZ2(t) ≈ c

(
t

SNR

)p

,

(4.12)

where FZ1(.) and FZ2(.) are the cdf of Z1 and Z2, respectively. The scaled harmonic

mean of two nonnegative random variables can be upper- and lower-bounded as

1

2
min(Z1, Z2) ≤ Z1Z2

Z1 + Z2

≤ min(Z1, Z2). (4.13)

While the lower-bound is achieved if and only if Z1 = Z2, Z1 = 0, or Z2 = 0 and

the upper-bound is achieved if and only if Z1 = 0 or Z2 = 0.

Define the random variable Z = Z1Z2

Z1+Z2
. From (4.13) we have

Pr [min(Z1, Z2) < t] ≤ Pr [Z < t] ≤ Pr [min(Z1, Z2) < 2t] . (4.14)

Then we have

Pr [min(Z1, Z2) < t] = 2FZ1(t)− (FZ1(t))
2

≈ 2c

(
t

SNR

)p

− c2

(
t

SNR

)2p

≈ c1

(
t

SNR

)p

,

(4.15)

where c1 = 2c. Similarly, we have

Pr [min(Z1, Z2) < 2t] ≈ c2

(
t

SNR

)p

, (4.16)

where c2 = 2p+1c. From (4.15) and (4.16) we get

c1

(
t

SNR

)p

/ FZ(t) / c2

(
t

SNR

)p

, (4.17)

where FZ(t) is the cdf of the random variable Z. The minimum expected end-to-

end distortion can now be computed as

E [D] = min
D
{Pr [I(xs, yd) < R(D)] + D Pr [I(xs, yd) ≥ R(D)]} , (4.18)
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where D is the source encoder distortion and R is the source encoding rate. Note

that (4.18) implicitly assumes that in the case of an outage the missing source data

is concealed by replacing the missing source samples with their expected value

(equal to zero). Using the bounds in (4.17) the minimum expected distortion can

be upper- and lower-bounded as

min
D

{
c1

(
exp(R(D))

SNR

)p

+

[
1− c2

(
exp(R(D))

SNR

)p]
D

}

/ E [D] / min
D

{
c2

(
exp(R(D))

SNR

)p

+

[
1− c1

(
exp(R(D))

SNR

)p]
D

}
.

(4.19)

For sufficiently large SNRs, we have

min
D

{
c1

(
exp(R(D))

SNR

)p

+ D

}
/ E [D] / min

D

{
c2

(
exp(R(D))

SNR

)p

+ D

}
.

(4.20)

From (4.3), exp(R(D)) = D
−1

2βm , where βm = Nm/K as illustrated in Fig. 4.1,

which leads to

min
D

c1
D

−p
2βm

SNRp
+ D / E [D] / min

D
c2

D
−p

2βm

SNRp
+ D. (4.21)

Differentiating the lower-bound and setting equal to zero we get the optimizing

distortion

D∗ =

(
2βm

c1p

) −2βm
2βm+p

SNR
−2βmp
2βm+p . (4.22)

Substituting from (4.22) into (4.21) we get

CLB SNR
−2βmp
2βm+p / E [D] / CUB SNR

−2βmp
2βm+p , (4.23)

where CLB and CUB are terms that are independent of the SNR.

The distortion exponent is now given by the following theorem.
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Theorem 2 The distortion exponent of the two-hop single relay amplify-and-forward

protocol is

∆SH−1R−AMP =
2pβm

p + 2βm

, (4.24)

where βm = Nm/K, and Nm is the number of the source channel uses. (refer to

Fig. 4.1)

In the sequel, we will use

FZ(t) ≈ ć

(
t

SNR

)p

, (4.25)

where Z is the scaled harmonic mean of the source-relay and relay-destination

signal-to-noise ratios and ć is a constant. Although the last relation does not

follow directly from (4.17) we use it for simplicity of presentation. The analysis

is not affected by this substitution as we can always apply the analysis presented

here by forming upper- and lower-bound on the expected distortion and this will

yield the same distortion exponent.

We consider now a system consisting of a source, M relay nodes and a destina-

tion as shown in Fig. 4.2. The M relay nodes amplify the received signals from the

source and then retransmit to the destination. The destination selects the signal

of the highest quality (highest SNR) to recover the source signal2. The distortion

exponent of this system is given by the following theorem.

Theorem 3 The distortion exponent of the two-hop M relays selection channel

coding diversity with the amplify-and-forward protocol is

∆SH−MR−AMP =
4Mpβm

M(M + 1)p + 4βm

. (4.26)

2The system where the destination selects the signal with the highest quality will have the

same distortion exponent as the system where the destination applies maximum ratio combiner

(MRC) to the received signals from the relay nodes.
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Proof Let ydi
be the signal received at the destination due to the ith relay trans-

mission. At sufficiently high SNR, the mutual information between xs and ydi
is

given by

I(xs, ydi
) ≈ log

( |hs,ri
|2SNR|hri,d|2SNR

|hs,ri
|2SNR + |hri,d|2SNR

)
, i = 1, 2, ...,M.

Define the random variables Wi =
|hs,ri |2SNR|hri,d|2SNR

|hs,ri |2SNR+|hri,d|2SNR
, i = 1, 2, ...,M . The cdf of

Wi can be approximated at high SNR as

FWi
(t) ≈ ć

(
t

SNR

)p

. (4.27)

The minimum end-to-end expected distortion can be computed as

E [D] = min
D

{
Pr [max(I(xs, yd1), I(xs, yd2), ..., I(xs, ydM

)) < R(D)]

+ Pr [max(I(xs, yd1), I(xs, yd2), ..., I(xs, ydM
)) ≥ R(D)] D

}

= min
D

{
M∏
i=1

FWi
(exp(R(D))) +

[
1−

M∏
i=1

FWi
(exp(R(D)))

]
D

}

≈min
D

{
ćM D

−Mp

2β′m

SNRMp
+

[
1− ćM D

−Mp

2β′m

SNRMp

]
D

}

≈min
D

{
ćM D

−Mp

2β′m

SNRMp
+ D

}
,

(4.28)

where D is the source encoding distortion and β′m = N ′
m/K, where N ′

m is the

number of the source channel uses (refer to Fig. 4.2). Differentiating and setting

equal to zero we get the optimizing distortion

D∗ =

(
ćM Mp

2β′m

) 2β′m
Mp+2β′m

SNR
−2Mβ′mp

2β′m+Mp . (4.29)

Substituting we get

E [D] ≈ CMR SNR
−2Mβ′mp

2β′m+Mp , (4.30)
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where CMR is a term that does not depend on the SNR. Hence, the distortion

exponent is given as

∆SH−MR−AMP =
2Mβ′mp

2β′m + Mp
. (4.31)

For fair comparison with the single relay case, we should compare the different sys-

tems under the same number of channel uses. So that we have 2Nm = (M + 1)N ′
m

(refer to Fig. 4.1 and Fig. 4.2), from which we have β′m = 2
M+1

βm. Substituting

in (4.31) we get

∆SH−MR−AMP =
4Mpβm

M(M + 1)p + 4βm

. (4.32)

¤

The distortion exponent shows a tradeoff between the number of relay nodes

and the source encoder performance. Increasing the number of relay nodes in-

creases the diversity of the system at the expense of using a lower rate source

encoder (higher distortion under no outage). To get the optimal number of relays

Mopt note that the distortion exponent in (4.26) can be easily shown to be concave

in the number of relays (if we think of M as a continuous variable). Differentiating

and setting equal to zero, we get

∂

∂M
∆SH−MR−AMP = 0 −→ Mopt = 2

√
βm

p
. (4.33)

If Mopt in (4.33) is an integer number then it is the optimal number of relays. If

Mopt in (4.33) is not an integer, substitute in (4.26) with the largest integer that is

less than Mopt and the smallest integer that is greater than Mopt and choose the one

that yields the higher distortion exponent as the optimum number of relay nodes.

From the result in (4.33) it is clear that the number of relays decreases, for a fixed

βm, as p increases. For higher channel quality (higher p) the system performance

is limited by the distortion introduced by the source encoder in the absence of
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Figure 4.2: Two-hop M relays system (a) system model (b) time frame structure.

outage. Then, as p increases, the optimum number of relays decreases to allow

for the use of a better source encoder with a lower source encoding distortion.

In this scenario, the system is said to be a quality limited system because the

dominant phenomenon in the end-to-end distortion is source encoding distortion

and not outage. Similarly as βm increases (higher bandwidth), for a fixed p, the

performance will be limited by the outage event rather than the source encoding

distortion. As βm increases, the optimum number of relays increases to achieve

better outage performance. In this case, the system is said to be an outage limited

system.
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Channel Coding Diversity with 2 Relays

We consider now a system as shown in Fig. 4.3 comprising a source, two relays

and a destination. After channel encoding, the resulting block is split into two

blocks: xs1 and xs2 , which are transmitted to the relay nodes. The first relay will

only forward the block xs1 and the second relay will only forward xs2 as shown in

Fig. 4.3. From (4.11), it can be shown that the mutual information is given by

I ≈ log

(
1 +

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR

)
+ log

(
1 +

|hs,r2|2SNR|hr2,d|2SNR

|hs,r2|2SNR + |hr2,d|2SNR

)
,

(4.34)

where xs1 and xs2 are independent zero-mean circularly symmetric complex Gaus-

sian random variables each with variance 1/2 per dimension. We can show that

the distortion exponent of this system is given by the following theorem.

Theorem 4 The distortion exponent of the two-hop two-relay channel coding di-

versity amplify-and-forward system is

∆SH−2R−OPTCH−AMP =
2pβm

p + βm

. (4.35)

Proof From [52], the distortion exponent for the channel coding diversity over two

parallel channels can be written as

∆SH−2R−OPTCH−AMP =
4pβ′′m

p + 2β′′m
, (4.36)

Using (4.25) and (4.34) and considering β′′m = N ′′
m/K where N ′′

m is the number of

source channel uses for the xs1 (xs2) block (refer to Fig. 4.3) we get for our system

the same distortion exponent as (4.36). For fair comparison with the previous

schemes we should have 2Nm = 4N ′′
m, which means that β′′m = 1

2
βm. Finally,

substituting this relation in (4.36) yields (4.35).¤
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In the context of parallel channels, the notion of multiplexed channel coding

diversity was presented in [52]. The gain in the distortion exponent for the multi-

plexed channel coding diversity scheme (compared to the direct transmission) is a

result of the increase of the bandwidth due to the simultaneous use of parallel chan-

nels. In the multiplexed channel coding diversity scheme discussed in [52], the two

blocks, xs1 and xs2 , represent a split of a channel-coded message from a SD source

encoder over two parallel channels, which will be the two source-relay-destination

links in our system. In our system, there is no gain in using multiplexed channel

coding diversity because, for fair comparison, using either one relay or two relays

does not increase the bandwidth of the channel. This is because only one node,

either the source or a relay, is transmitting at a given time slot. The multiplexed

channel coding diversity in this case is equivalent to allowing one relay helping

the source to forward an SD source-coded message during one block and using

the other relay for the next block. Hence, in our system, the multiplexed channel

coding diversity is equivalent to the two-hop single relay system with the same

distortion exponent.

Source Coding Diversity with 2 Relays

We consider again a system with one source, two relays and one destination nodes

as shown in Fig. 4.3. The source transmits two blocks xs1 and xs2 to the relay

nodes. Each block represents one of the two descriptions generated by the dual

descriptions source encoder. In this case, the two blocks are broken up before the

channel encoder, that is each description is fed to a different channel encoder. The

first relay will only forward the block xs1 and the second relay will only forward

xs2 as shown in Fig. 4.3. The distortion exponent of this system is given by the
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Figure 4.3: Two-hop 2 relays channel coding diversity (source coding diversity)

system (a) system model (b) time frame structure.

following theorem.

Theorem 5 The distortion exponent of the two-hop 2 relays source coding diver-

sity amplify-and-forward protocol is

∆SH−2R−SRC−AMP = max

[
4pβm

3p + 2βm

,
2pβm

p + 2βm

]
. (4.37)

Proof From [52], the distortion exponent for the source coding diversity over two

parallel channels can be written as

∆SH−2R−SRC−AMP = max

[
8pβ′′m

3p + 4β′′m
,

4pβ′′m
p + 4β′′m

]
, (4.38)

Using (4.25) and (4.34) and considering β′′m = N ′′
m/K (refer to Fig. 4.3) we get

for our system the same distortion exponent as (4.38). For fair comparison with

the previous schemes, 2Nm = 4N ′′
m; which leads to β′′m = 1

2
βm. Substituting this

equality in (4.38) completes the proof.¤
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4.2.2 Multi-Hop Decode-and-Forward Protocol

In this section, we will analyze schemes using multi-hop decode-and-forward user

cooperation under different channel and source coding diversity schemes. In these

cases, the relay nodes decode the received source symbols. Only those relay nodes

that had correctly decoded the source symbols will proceed to retransmit them

to the destination node. When a relay fails in decoding the source symbols we

say that an outage has occurred. Furthermore, an outage occurs when either the

source-relay or the relay-destination channel are in outage, as discussed in Section

4.1. That is, the quality of the source-relay-destination link is limited by the

minimum of the source-relay and relay-destination channels. For the single relay

case we can formulate the outage as

Poutage = Pr [min(I(xs, yr1), I(xr1 , yd)) < R(D)] , (4.39)

where xr1 is the transmitted signal from the relay node. Note that in those schemes

using decode-and-forward the quality (mutual information) of any source-relay-

destination link is limited by the minimum of the source-relay and relay-destination

links SNRs. On the other hand, for two-hop amplify-and-forward schemes, the

performance is limited by the scaled harmonic mean of the source-relay and the

relay-destination links SNRs which is strictly less than the minimum of the two

links SNRs. Hence, the multi-hop amplify-and-forward protocol has a higher out-

age probability (lower quality) than the multi-hop decode-and-forward protocol.

That is, in terms of outage probability, the multi-hop decode-and-forward protocol

outperforms the multi-hop amplify-and-forward protocol. The above argument is

also applicable under different performance measures (for example, if the perfor-

mance measure was symbol error rate). From our presentation so far it is clear that

the distortion exponents for multi-hop decode-and-forward schemes are the same
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as their corresponding multi-hop amplify-and-forward schemes for the repetition

channel coding diversity and source coding diversity cases. For example, for the

two-hop single relay decode-and-forward scheme, the minimum expected distortion

is given by the lower-bound in (4.23), which has the same distortion exponent as

the two-hop single relay amplify-and-forward scheme. We collect these results in

the following theorem.

Theorem 6 The distortion exponent of the multi-hop decode-and-forward schemes

are:

• for the two-hop single relay

∆SH−1R−DEC =
2pβm

p + 2βm

, (4.40)

• for the two-hop M relays selection channel coding diversity

∆SH−MR−DEC =
4Mpβm

M(M + 1)p + 4βm

, (4.41)

• for the two-hop 2 relays source coding diversity

∆SH−2R−SRCDEC = max

[
4pβm

3p + 2βm

,
2pβm

p + 2βm

]
. (4.42)

Channel Coding Diversity with 2 Relays

We consider now the use of channel coding with two-relay decode-and-forward

protocols. In this case, the relay will perform joint decoding of the two blocks

xs1 and xs2 as illustrated in Fig. 4.4, which means that when any relay decodes

correctly it could forward both xs1 and xs2 . Allowing the first relay to forward

only xs1 if it has decoded correctly will cause a degradation in the performance if

the second relay decoded erroneously. Hence, if the first relay decoded correctly
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and the second did not, it is better (in terms of outage probability) for the first

relay to forward both xs1 and xs2 . Clearly, a similar argument could be applied

to the operation of the second relay. Also, when both relays decode correctly,

allowing the second relay to transmit also xs1 and xs2 will cause a loss of diversity.

To gain both advantages (lower outage probability when only one relay decodes

correctly and diversity when both correctly decode) we propose to use a space-time

transmission scheme. In our case we choose the Alamouti scheme [40], with the

time frame structure as shown in Fig. 4.4. Then, the distortion exponent of this

system is given by the following theorem

Theorem 7 The distortion exponent of the two-hop 2 relays channel coding di-

versity decode-and-forward protocol is

∆SH−2R−OPTCH−DEC =
2pβm

p + βm

. (4.43)

Proof The outage probability is given by (proof in Appendix I)

Poutage = co

(
exp(pR(D))

SNR2p

)
. (4.44)

The minimum expected distortion can now be computed as

E [D] = min
D

{
Poutage + D

(
1− Poutage

)}

≈ min
D

{
co

(
exp(pR(D))

SNR2p

)
+ D

[
1− co

(
exp(pR(D))

SNR2p

)]}

≈ min
D

{
co

(
exp(pR(D))

SNR2p

)
+ D

}
(4.45)

≈ min
D

{
co

D
− p

2β′′m

SNR2p
+ D

}
, (4.46)

where D is the source encoder distortion, (4.45) follows from high SNR approxi-

mation and (4.46) follows from (4.3). Differentiating and setting equal to zero we
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Figure 4.4: Two-hop 2 relays decode-and-forward channel coding diversity system’

time frame structure.

get the optimizing distortion

D∗ =

(
2β′′m
cop

) −2β′′m
2β′′m+p

SNR
−4β′′mp

2β′′m+p . (4.47)

Hence, the distortion exponent is given as

∆RC−1R−AMP =
4β′′mp

2β′′m + p
. (4.48)

For fair comparison, the total number of channel uses should be kept fixed for all

schemes. Thus, we have Nm = 2N ′′
m, from which we have β′′m = 1

2
βm. Substituting

in (4.48) we get

∆SH−2R−OPTCH−DEC =
2pβm

p + βm

. (4.49)

¤

4.3 Relay Channels

We now extend our study on distortion exponents to the case of a relay channel

when using either amplify-and-forward or decode-and-forward user cooperation.

Thus, we now consider that in addition to the source-relay-destination channels

there is also a communication channel between the source and destination nodes.
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For comparison purposes, we consider the case when the source transmits a

single description source coded message over the source-destination channel with-

out the help of any relay node. The system is shown in Fig. 4.5. In this case, the

distortion exponent is given by [52] as

∆NO−DIV =
2pβr

p + 2βr

, (4.50)

where βr = Nr/K and Nr is the number of channel uses for the source block (refer

to Fig. 4.5).

4.3.1 Amplify-and-Forward Protocol

In this section, we analyze the same schemes presented for the multi-hop channels

when now they are used over the amplify-and-forward relay channel. We will

consider the single and M relays repetition channel coding diversity and the 2

relays channel coding diversity and source coding diversity.
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Single Relay

Consider a system comprising a source, a relay and a destination as shown in Fig.

4.6. We consider that the relay operates following an amplify-and-forward user-

cooperation scheme. We also assume that the destination applies a Maximum

Ratio Combiner (MRC) to detect the transmitted signal from those received in

each phase [11]. The mutual information of this system is given by [11]

I(xs, yd) = log

(
1 + |hs,d|2SNR +

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR + 1

)
, (4.51)

where SNR = P/N0 and hs,d is the channel between the source and the destination.

At high SNR, we have

I(xs, yd) ≈ log

(
1 + |hs,d|2SNR +

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR

)

≈ log

(
|hs,d|2SNR +

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR

)
.

(4.52)

The distortion exponent of this system is given by the following theorem.

Theorem 8 The distortion exponent of the single relay amplify-and-forward scheme

is

∆RC−1R−AMP =
2pβr

2p + βr

. (4.53)

Proof Let W1 = |hs,d|2SNR and W2 =
|hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+|hr1,d|2SNR
. The outage proba-

bility can be calculated as

Poutage = Pr [log(1 + W1 + W2) < R(D)]

≈ Pr [W1 + W2 < exp(R(D))] .

(4.54)

From Appendix I the cdf of W1 + W2 is given by

FW1+W2(w) ≈ c33

( w

SNR

)2p

. (4.55)
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The minimum expected distortion can now be computed as

E [D] ≈ min
D
{Pr [W1 + W2 < exp(R(D))] + Pr [W1 + W2 ≥ exp(R(D))] D}

= min
D
{FW1+W2(exp(R(D))) + Pr [1− FW1+W2(exp(R(D)))] D}

≈ min
D

{
c33

(
exp(2pR(D))

SNR2p

)
+

[
1− c33

(
exp(2pR(D))

SNR2p

)]
D

}

≈ min
D

{
c33

(
D

−p

β′r

SNR2p

)
+ D

}
,

(4.56)

where β′r = N ′
r/K and N ′

r is the number of source channel uses (refer to Fig. 4.6).

Differentiating and setting equal to zero we get the optimizing distortion

D∗ =

(
βr

c33p

) −β′r
β′r+p

SNR
−2β′rp

β′r+p . (4.57)

Hence, the distortion exponent is given as

∆RC−1R−AMP =
2β′rp

β′r + p
. (4.58)

For fair comparison we should have Nr = 2N ′
r from which we have β′r = 1

2
βr.

Substituting in (4.58) we get

∆RC−1R−AMP =
2βrp

βr + 2p
. (4.59)

¤

Asymptotically comparing the distortion exponents for case of no diversity and

a single relay we have

lim
βr/p→∞

∆RC−1R−AMP

∆NO−DIV

= 2,

lim
βr/p→0

∆RC−1R−AMP

∆NO−DIV

=
1

2
.

(4.60)

Note that as βr/p increases (bandwidth increases) the system becomes outage

limited because the performance is limited by the outage event. In this case, the
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Figure 4.6: Single relay system (a) system model (b) time frame structure.

single relay amplify-and-forward system will achieve a higher distortion exponent

since it achieves higher diversity order. Conversely, as βr/p tends to zero (higher

channel quality) the performance is not limited by the outage event, but is limited

by the source encoder quality performance. A similar observation was made in [52]

in comparing the performance for parallel channels of selection and multiplexed

channel diversities. In the case of the multiplexed channel diversity from [52], we

can think of the two parallel channels as a single channel with no diversity but

with twice the bandwidth. When regarding the multiplexed channel diversity as

a single channel, the performance of selection and multiplexed channel diversities

for parallel channels can be compared in the same way as (4.60).

The ongoing analysis can be extended to the case of M amplify-and-forward

relay nodes. The distortion exponent in this case is given by the following theorem.

Theorem 9 The distortion exponent of M relay nodes amplify-and-forward pro-

tocol is

∆RC−MR−AMP =
2(M + 1)pβr

2βr + (M + 1)2p
. (4.61)
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Figure 4.7: Two relays system (a) system model (b) time frame structure.

Again we can think of selecting the optimum number of relays to maximize the

distortion exponent. This is again a tradeoff between the diversity and the quality

of the source encoder.

Channel Coding Diversity with 2 Relays

We consider a system consisting of a source, two relays and a destination as shown

in Fig. 4.7. The source transmits two channel-coded blocks xs1 and xs2 to the

destination and the relay nodes. The first relay will only forward the block xs1 and

the second relay will only forward xs2 as shown in Fig. 4.7. First, we will calculate

the mutual information for the channel coding scheme.

The system model can be described as follows. In phase 1, the source broadcasts

its information to the destination and two relay nodes. The received signals are

ys,dm =
√

Phs,dxsm + ns,d, (4.62)

ys,ri
=
√

Phs,ri
xsm + ns,ri

, i = 1, 2, m = 1, 2. (4.63)
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Relay 1 will only forward xs1 and relay 2 will only forward xs2 . The received signals

at the destination due to relay 1 and relay 2 transmissions are given by

yri,d = hri,dζiys,ri
+ nri,d, i = 1, 2, (4.64)

where ζi is the signal amplification performed at the relay which satisfies the power

constraint with equality, that is

ζi =

√
P

P |hs,ri
|2 + N0

, (4.65)

and where all the noise components are modeled as independent, zero-mean com-

plex Gaussian random variables with variance N0/2 per dimension.

Define the 4 × 1 vector, y = [ys,d1 , ys,d2 , yr1,d, yr2,d]
T . To get the mutual

information between x = [xs1 , xs2 ] and y we consider that an MRC detector is

applied on ys,d1 , yr1,d and another MRC detector is applied on ys,d2 , yr2,d. The

output of the first MRC detector is given by

r1 = αsys,d1 + α1yr1,d, (4.66)

where αs =
√

Ph∗s,d/N0 and

α1 =

√
Pζ1h

∗
r1,dh

∗
s,r1

(ζ2
1 |hr1,d|2 + 1)N0

.

We can write r1 in terms of xs1 as

r1 =

(
|hs,d|2SNR +

|hr1,d|2SNR|hs,r1|2SNR

|hs,r1|2SNR + |hr1,d|2SNR + 1

)
xs1 + n1, (4.67)

where n1 is a zero-mean circularly symmetric complex Gaussian random noise with

variance |hs,d|2SNR+
|hr1,d|2SNR|hs,r1 |2SNR

|hs,r1 |2SNR+|hr1,d|2SNR+1
. Similarly we can have r2, represent-

ing the output of the second MRC detector, given by

r2 =

(
|hs,d|2SNR +

|hr2,d|2SNR|hs,r2|2SNR

|hs,r2|2SNR + |hr2,d|2SNR + 1

)
xs2 + n2, (4.68)
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where n2 is a zero-mean circularly symmetric complex Gaussian random noise with

variance |hs,d|2SNR+
|hr2,d|2SNR|hs,r2 |2SNR

|hs,r2 |2SNR+|hr2,d|2SNR+1
. Next, the conditional pdf of y given

x and the channel coefficients is given by

p(y/x) = p(ys,d1 , yr1,d/xs1)p(ys,d2 , yr2,d/xs2). (4.69)

The conditional pdf of y given x and the channel coefficients represents an expo-

nential family of distributions [23]. Therefore, it can be easily shown that r1 and

r2, given the channel coefficients, are sufficient statistics for x, that is

p(y/x, r1, r2) = p(y/r1, r2) = p(ys,d1 , yr1,d/r1)p(ys,d2 , yr2,d/r2), (4.70)

Since r1 and r2 are sufficient statistics for x, then the mutual information between

x and y equals the mutual information between x and r = [r1, r2] [24], that is

I(x; r) = I(x;y). (4.71)

For any covariance matrix of x the mutual information is maximized when x is

zero-mean circularly symmetric complex Gaussian random vector [24]. Define

γ1 = |hs,d|2SNR +
|hr1,d|2SNR|hs,r1|2SNR

|hs,r1|2SNR + |hr1,d|2SNR + 1

γ2 = |hs,d|2SNR +
|hr2,d|2SNR|hs,r2|2SNR

|hs,r2|2SNR + |hr2,d|2SNR + 1
.

The mutual information can be computed as

I(x,y) = I(x, r) = log


I2 +




γ1 αγ′

α∗γ′′ γ2





 , (4.72)

where I2 is the 2 × 2 identity matrix, γ′ and γ′′ are functions of the channel

coefficients and the noise variance and α = E
[
xs1x

∗
s2

]
. From (4.72) it is clear that

both α and −α will give the same mutual information. From the concavity of the
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log-function we can see that the mutual information maximizing α is α = 0, that is

xs1 and xs2 are independent (since both xs1 and xs2 are Gaussian). The maximum

mutual information can now be given as

I ≈ log

(
1 + |hs,d|2SNR +

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR

)
+

log

(
1 + |hs,d|2SNR +

|hs,r2|2SNR|hr2,d|2SNR

|hs,r2|2SNR + |hr2,d|2SNR

)
.

(4.73)

The distortion exponent of this system is given by the following theorem.

Theorem 10 The distortion exponent of the 2 relays channel coding diversity

amplify-and-forward protocol is

∆RC−2R−OPTCH−AMP =
3pβr

3p + βr

. (4.74)

Proof To compute the distortion exponent of that system we start with the anal-

ysis of a suboptimal system at the destination node. This suboptimal system will

give a lower-bound on the distortion exponent. In the suboptimal system, the

detector (suboptimal detector) selects the paths with the highest SNR and does

not apply an MRC detector (the optimal detector is the one that applies MRC to

the received signals). For example, for xs1 , it either selects the source-destination

link or the source-relay-destination link based on which one has higher SNR. The

mutual information for the suboptimal system can be proved to be

Isub ≈ log

(
1 + max

(
|hs,d|2SNR,

|hs,r1|2SNR|hr1,d|2SNR

|hs,r1|2SNR + |hr1,d|2SNR

))
+

log

(
1 + max

(
|hs,d|2SNR,

|hs,r2|2SNR|hr2,d|2SNR

|hs,r2|2SNR + |hr2,d|2SNR

))
.

(4.75)

The distortion exponent of the suboptimal system is given by (proof in Appendix

II)

∆SUBOPTIMAL =
3βrp

βr + 3p
. (4.76)
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For the optimal detector (the one using an MRC detector), the distortion exponent

satisfies

∆RC−2R−OPTCH−AMP ≥ ∆SUBOPTIMAL =
3βrp

βr + 3p
. (4.77)

Next, we find an upper-bound on the distortion exponent for the optimal system.

In this case, the mutual information in (4.73) can be upper- and lower-bounded as

log(1 + 2W1 + W2 + W3) ≤ log (1 + W1 + W2) + log (1 + W1 + W3)

≤ 2 log(1 + W1 +
1

2
W2 +

1

2
W3),

where W1 = |hs,d|2SNR, W2 =
|hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+|hr1,d|2SNR
and W3 =

|hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+|hr2,d|2SNR

are nonnegative numbers. The upper-bound follows from the concavity of the log-

function. Therefore, the outage probability Po of the optimal system can be upper-

and lower-bounded as

Pr

[
2 log(1 + W1 +

1

2
W2 +

1

2
W3) < R

]
≤ Po ≤ Pr [log(1 + 2W1 + W2 + W3) < R] .

(4.78)

From (4.78) we can easily show that

CL

exp
(

3pR
2

)

SNR3p
/ Po / CU

exp(3pR)

SNR3p
, (4.79)

where CL and CU are two constants that do not depend on the SNR. Similar to the

suboptimal system, and using (4.79), the minimum expected end-to-end distortion

for the optimal system can be lower-bounded as

E [D] ' min
D

{
CL

exp
(

3pR
2

)

SNR3p
+

(
1− CU

exp(3pR)

SNR3p

)
D

}

≈min
D

{
CLD

−3p

4β′′r

SNR3p
+

(
1− CUD

−3p

2β′′r

SNR3p

)
D

}

≈min
D

{
CLD

−3p

4β′′r

SNR3p
+ D

}
.

(4.80)

131



Differentiating the lower-bound and setting equal to zero we get the optimizing

distortion as

D∗ =

(
4β′′r

3pCL

) −4β′′r
4β′′r +3p

SNR
−12β′′r p

4β′′r +3p . (4.81)

substituting we get

E [D] ' CLOSNR
−12β′′r p

4β′′r +3p , (4.82)

from which we can upper-bound the distortion exponent of the optimal system as

∆RC−2R−OPTCH−AMP ≤ 12β′′r p

4β′′r + 3p
=

3βrp

βr + 3p
. (4.83)

Finally, from (4.77) and (4.83) we get

∆RC−2R−OPTCH−AMP =
3βrp

βr + 3p
. (4.84)

¤

Source Coding Diversity with 2 Relays

We continue analyzing a system as in Fig. 4.7 but now we assume that each of the

two blocks sent from the source, xs1 and xs2 , represents one description generated

from a dual descriptions source encoder. The first relay will only forward the block

xs1 and the second relay will only forward xs2 as shown in Fig. 4.7. The distortion

exponent of this system is given by the following theorem .

Theorem 11 The distortion exponent of the 2 relays source coding diversity amplify-

and-forward protocol is

∆RC−2R−SRC−AMP = max

[
2pβr

2p + βr

,
3pβr

4p + βr

]
, (4.85)
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Proof The minimum expected end-to-end distortion can be upper- and lower-

bounded as (proof in Appendix III)

E [D] ' min
D0,D1

cs1

SNR3p

(
1

4D0D1

) 3p

4β′′r
+

cs2

SNR2p

(
1

4D0D1

) p

2β′′r
.D1 + D0

E [D] / min
D0,D1

cs1

SNR3p

(
1

2D0D1

) 3p

4β′′r
+

cs2

SNR2p

(
1

2D0D1

) p

2β′′r
.D1 + D0.

(4.86)

Note that for p ≥ 2β′′r the minimum expected distortion increases as D1 decreases.

Hence, the optimal choice of D1 approaches a constant that is bounded away from

zero [52]. For D1 ≥ 1/2 the source coding rate is given by (4.7) and not (4.6). The

optimal system in this case degenerates to the channel multiplexed scheme which

is equivalent, in our system, to the single relay system (the argument is the same

as for the multi-hop channel). Thus, the distortion exponent is given by

∆RC−2R−SRC−AMP =
2pβr

2p + βr

, p ≥ 1

2
βr = 2β′′r . (4.87)

For p < 2β′′r , we can find the optimal value of D1 by differentiating the lower-bound

in (4.120) and setting equal to zero. We get

D∗
1 =

(
cs1

cs2

(
3p

(βr − 2p)

)) βr
p+βr

SNR− pβr
p+βr (4D0)

− p
p+βr , p <

1

2
βr, (4.88)

where, for fair comparison, we fix the total number of channel uses and get β′′r =

1
4
βr. For the case when p < 1

2
βr, substituting (4.88) in the lower-bound in (4.120)

we get

E [D] ' min
D0

C.D
− 3p

p+βr
0 .SNR− 3pβr

p+βr + D0, p <
1

2
βr, (4.89)

where C is a constant that does not depend on D0 and the SNR. Differentiating

and setting equal to zero we can get the expression for the optimizing D0 as

D∗
0 = C ′.SNR− 3pβr

4p+βr , p <
1

2
βr. (4.90)
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Hence, from (4.90) we have

C ′
LBSNR− 3pβr

4p+βr / E [D] / C ′
UBSNR− 3pβr

4p+βr , p <
1

2
βr. (4.91)

From (4.87) and (4.91) we conclude that the distortion exponent for the source

diversity system is given by

∆RC−2R−SRC−AMP = max

[
2pβr

2p + βr

,
3pβr

4p + βr

]
, (4.92)

where the second term in (4.92) is the maximum for the case p < 1
2
βr.¤

4.3.2 Decode-and-Forward Relay Channel

We now analyze the decode-and-forward relay channel. The distortion exponents

for the different schemes can be derived from the analysis presented in the previous

sections. We collect the corresponding results in the following theorem

Theorem 12 The distortion exponents of the decode-and-forward relay channel

are

• For the single relay channel

∆RC−1R−DEC =
2pβr

2p + βr

. (4.93)

• For the M relays selection channel coding diversity

∆RC−MR−DEC =
2(M + 1)pβr

2βr + (M + 1)2p
. (4.94)

• For the channel coding with 2 relays, with the same time frame structure as

in Fig. 4.4,

∆RC−2R−OPTCH−AMP =
3pβr

3p + βr

. (4.95)

134



• For the source coding diversity with 2 relays

∆RC−2R−SRC−DEC = max

[
2pβr

2p + βr

,
3pβr

4p + βr

]
. (4.96)

In summary, the distortion exponents for the decode-and-forward relay channel

are the same as the amplify-and-forward relay channel.

4.4 Discussion

The distortion exponent for the various schemes analyzed in this Chapter are given

in Table 4.1. From the results in Table 4.1 we can see that the channel coding

diversity scheme always results in a higher distortion exponent than the source

coding diversity scheme at any bandwidth expansion factor (the result is valid

over both the multi-hop and relay channels). This means that, between source

and channel coding, it is better to exploit diversity at the channel encoder level.

Comparing the expressions for the distortion exponents for the single relay and M

relay nodes we can see that increasing the number of relays does not always result in

an increase in the distortion exponent, showing that there is a tradeoff between the

quality (resolution) of the source encoder and the amount of cooperation (number

of relays).

Figure 4.8 compares the distortion exponent for the various systems as a func-

tion of βm for the multi-hop channel. The results in Figure 4.8 confirms that the

channel coding diversity gives better distortion exponent than the source coding

diversity. A similar observation was made in [52] for the case of parallel channels.

Note that as βm increases, the factor that limits the distortion exponent perfor-

mance is the diversity (number of relays nodes). In this case (high βm), the system

is said to be an outage limited system as the outage probability, rather than the
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Table 4.1: Distortion Exponents for the Amplify-and-Forward (Decode-and-

Forward) Multi-Hop and Relay Channels.

Multi-Hop Channels Relay Channel

Single relay
2pβm

p+2βm

2pβr

2p+βr

Selective channel coding diversity with M relays
4Mpβm

M(M+1)p+4βm

2(M+1)pβr

2βr+(M+1)2p

Channel coding diversity with 2 relays
2pβm

p+βm

3pβr

3p+βr

Source coding diversity with 2 relays max
[

4pβm

3p+2βm
, 2pβm

p+2βm

]
max

[
2pβr

2p+βr
, 3pβr

4p+βr

]

quality of the source encoder, is the main limiting factor in the end-to-end distor-

tion. Figure 4.8 shows that in this scenario, the distortion exponent performance

is improved by increasing the number of relays so as to increase diversity. At low

βm the system is said to be quality limited as the quality of the source encoder

(distortion under no outage), rather than the outage probability, is the main lim-

iting factor in the end-to-end distortion. In this case, the gain from using a better

source encoder, that has a higher resolution, is more significant than the gain from

increasing the number of relay nodes. Figure 4.8 shows that in this scenario, the

distortion exponent performance is improved by using only a single relay node

allowing for the use of a higher resolution source encoder.

Figure 4.9 shows the distortion exponent versus βr for the various relay channel

schemes. Figure 4.9 confirms that the scheme with channel coding diversity yields

better distortion exponent than the one with source coding diversity. As was the

case for multi-hop schemes, as βr increases, diversity becomes the limiting factor

for the distortion exponent, in which case, Figure 4.9 shows that increasing the

number of relays improves the distortion exponent results. Again, at low βr, direct

transmission (no-diversity) results in a lower end-to-end distortion which can be
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Figure 4.8: Distortion exponents for two-hop amplify-and-forward (decode-and-

forward) protocol.

interpreted in the same way as for the multi-hop channel.

Appendix I Outage Analysis for Channel Cod-

ing diversity with 2 relays Multi-Hop Decode-and-

Forward Scheme

Let S −→ Ri and Ri −→ D denote the channel between the source and the ith

relay and the channel between the ith relay and the destination, respectively. Let

R1, R2 −→ D denote the channel between the two relays and the destination when

both relays decode correctly. We calculate the outage probability by splitting the
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Figure 4.9: Distortion exponents for amplify-and-forward (decode-and-forward)

relay channel.

outage event into disjoint events, i.e. Poutage = Po1 + Po2 + Po3 + Po4 , where

Po1 = Pr [S −→ R1 in outage, S −→ R2 in outage]

= Pr [S −→ R1 in outage] . Pr [S −→ R2 in outage]

= Pr
[
2 log(1 + |hs,r1|2SNR) < R(D)

]
. Pr

[
2 log(1 + |hs,r2|2SNR) < R(D)

]

≈ co1

(
exp(pR(D))

SNR2p

)
.

(4.97)

Po2

= Pr [S −→ R1 in outage, S −→ R2 not in outage, R2 −→ D in outage]

= Pr [S −→ R1 in outage] . Pr [S −→ R2 not in outage] . Pr [R2 −→ D in outage]

≈ co2

(
exp(pR(D))

SNR2p

)
.

(4.98)
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Po3

= Pr [S −→ R2 in outage, S −→ R1 not in outage, R1 −→ D in outage]

≈ co3

(
exp(pR(D))

SNR2p

)
.

(4.99)

Po4

= Pr [S −→ R1 not in outage, S −→ R2 not in outage, R1, R2 −→ D in outage]

= Pr [S −→ R1 not in outage] . Pr [S −→ R2 not in outage] . Pr [R1, R2 −→ D in outage]

≈ Pr

[
2 log(1 +

1

2
(|hr1,d|2SNR + |hr2,d|2SNR)) < R(D)

]
,

(4.100)

where the factor 1/2 in (4.100) is due to the loss in SNR because of the use

of transmit diversity [40]. To calculate Po4 in (4.100) we need to calculate the cdf

of the random variable |hr1,d|2SNR + |hr2,d|2SNR. Let W1 = |hr1,d|2SNR and

W2 = |hr2,d|2SNR. The pdf of W1 + W2 can be computed as

fW1+W2(w) =

∫ w

0

fW1(τ)fW2(w − τ)dτ

≈ c11c22p
2

SNR2p

∫ w

0

τ p−1(w − τ)p−1dτ

= c11c22p
2 w2p−1

SNR2p
B(p, p),

(4.101)

where B(., .) is the Beta function [41]. The cdf of W1 + W2 can be computed as

FW1+W2(w) =

∫ w

0

fW1+W2(τ)dτ = c33

( w

SNR

)2p

, (4.102)

from which we have

Po4 ≈ co4

(
exp(pR(D))

SNR2p

)
. (4.103)
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Then, the outage probability is

Poutage = Po1 + Po2 + Po3 + Po4 = co

(
exp(pR(D))

SNR2p

)
. (4.104)

In the proof, we have assumed that xs1 and xs2 are independent zero-mean com-

plex Gaussian with variance 1/2 per dimension. We can easily show that this

choice of xs1 and xs2 is the optimal choice for maximizing the mutual information

(minimizing the outage probability) by inspection of the individual outage events

in (4.104).
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Appendix II Distortion Exponent of the Subop-

timal Detector for the Channel Coding Diversity

Scheme

Let W1 = |hs,d|2SNR, W2 =
|hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+|hr1,d|2SNR
and W3 =

|hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+|hr2,d|2SNR
.

The outage probability of the suboptimal system is given by

Poutage

= Pr [Isub < R]

= Pr [log(1 + max(W1,W2)) + log(1 + max(W1,W3)) < R]

= Pr

[
{2 log(1 + W1) < R, W1 > W2,W1 > W3}

⋃
{log(1 + W1) + log(1 + W3) < R

,W1 > W2, W3 > W1}
⋃
{log(1 + W2) + log(1 + W1) < R,W2 > W1,W1 > W3}

⋃
{log(1 + W2) + log(1 + W3) < R, W2 > W1,W3 > W1}

]

= Pr [2 log(1 + W1) < R, W1 > W2,W1 > W3] + Pr

[
log(1 + W1) + log(1 + W3) < R

,W1 > W2, W3 > W1

]
+ Pr [log(1 + W2) + log(1 + W1) < R, W2 > W1,W1 > W3]

+ Pr [log(1 + W2) + log(1 + W3) < R,W2 > W1,W3 > W1] ,

(4.105)

where the last equality follows from the events being disjoint. In the last equation

we used R instead of R(D) for simplicity of presentation. The joint pdf of W1, W2

and W3, which are independent random variables, is given by

f(w1, w2, w3) ≈ cjp
3

(
wp−1

1 wp−1
2 wp−1

3

SNR3p

)
, (4.106)
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where cj is a constant. To find the outage probability, we calculate the probability

of the individual outage events in (4.105),

P1 = Pr[2 log(1 + W1) < R, W1 > W2,W1 > W3]

=

∫ exp(R/2)

w1=0

∫ w1

w3=0

∫ w1

w2=0

f(w1, w2, w3)dw2dw3dw1

≈
∫ exp(R/2)

w1=0

∫ w1

w3=0

∫ w1

w2=0

cjp
3

(
wp−1

1 wp−1
2 wp−1

3

SNR3p

)
dw2dw3dw1

=
cj exp

(
3pR
2

)

3SNR3p
.

(4.107)

P2 = Pr[log(1 + W1) + log(1 + W3) < R, W1 > W2,W3 > W1]

≈Pr[log(W1) + log(W3) < R,W1 > W2,W3 > W1]

=

∫ exp(R/2)

w1=0

∫ exp(R)
w1

w3=w1

∫ w1

w2=0

f(w1, w2, w3)dw2dw3dw1

≈
∫ exp(R/2)

w1=0

∫ exp(R)
w1

w3=w1

∫ w1

w2=0

cjp
3

(
wp−1

1 wp−1
2 wp−1

3

SNR3p

)
dw2dw3dw1

=
cjp

2

SNR3p

∫ exp(R/2)

w1=0

∫ exp(R)
w1

w3=w1

w2p−1
1 wp−1

3 dw3dw1

=
2cj exp

(
3pR
2

)

3SNR3p
.

(4.108)

P3 = Pr[log(1 + W2) + log(1 + W1) < R, W2 > W1,W1 > W3]

≈Pr[log(W1) + log(W3) < R, W1 > W2,W3 > W1]

≈2cj exp
(

3pR
2

)

3SNR3p
.

(4.109)
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P4 = Pr[log(1 + W2) + log(1 + W3) < R, W2 > W1,W3 > W1]

≈Pr[log(W2) + log(W3) < R, W2 > W1,W3 > W1]

=

∫ exp(R/2)

w1=0

∫ exp(R)
w1

w2=w1

∫ exp(R)
w2

w3=w1

f(w1, w2, w3)dw3dw2dw1

≈
∫ exp(R/2)

w1=0

∫ exp(R)
w1

w2=w1

∫ exp(R)
w2

w3=w1

cjp
3

(
wp−1

1 wp−1
2 wp−1

3

SNR3p

)
dw3dw2dw1

=
4cj exp

(
3pR
2

)

3SNR3p
,

(4.110)

where we have limw1→0+ wp
1 log w1 = 0 for p ≥ 1. The outage probability for the

suboptimal system is

Poutage = P1 + P2 + P3 + P4 ≈
cm exp

(
3pR
2

)

SNR3p
, (4.111)

where cm is a constant. The minimum expected end-to-end distortion can now be

computed as

E[D] = min
D
{Poutage + (1− Poutage) D}

≈min
D

{
cm exp

(
3pR
2

)

SNR3p
+

(
1− cm exp

(
3pR
2

)

SNR3p

)
D

}

≈min
D

{
cmD

−3p

4β′′r

SNR3p
+

(
1− cmD

−3p

4β′′r

SNR3p

)
D

}

≈min
D

{
cmD

−3p

4β′′r

SNR3p
+ D

}
,

(4.112)

where β′′r = N ′′
r /K (refer to Fig. 4.7), D is the source encoder distortion and we

have used both high SNR approximations and (4.3). Differentiating and setting

equal to zero we get the optimizing distortion

D∗ =

(
4β′′r
3cmp

) −4β′′r
4β′′r +3p

SNR
−12β′′r p

4β′′r +3p . (4.113)

Substituting we get the distortion exponent for this suboptimal system as

∆SUBOPTIMAL =
12β′′r p

4β′′r + 3p
. (4.114)
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For fair comparison the total number of channel uses is fixed and, thus, β′′r = 1
4
βr.

Appendix III Outage Analysis for Source Coding

diversity with 2 relays Decode-and-Forward Relay

Channel

The receiver applies an MRC detector on the received data to detect xs1 and xs2 .

Let W1 = |hs,d|2SNR, W2 =
|hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+|hr1,d|2SNR
and W3 =

|hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+|hr2,d|2SNR
.

The minimum expected end-to-end distortion is given by

E[D] ≈

min
D0,D1

Pr [ log(1 + W1 + W2) < Rmd(D0, D1)/2, log(1 + W1 + W3) < Rmd(D0, D1)/2]

+

(
Pr [ log(1 + W1 + W2) < Rmd(D0, D1)/2, log(1 + W1 + W3) > Rmd(D0, D1)/2]

+ Pr [ log(1 + W1 + W2) > Rmd(D0, D1)/2, log(1 + W1 + W3) < Rmd(D0, D1)/2]

)
D1

+ Pr [ log(1 + W1 + W2) > Rmd(D0, D1)/2, log(1 + W1 + W3) > Rmd(D0, D1)/2] D0,

(4.115)

where Rmd, D0 and D1 are as introduced in Section 4.1. To calculate the minimum

expected distortion we need to calculate the following probabilities in (4.115)

P ′
1 = Pr [ log(1 + W1 + W2) < Rmd(D0, D1)/2, log(1 + W1 + W3) < Rmd(D0, D1)/2]

= Pr [ log(1 + W1 + max(W2,W3)) < Rmd(D0, D1)/2]

≈cs1
1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)
.

(4.116)
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P ′
2 = Pr [ log(1 + W1 + W2) > Rmd(D0, D1)/2, log(1 + W1 + W3) > Rmd(D0, D1)/2]

= Pr [ log(1 + W1 + min(W2,W3)) > Rmd(D0, D1)/2]

=1− Pr [ log(1 + W1 + min(W2,W3)) < Rmd(D0, D1)/2]

≈1− cs2
1

SNR2p
exp (pRmd(D0, D1)) .

(4.117)

P ′
3 = Pr [ log(1 + W1 + W2) < Rmd(D0, D1)/2, log(1 + W1 + W3) > Rmd(D0, D1)/2]

+ Pr [ log(1 + W1 + W2) > Rmd(D0, D1)/2, log(1 + W1 + W3) < Rmd(D0, D1)/2]

=1− P ′
1 − P ′

2

≈cs2
1

SNR2p
exp (pRmd(D0, D1))− cs1

1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)

≈cs2
1

SNR2p
exp (pRmd(D0, D1)) .

(4.118)

The minimum expected distortion in (4.115) can now be calculated as

E[D] ≈ min
D0,D1

{
cs1

1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)
+ cs2

1

SNR2p
exp (pRmd(D0, D1)) D1

+

(
1− cs2

1

SNR2p
exp (pRmd(D0, D1))

)
D0

}

≈ min
D0,D1

{
cs1

1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)
+

cs2
1

SNR2p
exp (pRmd(D0, D1)) D1 + D0

}
.

(4.119)

Substituting from (4.6) yields upper- and lower-bound for the minimum expected

end-to-end distortion as

E[D] ' min
D0,D1

cs1

SNR3p

(
1

4D0D1

) 3p

4β′′r
+

cs2

SNR2p

(
1

4D0D1

) p

2β′′r
.D1 + D0

E[D] / min
D0,D1

cs1

SNR3p

(
1

2D0D1

) 3p

4β′′r
+

cs2

SNR2p

(
1

2D0D1

) p

2β′′r
.D1 + D0.

(4.120)
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Chapter 5

Distributed Detection in Wireless

Networks: A Sensor or a Relay?

Lately, sensor networks have gained a lot of interest due to their wide range of

applications and this has increased the thrill toward the study of sensor networks.

The applications of sensor networks include monitoring environmental conditions

such as temperature, military applications such as battlefield surveillance, health

monitoring, and many other applications.

Our interest in this Chapter will be focused on how to deploy relay nodes in

the sensor networks. We assume dumb sensor nodes, which means that the sensor

nodes do not have processing capabilities of the sensed measurements, which can

be due to lack of knowledge of the measurement data models under each hypothesis

or due to limited processing capabilities of the nodes [68]. Based on our model

assumption, some sensor nodes measurements will be provide more information

to the fusion center. So some sensors are assumed to be “more-informative” and

some sensors are assumed to be “less-informative” to the fusion center. The use

of relay nodes, instead of some of the sensor nodes that are less-informative to the

146



fusion center, to relay measurement for the more-informative sensor nodes will be

considered.

The problem of distributed detection in the wireless sensor networks is consid-

ered. There exists a plethora of works on distributed detection in sensor network.

In [69], the authors considered the problem of how to determine the density of

sensor nodes in a linear network where nodes are placed on a line. They study

the problem of whether to employ many low-cost, low-power sensors or few high-

cost, high-power sensors. The work in [69] considered the cases of deterministic

signals and correlated Gaussian processes both corrupted by Gaussian noise. For

the case of deterministic signals corrupted by Gaussian noise it was proved that

the performance, measured in terms of the error exponent, improved by increasing

the density of the sensor nodes. For the other case of correlated Gaussian process

corrupted by Gaussian noise, it was proved that there exists an optimal density

that maximizes the error exponent. In [70], closed-form expressions for the error

exponents of the Neyman-Pearson detector are derived for the detection of Gauss-

Markov signals corrupted by noise. The work in [71] considered the problem of

distributed detection with a rate constraint. The authors proved that the use of

more sensors, each signaling a binary signal, can be optimal under certain condi-

tions compared to the case of having less sensor nodes each sending at a higher

rate to the fusion center.

Some works on distributed detection focused on the problem of energy-efficiency

in the sensor networks by allowing some sensor nodes to censor their transmis-

sion [72, 73]. These works considered the tradeoff between the performance of the

detector at the fusion center to the energy consumption of the sensor network.

Other works have considered the problem of distributed detection with correlated

147



sensor nodes signals [74–78]. These works mostly focused on the study of deriv-

ing optimal fusion rules at the fusion center or the conditions under which some

detectors turn to be optimal. The work in [68] studied the type-based distributed

(decentralized) detection in the sensor networks over parallel access channels (PAC)

and multiple access channels (MAC).

Considering the application of relaying schemes for distributed detection, [79]

has considered the use of relaying to improve the energy-efficiency of the sensor

network. The work in [79] also proposed a consensus protocol and analyzes its

energy consumption if cooperation is present to improve the energy-efficiency of

the sensor network.

In this Chapter we the performance of two protocols will be compared. In

Protocol I, each node directly transmits its measurement to the fusion center. In

Protocol II, we allocate the resources of some of the less-informative sensor nodes

to relay nodes, which relay the measurements of the more-informative sensor nodes.

We will compare the performance of the two protocols in terms of the probability

of detection error and characterize the regions in terms of the measurement noise

and the communication noise variances where one protocol performs better than

the other protocol [80,81].

5.1 System Model

In this section, the system model for the wireless sensor network is presented.

The sensor network is assumed to have N sensor nodes that are used to monitor a

certain phenomenon. The sensor nodes send their sensed measurements to a fusion

center to make decisions about the state of nature observed by the sensor network.

The sensor nodes are assumed to be dumb, i.e., they can not apply any precessing
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Figure 5.1: A Schematic Diagram for the Wireless Sensor Network.

to the sensed measurement. In other words, the sensor nodes sense the medium

and directly transmit their measurements to the fusion center where decisions are

made. The wireless sensor networks is as depicted in Fig. 5.1. We assume a binary

hypotheses detection problem, i.e., the fusion center makes decisions between two

hypotheses, namely, H0 and H1.

The i-th sensor node measurement is xi, i = 1, · · · , N . The xi’s are assumed

to be mutually independent under each hypothesis. The data model under each

hypothesis is given by

H0 : xi ∼ CN
(
0, σ2

)

H1 : xi ∼ CN
(
mi, σ

2
)
,

(5.1)

where σ2 can be thought of as the measurement noise variance at any sensor node.

The notation x ∼ CN (m,σ2) is used to denote that x is a complex Gaussian

random variable with mean m and variance σ2/2 per dimension.

In the sequel, the performance of two transmission protocols from the sensor

nodes to the fusion center will be compared. In the first protocol, which is denoted

by Protocol I, each sensor node directly transmits its measurement to the fusion

center without the help of any other node in the network. In the second protocol,
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which is denoted by Protocol II, relay nodes are used instead of some of the less-

informative sensor nodes to forward information of the more-informative sensor

nodes. We will derive expressions of the probability of detection error Pe for the

previous two protocols. Based on the derived expressions, it can be decide which

of the two protocols will result in a better performance in terms of Pe.

5.1.1 Protocol I System Model

In Protocol I, each sensor node directly transmits its measurement to the fusion

center. Let hsiF denote the channel gain from the i-th sensor node to the fusion

center, which is modeled as zero-mean circularly symmetric complex Gaussian ran-

dom variable with variance 1/2 per dimension, i.e., Rayleigh flat-fading is assumed.

The channel gains from the sensor nodes to the fusion center are assumed to be

independent. The received data at the fusion center due to the i-th sensor node

transmission is given by

ysiF = hsiF

√
Pixi + nsiF , (5.2)

where Pi is selected to satisfy a power constraint at the sensor node and nsiF is

a receiver additive white Gaussian noise. The term nsiF is modeled as zero-mean

circularly symmetric complex Gaussian random variable with variance N0/2 per

dimension.

5.1.2 Protocol II System Model

In Protocol II, relay nodes will be deployed in the network, which will be used

instead of the sensor nodes that their measurements do not provide the fusion

center with a lot of information about the observed phenomenon. Again, dumb

150



sensor nodes are assumed, which means that a sensor node is not able to process

the sensed measurement.

If node j works as a relay for sensor i, then the received signal at the fusion

center due to node j transmission is given by

yjF = hjF

√
Pixi + njF , j ∈ R (5.3)

where for simplicity of analysis the noise from node i to node j is neglected. Hence,

node j transmits a clean version of the measurement of node i to the fusion center1.

hjF denotes the channel gain from the j-th relay node to the fusion center and is

modeled as zero-mean circularly symmetric complex Gaussian random variable

with variance 1/2 per dimension and R denotes the subset of relay nodes.

5.2 Performance Analysis

In this section, performance analysis of the two protocols presented in Section

5.1 will be provided. The probability of detection error Pe will be used as the

performance measure. Comparing the Pe expressions for the two previously pre-

sented protocols will enable the selection of the better protocol in terms of the

1If the amplify-and-forward protocol is used at the sensor nodes and assuming that the distance

between the sensor node and the node that relays its measurement is much less than the distance

between any sensor node and the fusion center then the noise coming from the sensor node to

relay node communication link can be neglected compared to the noise coming from the sensor

(relay) node to fusion center link. In the case of amplify-and-forward protocol, the signal to noise

ratio (SNR) of sensor-relay-fusion center link will be a scaled harmonic mean of the sensor-relay

and relay-fusion center links SNRs, which can be tightly approximated to be the SNR of the

relay-fusion center link for the case of relay node very close to the sensor node as presented in

Chapter 2. This enables us to neglect the noise coming from the sensor-relay communication

link.
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Figure 5.2: A Two-Sensor Network.

performance measure used. To illustrate the idea, we will start with the analy-

sis of a two-sensor network over additive white Gaussian noise (AWGN) channel.

Then, the analysis will be extended to the multi-node wireless sensor network over

Rayleigh flat-fading channel model.

5.2.1 Performance Analysis over AWGN Channels

In this section, a two-sensor network as shown in Fig. 5.2 will be considered.

The analysis is easily extendable to the multi-node sensor network over AWGN

channels. Through this example, more insights into the problem of the multi-node

wireless sensor network can be gained. For the case of AWGN, the same model

as in (5.1), (5.2), and (5.3) will be used with hsiF = 1 for all i. Without loss

of generality, all the random variables in (5.1), (5.2), and (5.3) are assumed to

be real with the same means and variances as described before, i.e., the mi’s are

now assumed to be real and nsiF is a zero-mean Gaussian random variable with

variance N0 for all i’s.

In Fig. 5.2, the signal from sensor 1 is assumed to have a mean of m1 and

the signal from sensor 2 is assumed to have a mean of m2 both under hypothesis
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H1. Without loss of generality we assume that m1 > m2. Therefore, we assume

that the measurement coming from sensor 1 is more-informative about the state

of nature than the measurement coming from sensor 2.

We will consider comparing the two protocols presented in Section 5.1. To gain

more insights into the problem, consider two extreme cases as follows. The first

extreme case is m2 = 0. In this case, the measurement from sensor 2 does not

provide any information to the fusion center about the state of nature because the

data model at sensor 2 is the same under both hypotheses. In this case, Protocol

II will have a better performance as compared to Protocol I. The second extreme

case is when m2 = m1. In this case, the measurements from both sensors are

of equal importance to the fusion center. Therefore, Protocol I will have a better

performance if compared to Protocol II. These statements will be rigorously proved

in the following subsections.

Protocol I Probability of Detection Error

Let PAWGN
e,I denote the probability of detection error of Protocol I over AWGN

channels. The probability of detection error is defined as PAWGN
e,I = Pr{Ĥ 6= H},

where H is the true state of nature and Ĥ is the estimated state of nature at the

fusion center.

Let π0 = Pr{H = H0} and π1 = Pr{H = H1} denote the prior probabilities.

Without loss of generality, we assume that π0 = π1 = 1/2. The variable Pi in

(5.2) is selected such that the average power of each sensor node equals a power

constraint P . Therefore, we have

P = π0Piσ
2 + π1Pi

(
m2

i + σ2
) → Pi =

P

σ2 + 1
2
m2

i

. (5.4)
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The data model for the received data under each hypothesis is given by

H0 : ysiF ∼ N
(
0, Piσ

2 + N0

)

H1 : ysiF ∼ N
(√

Pimi, Piσ
2 + N0

)
.

(5.5)

Define σ2
i = Piσ

2 + N0, i = 1, 2. Using PAWGN
e,I as the performance measure, the

optimal decision rule is the likelihood ratio (LR) test, which is given by

e
−∑2

i=1
1

2σ2
i
(ysiF−

√
Pimi)

2

e
−∑2

i=1
1

2σ2
i

y2
siF

Ĥ=H1

≷
Ĥ=H0

1. (5.6)

The decision rule can be further simplified to

q1

Ĥ=H1

≷
Ĥ=H0

1

2

(
P1m

2
1

σ2
1

+
P2m

2
2

σ2
2

)
, (5.7)

where

q1 =
1

σ2
1

√
P1m1ys1F +

1

σ2
2

√
P2m2ys2F .

The probability density functions of the random variable q1 under each hypothesis

are given by

PH0 (q1) ∼ N
(

0,
P1m

2
1

σ2
1

+
P2m

2
2

σ2
2

)

PH1 (q1) ∼ N
(

P1m
2
1

σ2
1

+
P2m

2
2

σ2
2

,
P1m

2
1

σ2
1

+
P2m

2
2

σ2
2

)
,

(5.8)

where PHk
(q1) is the probability density function of q1 under hypothesis Hk, k =

0, 1.

The probability of detection error can be calculated as

PAWGN
e,I = π0 Pr{Ĥ = H1|H = H0}+ π1 Pr{Ĥ = H0|H = H1}

= Q

(
1

2

√
P1m2

1

σ2
1

+
P2m2

2

σ2
2

)
,

(5.9)
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where Q(u) = 1√
2π

∫∞
u

exp
(
− t2

2

)
dt is the Gaussian Q-function [41]. Substituting

for the Pi’s from (5.4) we get

PAWGN
e,I = Q

(
1

2

√
Pm2

1

Pσ2 +
(
σ2 + 1

2
m2

1

)
N0

+
Pm2

2

Pσ2 +
(
σ2 + 1

2
m2

2

)
N0

)
. (5.10)

Protocol II Probability of Detection Error

In this case, a relay is used instead of sensor 2 to forward the signal from sensor 1.

Let PAWGN
e,II denote the probability of detection error of Protocol II over AWGN

channels. Define a 2× 1 received data vector y = [ys1F , ys2F ]T . The fusion center

should decide between the two hypotheses based on the received vector y. In

Protocol II, the components of the vector y are no longer independent since the

measurement of sensor 1 will be forwarded by the relay node. In this case, the

probability density functions of the vector y under both hypothesis are given by

H0 : y ∼ N (0,C)

H1 : y ∼ N (m,C) ,

(5.11)

where

C =




σ2
1 P1σ

2

P1σ
2 σ2

1


 (5.12)

is the auto-covariance matrix of the vector y and is the same under both hypothe-

ses, σ2
i = Piσ

2N0, i = 1, 2, 0 = [0, 0]T and m =
[√

P1m1,
√

P1m1

]T
.

Using the probability of detection error as a performance measure, the optimal

decision rule is the LR test given by

e−
1
2
(y−m)T C−1(y−m)

e−
1
2
yT C−1y

Ĥ=H1

≷
Ĥ=H0

1. (5.13)
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Simplifying, we get

mTC−1y
Ĥ=H1

≷
Ĥ=H0

1

2
mTC−1m. (5.14)

The probability of detection error of Protocol II can now be given as

PAWGN
e,II = Q

(
1

2

√
mTC−1m

)

= Q

(
1

2

√
2Pm2

1

2Pσ2 +
(
σ2 + 1

2
m2

1

)
N0

)
.

(5.15)

Now, we will consider comparing the probability of detection error expressions

in (5.10) and (5.15). Note that the Q(·) is a monotonically decreasing function

of its argument. Hence, the protocol that has a higher argument inside the Q-

function will have a better performance. Therefore, to compare the performance

of the two protocols, it is sufficient to compare the arguments of the Q-functions

in (5.10) and (5.15).

A first thing to note is that the following inequality holds

2Pm2
1

Pσ2 +
(
σ2 + 1

2
m2

1

)
N0

>
2Pm2

1

2Pσ2 +
(
σ2 + 1

2
m2

1

)
N0

>
Pm2

1

Pσ2 +
(
σ2 + 1

2
m2

1

)
N0

,

(5.16)

from which it is clear that Protocol II is better than Protocol I if m2 = 0, which

corresponds to the lower-bound in (5.16). Also, Protocol I is better than Protocol

II if m2 = m1, which corresponds to the upper-bound in (5.16). For a general

value of m2, Protocol II is better than Protocol I if

2Pm2
1

2Pσ2 +
(
σ2 + 1

2
m2

1

)
N0

>
Pm2

1

Pσ2 +
(
σ2 + 1

2
m2

1

)
N0

+
Pm2

2

Pσ2 +
(
σ2 + 1

2
m2

2

)
N0

(5.17)

and vice versa.

With our assumption of having m1 > m2, the measurement of the first sensor

node is more-informative to the fusion center than the measurement of the second
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sensor node. Protocol I, in which each sensor node sends its measurement, deliv-

ers measurements from more sensor nodes to the fusion center than Protocol II.

However, Protocol II guarantees higher reliability for the more-informative mea-

surement coming from sensor 1. The extreme case of having m2 = 0, is the case

where the measurement from sensor 2 contains no information (in this case, we

have the same data model at the second sensor under both hypotheses), in which

case Protocol II results in a better performance. In this case, the reliability of the

measurement from sensor 1 is increased by transmitting the measurement twice to

the fusion center. The other extreme case of having m2 = m1 is a case where the

measurements from both sensors are of equal importance. In this case, it is better

for sensor 2 to send its measurement than to use a relay to forward the measure-

ment of sensor 1, and in this case Protocol I results in a better performance.

An N-Sensor Network

The analysis presented above can be extended to the case of sensor network with

N sensor nodes communicating over AWGN channels each with mean mi, i =

1, · · · , N . In this case we will have three different subsets of nodes. Let T denote

the subset of sensor nodes that are not helped by relay nodes, H denote the

subset of sensor nodes that are helped by relay nodes, and L denote the subset of

relay nodes. If each sensor node is restricted to have at most one node to relay

its information then |H| = |L|. In this case, the probability of detection error

expression can be given by

PAWGN
e = Q

(
1

2

√∑
i∈H

2Pm2
i

2Pσ2 +
(
σ2 + 1

2
m2

i

)
N0

+
∑
i∈T

Pm2
i

Pσ2 +
(
σ2 + 1

2
m2

i

)
N0

)
.

(5.18)
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The question now is how to partition the set of sensor nodes for an N -sensor net-

work communicating over AWGN channel to minimize the probability of detection

error at the fusion center. An algorithm for partition the set of sensor nodes under

the restriction of having at most one relay node to help any sensor node is given

in Table 5.1. The algorithm given in Table 5.1 can be proved to yield the optimal

partitioning by proving that moving any node from one subset to another subset

will always result in a system performance degradation in terms of the probability

of detection error.

5.2.2 Performance Analysis over Rayleigh Flat-Fading Chan-

nels

In this section the performances of Protocol I and Protocol II over wireless Rayleigh

flat-fading channels are considered. In the case of Rayleigh flat-fading channel

model, it is very difficult to get closed-form expressions for the probability of

detection error similar to those derived in Section 5.2.1. Therefore, we consider

a large sensor network where the number of sensor nodes N is very large, which

enables the derivation of asymptotic approximations for the probability of detection

error expressions. For simplicity of presentation, the sensor network is assumed

to be divided into two subsets of sensor nodes of equal cardinality, namely, S and

R, each has N/2 sensor nodes. Sensor nodes in subset S have a mean of mS and

sensor nodes in subsetR have a mean of mR. We consider that model of having two

subsets of sensor nodes of equal size for sake of simplicity of presentation. However,

the analysis presented here can be generalized if we have a different partitioning

of the sensor nodes.
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Table 5.1: An algorithm for partitioning the set of N sensor nodes communicating

over AWGN channel if each sensor node is restricted to have at most one relay

node.

1. Initialization: assign all of the sensor nodes to the subset T , which is the

subset of sensor nodes that are not helped by any relay node. The subsets H
and L are empty at the beginning.

2. Arrange the sensor nodes in the subset T in a descending order according

to their means such that mi ≥ mj for all i < j, i = 1, · · · , |T |, where |T | is

the cardinality of the subset T .

3. For the sensor nodes with the maximum mean m1 and minimum mean m|T |

in the subset T , use equation (5.17) with m2 = m|T | to determine whether it

is better to use a relay node for helping the sensor node with mean m1 or use

the sensor node with mean m|T | to send its measurement. If the use of a relay

node is better, then remove the sensor node with mean m|T | from the subset

T . Then, remove the sensor node with mean m1 from the subset T , put it

in the subset H and put a relay in the subset L for helping in forwarding its

information. If it is better to have the sensor node with mean m|T | sending its

measurement then exist the partitioning algorithm.

4. Repeat Step 2 if the subset T is nonempty.
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Protocol I Probability of Detection Error

Let PRay
e,I denote the probability of detection error of Protocol I over Rayleigh flat-

fading channels. The data model for the received data under each hypothesis is

given by

H0 : ysiF ∼ CN
(
0, Pi|hsiF |2σ2 + N0

)

H1 : ysiF ∼ CN
(√

PihsiF mi, Pi|hsiF |2σ2 + N0

)
,

(5.19)

where each mi is either mS or mR.

With the probability of detection error as a performance measure and assuming

perfect channel state information (CSI) at the fusion center, the optimal decision

rule is the LR test given by

e
−∑N

i=1
1

Pi|hsiF |2σ2+N0
|ysiF−

√
PihsiF mi|2

e
−∑N

i=1
1

Pi|hsiF |2σ2+N0
|ysiF |2

Ĥ=H1

≷
Ĥ=H0

1, (5.20)

where we assumed equal priors, i.e., π0 = π1 = 1/2. The decision rule in (5.20)

can be simplified to

N∑
i=1

1

Pi|hsiF |2σ2 + N0

(√
PiysiF h∗siF

m∗
i +

√
Piy

∗
siF

hsiF mi

)

Ĥ=H1

≷
Ĥ=H0

N∑
i=1

1

Pi|hsiF |2σ2 + N0

Pi |mi|2 |hsiF |2.
(5.21)

The probability of detection error expression can be found to be given by

PRay
e,I = E



Q


1

2

√√√√
N∑

i=1

Pi |hsiF |2 |mi|2
Pi |hsiF |2 σ2 + N0








= E



Q


1

2

√√√√∑
i∈S

PS |hsiF |2 |mS|2
PS |hsiF |2 σ2 + N0

+
∑
i∈R

PR |hsiF |2 |mR|2
PR |hsiF |2 σ2 + N0






 ,

(5.22)

where

PS =
P

σ2 + 1
2
m2

S
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and

PR =
P

σ2 + 1
2
m2

R

.

The expectation in (5.22) is taken over the channel statistics. Finding a closed-

form expression for the expectation in (5.22) is very difficult even for the simple

case of having N = 2. This motivates us to consider a large sensor network in

which the number of sensor nodes is very large which enables the calculation of

asymptotic approximation for the probability of detection error. For such a large

network, define the random variable u as

u =
N∑

i=1

Pi |hsiF |2 |mi|2
Pi |hsiF |2 σ2 + N0

, (5.23)

which is the summation inside the argument of the Q-function of (5.22). The

random variable u is the summation of N/2 i.i.d. random variables2, which can

be approximated to be a Gaussian random variable. This results from using the

central limit theory (CLT) [82]. The probability of detection error is now given by

PRay
e,I = E

{
Q

(
1

2

√
u

)}
. (5.24)

To get the approximation for the expression in (5.24), we need to calculate the

mean and the variance of the random variable u. The mean of u can be found as

2The expression in (5.23) is the summation of N/2 i.i.d., where each random variable is the

sum of an element from the subset S and an element from the subset R.
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follows

mu =E{u}

=E

{
N∑

i=1

Pi |hsiF |2 |mi|2
Pi |hsiF |2 σ2 + N0

}

=
N

2
· E

{
PS |hsiF |2 |mS|2

PS |hsiF |2 σ2 + N0

+
PR

∣∣hsjF

∣∣2 |mR|2

PR

∣∣hsjF

∣∣2 σ2 + N0

}
, for some i ∈ S, j ∈ R.

(5.25)

Define the random variable h = |hsiF |2 for some i. Under our model assumptions,

h follows, for any i, an exponential distribution with a probability density function

(pdf) given by

P (h) = e−h, h ≥ 0. (5.26)

The mean of the random variable u can be found as follows.

mu

=
N

2
· E

{
PS |hsiF |2 |mS|2

PS |hsiF |2 σ2 + N0

+
PR

∣∣hsjF

∣∣2 |mR|2

PR

∣∣hsjF

∣∣2 σ2 + N0

}

=
N

2σ2

(
|mS|2 + |mR|2 − N0 |mS|2

PSσ2
e

N0
PSσ2 Γ

(
0,

N0

PSσ2

)
− N0 |mR|2

PRσ2
e

N0
PRσ2 Γ

(
0,

N0

PRσ2

))
,

(5.27)

where Γ(., .) is the incomplete Gamma function defined as [41]

Γ(a, µ) =

∫ ∞

µ

ta−1e−tdt, µ > 0. (5.28)

Let δ2
u denote the variance of the random variable u. The variance of u can be
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calculated as

δ2
u =

N

2


E





(
PS |hsiF |2 |mS|2

PS |hsiF |2 σ2 + N0

)2


−

(
E

{
PS |hsiF |2 |mS|2

PS |hsiF |2 σ2 + N0

})2

+ E





(
PR

∣∣hsjF

∣∣2 |mR|2

PR

∣∣hsjF

∣∣2 σ2 + N0

)2


−

(
E

{
PR

∣∣hsjF

∣∣2 |mR|2

PR

∣∣hsjF

∣∣2 σ2 + N0

})2




(5.29)

for some i ∈ S and j ∈ R. Evaluating the expectations in (5.29), we get

δ2
u =

N

2

(
|mS|4
σ4

[
N0

PSσ2
− N2

0

P 2
Sσ4

e
N0

PSσ2 Γ

(
0,

N0

PSσ2

)
− N2

0

P 2
Sσ4

e
2N0

PSσ2

(
Γ

(
0,

N0

PSσ2

))2
]

+
|mR|4

σ4

[
N0

PRσ2
− N2

0

P 2
Rσ4

e
N0

PRσ2 Γ

(
0,

N0

PRσ2

)
− N2

0

P 2
Rσ4

e
2N0

PRσ2

(
Γ

(
0,

N0

PRσ2

))2
])

.

(5.30)

Using the Gaussian approximation for the random variable u, the probability

of detection error for large N can be approximated as

PRay
e,I = E

{
Q

(
1

2

√
u

)}

≈ 1

π

∫ π
2

θ=0

e

−

(
mu

8 sin2 θ
+

δ2u
128 sin4 θ

)

dθ,

(5.31)

where we have used the special property of the Q-function as Q(u) = 1
π

∫ π/2

0
e−

u2

2 sin2 θ dθ

[22]. The integration in the last equation can be easily computed using any nu-

merical integration algorithm. Equation (5.31) provides an approximation for the

probability of detection error of Protocol I over Rayleigh flat-fading channels. Next,

we will consider the performance analysis for Protocol II over Rayleigh flat-fading

channels.
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Protocol II Probability of Detection Error

In this section, we will compute an approximate expression for the probability of

detection error of Protocol II over Rayleigh flat-fading channels.

In Protocol II, each sensor from the subset S will be assigned a relay node to

forward its measurement. In this case, sensor nodes from the subset R are not

used and their resources are assigned to relay nodes. Let L denote the subset of

relay nodes where |L| = N/2. This enables the definition of the set O of size N/2

such that

O = {(i, j) : i ∈ S, j ∈ L, node j works as a relay for sensor i} . (5.32)

Now, we start the probability of detection error analysis at the fusion center.

Define the 2 × 1 received data vector y(i,j) = [ysiF , yjF ]T and the mean vector

m(i,j) = [
√

PihsiF mi,
√

PihjF mi]
T , (i, j) ∈ O. In Protocol II, the components of

the vector y(i,j) are correlated since the measurement of sensor i will be transmitted

by relay node j. Therefore, the probability density function of the vector y(i,j)

under each hypothesis is given by

H0 : y(i,j) ∼ N
(
0,C(i,j)

)

H1 : y(i,j) ∼ N
(
m(i,j),C(i,j)

)
,

(5.33)

where

C(i,j) =




Pi |hsiF |2 σ2 + N0 PihsiF h∗jF σ2

Pih
∗
siF

hjF σ2 Pi |hjF |2 σ2 + N0


 (5.34)

is the auto-covariance matrix of the vector y(i,j) and is the same under both hy-

potheses. Note that under our data model assumption of having independent

measurements at the sensor nodes the vectors y(i,j) and y(k,l), for (i, j) and (k, l)

∈ O , are mutually independent for (i, j) 6= (k, l).
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Using the probability of detection error as a performance measure, the optimal

decision rule is the LR test given by

e−
∑

(i,j)∈O(y(i,j)−m(i,j))
H

C−1
(i,j)(y(i,j)−m(i,j))

e−
∑

(i,j)∈O yH
(i,j)

C−1
(i,j)

y(i,j)

Ĥ=H1

≷
Ĥ=H0

1, (5.35)

where (·)H denotes the Hermitian transpose. Simplifying, we get

∑

(i,j)∈O

(
mH

(i,j)C
−1
(i,j)y(i,j) + yH(i,j)C

−1
(i,j)m(i,j)

) Ĥ=H1

≷
Ĥ=H0

∑

(i,j)∈O
mH

(i,j)C
−1
(i,j)m(i,j). (5.36)

The probability of detection error of Protocol II can now be given as

PRay
e,II = E



Q


1

2

√ ∑

(i,j)∈O
mH

(i,j)C
−1
(i,j)m(i,j)








= E



Q


1

2

√√√√ ∑

(i,j)∈O

PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0






 ,

(5.37)

where Pi = PS for all i since i ∈ S.

It is very difficult to get a closed-form expression for PRay
e,II in (5.37). Again, we

make the assumption of large sensor network to get an approximate expression for

the probability of detection error in this case. To get that expression, define the

random variable w as

w =
∑

(i,j)∈O

PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0

, (5.38)

which is the summation in the argument of the Q-function in (5.37). The proba-

bility of detection error is now given by

PRay
e,II = Q

(
1

2

√
w

)
. (5.39)

The random variable w is the summation of N/2 i.i.d. random variables that

can be approximated for large N to be a Gaussian random variable by applying
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the CLT. To get the approximate expression for the probability of detection error

we need to calculate the mean and the variance of w. The mean mw of w is given

by

mw = E





∑

(i,j)∈O

PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0





=
N

2
· E

{
PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0

}
, for some (i, j) ∈ O.

(5.40)

Define h = |hsiF |2 and t = |hjF |2. The random variables h and t are independent,

exponential random variables. Hence, mw can be found as

mw =
N

2

∫ ∞

h=0

∫ ∞

t=o

PS |mS|2 h + PS |mS|2 t

PSσ2h + PSσ2t + N0

e−(h+t) dh dt

=
N |mS|2

2σ2

(
1− N0

PSσ2
e

N0
PSσ2

∫ ∞

t=o

Γ

(
0, t +

N0

PSσ2

)
dt

)
,

(5.41)

where the last integral can be efficiently evaluated using any numerical integration

algorithm.

The variance δ2
w of the random variable w can be calculated as

δ2
w =

N

2


E





(
PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0

)2




−
(

E

{
PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0

})2


 for some (i, j) ∈ O.

(5.42)

To evaluate the expectations in (5.42), we need to calculate the expectation

E





(
PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0

)2




=
|mS|2
σ2

(
1−

(
N0

PSσ2

)2

e
N0

PSσ2 Γ

(
0,

N0

PSσ2

)
− N0

PSσ2

(
2 +

N0

PSσ2

)

× e
N0

PSσ2

∫ ∞

0

Γ

(
0, t +

N0

PSσ2

)
dt

)
.

(5.43)
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From (5.41) and (5.43) the value of δ2
w can be calculated.

Following a similar analysis to the one presented in the previous section, we

can get an approximate expression for the probability of detection error as

PRay
e,II ≈

1

π

∫ π
2

θ=0

e

−

(
mw

8 sin2 θ
+

δ2w
128 sin4 θ

)

dθ.
(5.44)

To compare the performances of the two protocols, the values of the approxi-

mate expressions for the probability of detection error given in (5.31) and (5.44)

are used to decide which of the two protocols performs better in terms of Pe.

Returning back to the exact error expressions given in (5.22) and (5.37), we

have the following inequality

PS |hsiF |2 |mS|2
PS |hsiF |2 σ2 + N0

+
PS |hjF |2 |mS|2

PS |hjF |2 σ2 + N0

>
PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0

>
PS |hsiF |2 |mS|2

PS |hsiF |2 σ2 + N0

,

(5.45)

from which we have

E



Q


1

2

√√√√
N∑

i=1

PS |hsiF |2 |mS|2
PS |hsiF |2 σ2 + N0






 <

E



Q


1

2

√√√√ ∑

(i,j)∈O

PS |hsiF |2 |mS|2 + PS |hjF |2 |mS|2
PS |hsiF |2 σ2 + PS |hjF |2 σ2 + N0








< E



Q


1

2

√√√√∑
i∈S

PS |hsiF |2 |mS|2
PS |hsiF |2 σ2 + N0






 ,

(5.46)

which means that

PRay
e,I (|mR| = |mS|) < PRay

e,II < PRay
e,I (mR = 0) . (5.47)

Equation (5.47) tells the story. For the extreme case of having mR = 0, Proto-

col II results in a better performance if compared to Protocol I. In this case, the
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measurements from sensors that have a zero-mean measurement convey no infor-

mation to the fusion center. Therefore, in this case it is better to use relay nodes,

instead of sensor nodes with zero-mean measurements, to forward information for

the other more-informative sensor nodes. For the other case of having |mR| = |mS|,
the measurements coming from the different sensor nodes are of equal importance

to the fusion sensors. As such, Protocol I performs better than Protocol II as what

can be seen from (5.47). Between these two extremes, and depending on the value

of |mR| and other system parameters, Protocol I may preform better than Protocol

II and vice versa.

5.3 Performance Analysis for Two Special Cases

In this section we present the analysis for Protocol I and Protocol II over wireless

fading channels for two special cases to gain more insights into the problem of

allocating the system resources to a relay node or a sensor node. One case is

having N0 = 0, i.e., no communication noise in the system, and the other case is

having σ2 = 0, i.e., no measurement noise. In this section, we will assume that

|mS| > |mR| > 0 (so the system is not operating at any of the extreme cases of

mR = 0 or |mR| = |mS|).

5.3.1 Case 1: N0 = 0

In this case, there exists no communication noise in the system. Following the

analysis presented in the previous sections, we can get the probability of detection

error for Protocol I as

PRay
e,I (N0 = 0) = Q


1

2

√√√√N

2

(
|mS|2
σ2

+
|mR|2

σ2

)
 , (5.48)
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which is the probability of detection error of the optimal centralized detector that

have access to all of the local measurements at the sensor nodes. For the case of

N0 = 0, the probability of detection error for Protocol II is given by

PRay
e,I (N0 = 0) = Q


1

2

√
N

2
· |mS|2

σ2


 . (5.49)

Comparing (5.48) and (5.49) we can easily see that Protocol I performs better

than Protocol II for the case of having N0 = 0. Clearly, in the case of having

N0 = 0, the detector performance at the fusion center is not limited by the com-

munication noise but limited by the measurement noise. In this case, each sensor

node can reliably communicate its measurement to the fusion center. Therefore,

there will be no gain of having some sensors forwarding other sensors measurement.

In this case, it is better for each sensor node to send its measurement to the fusion

center directly, which means that Protocol I is superior to protocol II in this case.

5.3.2 Case 2: σ2 = 0

In this case, we assume that there is no measurement noise at the sensor nodes, i.e.,

σ2 = 0. Following the analysis presented in the previous section, the probability

of detection error of Protocol I can be proved to be given by

PRay
e,I = E



Q


1

2

√√√√
N∑

i=1

Pi |hsiF |2 |mi|2
N0








= E



Q


1

2

√√√√|mS|2
∑
i∈S

PS |hsiF |2
N0

+ |mR|2
∑
i∈R

PR |hsiF |2
N0








= E



Q


1

2

√√√√2P

No

N∑
i=1

|hsiF |2





 .

(5.50)
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The probability of detection error of Protocol II can be proved to be given by

PRay
e,II = E



Q


1

2

√√√√|mS|2
N∑

i=1

PS |hsiF |2
N0






 = E



Q


1

2

√√√√2P

No

N∑
i=1

|hsiF |2





 .

(5.51)

Comparing the expressions in (5.50) and (5.51), and under our assumption of

having |mR| > 0, we can see that both protocols achieve the same performance

when σ2 = 0. Clearly, in this case power scaling at the sensor nodes of mean mR

will result in the same transmitted measurement as that of sensor nodes of mean

mS since there is no measurement noise.

For any operating signal power, communication noise variance, and measure-

ment noise variance there will be a tradeoff between the number of measurements

sent to the fusion center and the reliability of the more-informative measurements.

The question is whether to send more measurements from the less-informative sen-

sor nodes or increase the reliability of the more-informative measurements, i.e., is

it better to assign the system resources to a sensor node or a relay node? As clear

from the analysis presented in the previous sections, the answer to that question is

not that clear. The extreme cases considered give more insights into that tradeoff.

The two special cases considered in this section serves that goal of having more

insight to the problem.

For the case of having N0 = 0, there is no communication noise and to send

more measurements to the fusion center is better than increasing the reliability of

the more-informative measurements, since the communication system is already

reliable, hence Protocol I performs better. For the other case of having σ2 = 0,

there is no measurement noise in the system. In this case, both protocols will have

the same performance for any |mR| > 0. Between these two special cases, we need

to compare the performances of the two protocols based on the derived expressions
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for the probability of detection error to decide which protocol performs better at

a given system parameters.

5.4 Simulation Results

In this section, we present some simulation results. In all simulations we will

normalize the power at each sensor node to be P = 1 and mS = 1, which is the

mean of the more-informative sensor nodes under hypothesis H1.

We start by simulating a two-sensor network over AWGN channels as presented

in Section 5.2.1. Fig. 5.3 shows the probability of detection error versus P/N0 for

the case of having a measurement noise of variance σ2 = 0.01. From Fig. 5.3,

it is clear that Protocol I always performs better than Protocol II for the case of

having mR = 1 as explained before. From Fig. 5.3, we can see that Protocol II

is always better than Protocol I for the case of having mR = 0. For any value of

mR that is between 0 and 1, deciding which protocol will perform better depends

on other system parameters such as the measurement noise and communication

noise variances. In Fig. 5.3 and as P/N0 increases we can see that Protocol II

saturates to a probability of detection error level that equals the error level of

Protocol I for the case mR = 0. As P/N0 increases the system performance will be

limited by the measurement noise and hence, having a relay instead of the second

sensor to forward the measurement of the first sensor will not improve the system

performance (in this case, the received signals from the two sensors will be almost

the same and hence, there will no gain for Protocol II over the case of having

mR = 0). In this case of very high P/N0, it is better to have the second sensor

sending its measurement to the fusion center instead of using a relay to forward

the measurement of the first sensor.
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Figure 5.3: The probability of detection error versus P/N0 (dB) for a two-sensor

network over AWGN channels for the case of having a measurement noise of vari-

ance σ2 = 0.01.

Fig. 5.4 shows the probability of detection error versus P/N0 for the case of

having a measurement noise of variance σ2 = 0.1. Again, we can see that Protocol

I always performs better than Protocol II for the case of having mR = 1 and

Protocol II always performs better than Protocol I for the case of having mR = 0.

Also, as P/N0 becomes very large there will no gain for Protocol II over the case

of having mR = 0.

Fig. 5.5 shows the probability of detection error versus P/σ2 for the case of

having P/N0 = 10 dB. In Fig. 5.5, Protocol II is always better than Protocol I for

the case of having mR = 0 as expected. Also, Protocol I is better than Protocol

II for the case of having mR = 1. As P/σ2 becomes very large the performance

of Protocol II approaches that of Protocol I with mR = 1. In this case of very

high P/σ2 the system performance will be limited by the communication noise

rather than the measurement noise. In this case the signal from the relay node will

172



−5 0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

P/N
0
 (dB)

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

E
rr

or

σ2=0.1

Protocol I, m
R

=0

Protocol I, m
R

=0.1

Protocol I, m
R

=0.5

Protocol I, m
R

=1

Protocol II

Figure 5.4: The probability of detection error versus P/N0 (dB) for a two-sensor

network over AWGN channels for the case of having a measurement noise of vari-

ance σ2 = 0.1.

appear as a new measurement with mean equals 1 under hypothesis H1 and this

is why the performance of Protocol II approaches the performance of Protocol I

with mR = 1. Note that As P/σ2 becomes very large the performance of Protocol

I with any mR > 0 approaches the same error value as that of Protocol I with

mR = 1. The reason for that is because we assume all nodes to have the same

power for transmission. At very high P/σ2, scaling the measurement by a factor to

meet the power constraint, and because we have a very low level of measurement

noise, will make the signals transmitted from all of the sensor nodes to be almost

the same. This can be seen from Equation (5.10) by substituting σ2 = 0; we can

see that the contribution of both sensors to the error expression will be the same

independent of the value of mR.

Next, we consider the simulations for a two-sensor network over wireless fading

channels. Fig. 5.6 shows the probability of detection error versus P/N0 for the
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Figure 5.5: The probability of detection error versus P/σ2 (dB) for a two-sensor

network over AWGN channels for the case of having a communication signal-to-

noise ratio of variance P/N0 = 10 dB.

case of having a measurement noise of variance σ2 = 0.01. From Fig. 5.6, it is

clear that Protocol I always performs better than Protocol II for the case of having

mR = 1 as explained before. Also, we can see that Protocol II is always better

than Protocol I for the case of having mR = 0. Fig. 5.7 shows the probability of

detection error versus P/N0 for the case of having a measurement noise of variance

σ2 = 0.1. The same observations that were made for the case of AWGN channels

can be made here.

Finally, Figs. 5.8 and 5.9 shows the probability of detection error versus P/σ2

for the case of having P/N0 = 0 dB and P/N0 = 10 dB, respectively. Again, the

observations that were made for Fig. 5.5 for the case of AWGN channel also applies

for Figs. 5.8 and 5.9. As P/σ2 tends to infinity, the performance of Protocol II

approaches that of Protocol I with mR = 1 for the same reason as explained for
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Figure 5.6: The probability of detection error versus P/N0 (dB) for a two-sensor

network over wireless fading channels for the case of having a measurement noise

of variance σ2 = 0.01.
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the AWGN channels.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we have developed and analyzed cooperative communications proto-

cols for wireless networks. Nodes Cooperation as a new communication paradigm

provides a new dimension over which diversity can be exploited to mitigate the

fading nature of wireless channels. We have tried to answer the question of how to

achieve and where to exploit diversity in cooperative networks. More specifically,

we have addressed the following problems.

First, we studied the multi-node amplify-and-forward cooperation protocol. We

considered the performance analysis for a system in which each relay only amplifies

the source signal. We derive an SER bound for the multi-node amplify-and-forward

protocol that proves to be tight at high SNR. Furthermore, by forming an upper-

bound on any amplify-and-forward protocol SER performance, we prove that the

multi-node amplify-and-forward protocol, in which each relay only amplifies the

source signal, achieves this SER upper-bound if the relay node are close to the

source; therefore, if the relays are close to the source they need not to combine
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the signals from the source and the previous relays. Then, we provided the outage

probability analysis of the multi-node amplify-and-forward protocol. Based on the

derived SER and outage probability bounds, we determined the optimal power

allocation between the source and the relays that minimizes the system SER.

Then, the design of distributed space-time codes in wireless relay networks was

considered for different user cooperation schemes, which vary in the processing

performed at the relay nodes. For the decode-and-forward distributed space-time

codes, any space-time code that is designed to achieve full diversity over MIMO

channels can achieve full diversity under the assumption that the relay nodes can

decide whether they have decoded correctly or not. A code that maximizes the

coding gain over MIMO channels is not guaranteed to maximize the coding gain

in the decode-and-forward distributed space-time coding. This is due to the fact

that not all of the relays will always transmit their code columns in the second

phase. Then, the code design criteria for the amplify-and-forward distributed

space-time codes were considered. In this case, a code designed to achieve full

diversity over MIMO channels will also achieve full diversity. Furthermore, a code

that maximizes the coding gain over MIMO channels will also maximize the coding

gain in the amplify-and-forward distributed space-time scheme.

The design of DDSTC for wireless relay networks was investigated. In DDSTC,

the diagonal structure of the code was imposed to simplify the synchronization be-

tween randomly located relay nodes. Synchronization mismatches between the

relay nodes causes inter-symbol interference, which can highly degrade the sys-

tem performance. DDSTC relaxes the stringent synchronization requirement by

allowing only one relay to transmit at any time slot. The code design criterion for

the DDSTC based on minimizing the PEP was derived and the design criterion is
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found to be maximizing the minimum product distance.

Then, the design of distributed space-frequency codes (DSFCs) was consid-

ered for the wireless multipath relay channels. The use of DSFCs can greatly

improve system performance by achieving higher diversity orders by exploiting the

multipath diversity of the channel as well as the cooperative diversity. We have

considered the design of DSFCs with the DAF and AAF cooperation protocols.

For the case of DSFCs with the DAF protocol, we have proposed a two-stage cod-

ing scheme: source node coding and relay nodes coding. We have derived sufficient

conditions for the proposed code structure to achieve full diversity of order NL

where N is the number of relay nodes and L is the number of multipaths per

channel. For the case of DSFCs with the AAF protocol, we have derived sufficient

conditions for the proposed code structure to achieve full diversity of order NL for

the special cases of L = 1 and L = 2.

The proposed DSFCs are robust against the synchronization errors caused by

the relays timing mismatches and propagation delays due to the presence of the

cyclic prefix in the OFDM transmission. Also, the proposed DSFCs are robust

against the relays carrier offsets since only one relay is transmitting on any sub-

carrier at any given instance. These properties of the proposed DSFCs greatly

simplifies the system design since it is very difficult to synchronize randomly lo-

cated relay nodes.

After that we addressed the problem of where to exploit diversity for multi-

media transmission. We have studied the performance limit of systems that may

present diversity in the form of source coding, channel coding and user cooperation

diversity and their possible combinations. In the case of source coding, diversity

is introduced through the use of dual-description source encoders. Channel cod-
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ing diversity is obtained from joint decoding of channel coded blocks sent through

different channels. We have considered user cooperation using either the amplify-

and-forward or the decode-and-forward techniques. The presented study focused

on analyzing the achievable performance limits, which was measured in terms of

the distortion exponent. Our results show that for the relay channels, channel

coding diversity provides better performance, followed by source coding diversity.

For the case of having multiple relays, our results show a tradeoff between the

source coding resolution and the number of relay nodes assigned to help the source

node. We note that at low bandwidth it is not the channel outage event, but the

distortion introduced at the source coding stage is the dominant factor limiting

the distortion exponent performance. Therefore, in these cases it is better not to

cooperate and use a lower distortion source encoder. Similarly, we showed that

as the bandwidth expansion factor increases, the distortion exponent improves by

allowing user cooperation. In these cases, the system is said to be an outage lim-

ited system and it is better to cooperate so as to minimize the outage probability

and, consequently, minimize the end-to-end distortion. Depending on the operat-

ing bandwidth expansion factor, we have determined the optimal number of relay

nodes to cooperate with the source node to maximize the distortion exponent.

Finally, we have considered the problem of distributed detection over wireless

fading channels with the deployment of relay nodes. We have considered a sys-

tem model where some sensor nodes convey more information about the state of

nature to the fusion center than some other sensor nodes. We have considered

the performance of two protocols, Protocol I where each sensor directly transmits

its measurement to the fusion center and Protocol II where relay nodes are used

instead of the sensor nodes that are less-informative to the fusion center to for-
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ward the measurements of the other more-informative sensor nodes. We compare

the performances of the two protocols using the probability of detection error as a

performance measure. By comparing the performance of the two protocols, we can

see that a tradeoff exists between the number of measurements sent to the fusion

center and the reliability of the more-informative measurements. Protocol I pro-

vides the fusion center with more measurements and Protocol II has the advantage

of increased reliability of the more-informative measurements. In general, if all of

the sensor measurements are of equal importance then it is always better for each

sensor to send its measurement to the fusion center rather than to use relay nodes.

We have presented some extreme cases when one of the two protocols always per-

forms better than the other protocol. But, for the general case having one protocol

to perform better than the other one will depend on the system parameters such

as the sensor node power, measurement noise variance, and communication noise

variance. By deriving probability of detection error expressions we can compare

the two protocols performance at any system operating parameters to decide which

of the two protocols performs better.

6.2 Future Work

6.2.1 Optimal Rate Allocation for the Fast-Varying Single-

Relay Channel Model

In our work, we have considered block fading channel model where the channel

remains constant during the transmission of one block and varies independently

from block to another. In this case, outage probability can provide a tight ap-

proximation for the block error rate [28]. For the case of fast-varying channel,
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outage probability can not be used as a performance measure anymore. For this

case the question is how to optimally allocate the rate between the source and

the channel encoders. Over single-input single-output (SISO) channels, without

any channel state information at the transmitter, the celebrated separation princi-

ple [24] holds. The separation principle states that the source and channel encoders

can be separately designed without losing the optimality of the encoders. Hence,

we concatenate a source encoder and a channel encoder, which will work on a

rate that is arbitrarily close to but less than the channel capacity. This result is

valid only under the assumption of infinite delay and infinite complexity at the

receiver. Several works have considered the design of source and channel encoders

under practical assumptions of finite block length finite delay and limited receiver

complexities assumptions [83], [84]. These works have considered optimal rate

allocation between separate source and channel encoders over binary symmetric

channels (BSC) and Gaussian channels

The problem can be formulated as follows. Assuming that we have a fixed rate

r = Rs ·Rc, where Rs is the source encoder rate and Rc is the channel encoder rate.

For the case of a source with 0-mean and variance 1, the end-to-end distortion, in

terms of mean square error, can be given as

Dend−to−end =1 · Pr (channel error at rate Rc)

+ (source distortion for rate Rs) · Pr(no channel error at rate Rc).

(6.1)

Note that (6.1) implicitly assumes that in the case of an outage the missing source

data is concealed by replacing the missing source samples with their expected value

(equal to zero) and we assume unit variance source (i.e., the source distortion under

outage event equals 1). The objective is to minimize the end-to-end distortion
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subject to a fixed rate constraint, that is

min
Rc,Rs

Dend−to−end subject to Rc ·Rs = r. (6.2)

6.2.2 Relay Deployment for Distributed Detection in Sen-

sor Networks with Correlated Measurements

In our work, we have considered the problem of relay nodes deployment in sensor

networks under the assumption of having independent measurements at the sensor

nodes. Another question to answer is how to deploy relay nodes in a sensor network

if the measurements from the different sensor nodes are correlated. A new factor

will come to the picture which is the measurements correlation model. In this

case, how the correlation model can affect the relay nodes deployment and how to

efficiently deploy the relay nodes are questions to be answered.
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