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Abstract—In this paper, we study a generic network cost mini-
mization problem, in which every node has a local decision vector
to determine. Each node incurs a cost depending on its decision
vector and each link also incurs a cost depending on the decision
vectors of its two end nodes. All nodes cooperate to minimize the
overall network cost. The formulated network cost minimization
problem has broad applications in distributed signal processing
and control over multiagent systems. To obtain a decentralized al-
gorithm for the formulated problem, we resort to the distributed
alternating direction method of multipliers (DADMM). However,
each iteration of the DADMM involves solving a local optimiza-
tion problem at each node, leading to intractable computational
burden in many circumstances. As such, inspired by recent works
on approximated ADMM for consensus optimization problem, we
propose a distributed linearized ADMM (DLADMM) algorithm
for network cost minimization. In the DLADMM, each iteration
only involves closed-form computations and avoids local optimiza-
tion problems, which greatly reduces the computational complexity
compared to the DADMM. We prove that the DLADMM converges
to an optimal point when the local cost functions are convex and
have Lipschitz continuous gradients. Linear convergence rate of
the DLADMM is also established if the local cost functions are
further strongly convex. Numerical experiments are conducted to
corroborate the effectiveness of the DLADMM and we observe that
the DLADMM has similar convergence performance as DADMM
does while the former enjoys much lower computational overhead.
The impact of network topology, connectivity, and algorithm pa-
rameters are also investigated through simulations.

Index Terms—Decentralized optimization, network optimiza-
tion, alternating direction method of multipliers.

I. INTRODUCTION

THE last decade has witnessed the advances of decen-
tralized signal processing and control over networked

multi-agent systems, which result in great research interest
in distributed optimizations over networks. Such distributed
optimization problems arise in fields such as adaptive signal
processing over networks [1], distributed estimation over sensor
networks [2], [3], decentralized power system state estimation
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and management [4], [5] as well as signal processing for com-
munication networks [6], [7]. In these applications, data are dis-
tributed over individual nodes across the network. Centralized
data processing and optimization suffer from high or even pro-
hibitive communication overload and are vulnerable to link fail-
ures and network congestions. As such, optimizing and process-
ing data in a decentralized manner, where only local information
exchange among neighbors is allowed, are more favorable.

In the literature, distributed optimization has been extensively
studied recently. Two important categories of distributed opti-
mization problems are distributed network utility maximization
(NUM) and consensus optimization. In distributed NUM, each
agent has a local decision variable, based on which it obtains
some utility. Agents cooperatively maximize the total utilities
of the network subject to some coupling resource constraints
such as the link capacity constraint in communication networks.
For NUM, Wei et al. propose and analyze a distributed New-
ton method in [8], [9], while the effect of noisy information
exchange is studied in [10]. Moreover, Niu and Li present an
asynchronous decentralized algorithm with elegant pricing in-
terpretations for NUM [11]. On the other hand, in consensus
optimization, all agents share the same decision variable but
have different local cost functions and the goal is to coopera-
tively minimize the total cost of the network. Nedic and Ozdaglar
propose a decentralized subgradient method for consensus op-
timization in [12] while a dual averaging method is presented
in [13]. Specific forms of consensus problems such as adap-
tive signal processing over networks [1] and average consensus
(where agents cooperate to compute the average of individuals’
data) [14] have been studied by using the alternating direc-
tion method of multipliers (ADMM). More recently, the general
form of consensus problem is investigated by using the dis-
tributed Nesterov gradient algorithm in [15] and the distributed
ADMM (DADMM) in [16]. Later, several variants of DADMM
are proposed for the consensus problems, including linearized
ADMM [1], quadratically approximated ADMM [18], inexact
ADMM [19], weighted ADMM [20], asynchronous ADMM
[21], [22], and dynamic ADMM [23]. Recently, the convergence
properties of ADMM for non-convex optimization are studied
by Hong et al. in [24]. In addition, second order methods, i.e.,
Newton’s method and its variants, are examined for consensus
optimization in [25], [26].

In all the aforementioned works, only costs or utilities at indi-
vidual nodes are taken into consideration while the costs or gains
of links are ignored. For example, for consensus optimization,
the network cost is only composed of local cost at each node and
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the effect of the link is not incorporated. In fact, for consensus
problems, though the decentralized algorithms may depend on
the network topology (the links connecting nodes), the prob-
lem formulation itself is independent of the network structure.
This is not suitable for many applications in distributed sig-
nal processing and control, where the notion of link cost or
link utility naturally arises. For example, in multitask adaptive
learning [27], each node i aims at estimating its weight vector
wi , which, in contrast to the consensus problems, is different
from other nodes’ weight vectors. In most networks, neighbor
nodes tend to have similar weight vectors. To incorporate this
prior knowledge into the estimator, the objective function to be
minimized should include terms promoting similarity between
neighbors such as ‖wi −wj‖22 , where i, j are neighbors. This
term is tantamount to a link cost of the link (i, j).

In this paper, we study the network cost minimization prob-
lem, where the network cost encompasses both node costs and
link costs. The consensus optimization problems studied in [17],
[18], [14], [23] are special cases of the network cost minimiza-
tion problem examined in this paper. In fact, by using the link
costs to enforce proximity between neighbors and letting the
weight of link costs go to infinity, we can recover the consensus
constraints of the network. To obtain a distributed algorithm for
the network cost minimization problem, we resort to the dis-
tributed alternating direction method of multipliers (DADMM)
[28], a primal-dual optimization algorithm which generally con-
verges faster than primal domain alternatives such as the dis-
tributed subgradient method [12]. However, each iteration of
the DADMM algorithm involves solving a local optimization
problem at each node, which is a major computational burden.
To avoid this, inspired by the recent works [17], [18] on ap-
proximated ADMM for concensus optimization, we propose a
distributed linearized ADMM (DLADMM) algorithm for net-
work cost minimization. The DLADMM algorithm replaces
the local optimization problem with closed form computations
through linearizations and thus greatly reduce the computa-
tional complexity compared to DADMM. We further theoreti-
cally demonstrate that the DLADMM algorithm has appealing
convergence properties. We note that an analogous DLADMM
algorithm has been proposed in [17] for consensus optimization
problem. However, the decentralized algorithm and the conver-
gence analysis depend on the specific structure of consensus
optimization problem. In this work, we develop and analyze a
DLADMM algorithm suitable for the generic network cost min-
imization problem, which encompasses consensus optimization
as a special case. Our contributions can be summarized as
follows.

� We formulate a generic form of network cost minimization
problem incorporating both node costs and link costs. The
formulated problem has broad applications in distributed
signal processing and control in networked systems.

� A distributed linearized ADMM algorithm for the network
cost minimization problem is presented. The DLADMM
algorithm operates in a decentralized manner and each it-
eration only consists of simple closed form computations,
which endows the DLADMM with much lower computa-
tional overhead than the DADMM algorithm.

� We prove that the DLADMM algorithm converges to an
optimal point if the local cost functions are convex and have
Lipschitz continuous gradients. Linear convergence rate of
the DLADMM algorithm is also established provided that
the local cost functions are further strongly convex.

� Numerical experiments are conducted to validate the per-
formance of the DLADMM algorithm. We empirically
observe that the DLADMM algorithm has similar con-
vergence speed as the DADMM algorithm does while the
former enjoys much lower computational complexity. The
impact of network topology, connectivity and algorithm
parameters is also investigated.

The organization of the rest of this paper is as follows.
In Section II, the network cost minimization problem is for-
mally formulated and the DLADMM, DADMM algorithms are
developed. In Section III, the convergence properties of the
DLADMM algorithm are analyzed. In Section IV, numerical
simulations are conducted. In Section V, we conclude this work.

II. PROBLEM STATEMENT AND ALGORITHM DEVELOPMENT

In this section, we first motivate and formulate the network
cost minimization problem. Then, we present a brief review
of the basics of the ADMM, following which a distributed
ADMM (DADMM) algorithm for the network cost minimiza-
tion problem is shown. Finally, to reduce the computational
burden of the DADMM, we propose a distributed linearized
ADMM (DLADMM) algorithm for the network cost minimiza-
tion problem.

A. The Statement of the Problem

Consider a network of n nodes and some links between these
nodes. We assume that the network is a simple graph, i.e., the
network is undirected with no self-loop and there is at most one
edge between any pair of nodes. Denote the number of links as
m, in which (i, j) and (j, i) are counted as two links for ease
of later exposition. Denote the set of neighbors of node i (those
who are linked with node i) as Ωi . The network can be either
connected or disconnected (there does not necessarily exist a
path connecting every pair of nodes). Suppose each node i has
a p-dimensional local decision variable xi ∈ Rp . Given xi , the
cost at node i is fi(xi), where fi is called the node cost function
at node i. Moreover, given two connected nodes i and j and
their decision variables xi and xj , there is a cost of gij (xi ,xj )
associated with the link (i, j), where gij is called the link cost
function of the link (i, j). The goal of the network is to solve the
following network cost minimization problem in a decentralized
manner:

Minimize
n∑

i=1

fi(xi) +
n∑

i=1

∑

j∈Ω i

gij (xi ,xj ). (1)

We remark that the consensus optimization problems in [14],
[17], [18], [23] are special cases of the network cost mini-
mization problem (1) here. Actually, by setting the link costs
gij (xi ,xj ) to be the weighted distance between xi and xj and
letting the weights of link costs go to infinity, we recover the



628 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 4, NO. 3, SEPTEMBER 2018

consensus constraints provided that the network is connected.
The problem formulation (1) has broad applications, among
which we name three in the following.

� In distributed estimation over (sensor) networks, each node
i has a local unknown vector xi to be estimated. The cost
at node i, i.e., fi(xi) may be some squared error or the
negative log-likelihood (the former can be regarded as a
special case of the latter when the noise is Gaussian) with
respect to the local data observed by node i. The link
cost gij (xi ,xj ) for a link (i, j) can be used to enforce
similarity between neighbor nodes, e.g., ‖xi − xj‖22 in
multitask adaptive networks in [27], [29].

� For resource allocation over networks, xi corresponds to
some resources at node i and the node cost fi(xi) is the
negative of node i’s utility. The link cost gij (xi ,xj ) for
a link (i, j) may represent the negative effect of the con-
sumption of the resources xi and xj . For instance, in wire-
less networks, xi may be the transmission power of node
i and two nodes are linked if they are within the wireless
interference range. In such a case, the link cost gij (xi ,xj )
for a link (i, j) can be used to quantify the cost incurred
by mutual interference in wireless communications.

� For an image, each xi is the value of the i-th pixel and
two pixels (or nodes) are linked if they are adjacent. In
the image denoising problem, one wants to minimize the
total variations of the pixels (as noises are often irregular
values making the pixels abnormally different from their
neighbor pixels) while remaining faithful to the given noisy
image. The node cost fi(xi) can be used to quantify the
deviation of xi from the given noisy pixel x̃i and the link
cost gij (xi, xj ) can represent the difference between the
two neighbor pixels i and j.

For ease of reference, we define the following assumptions,
some of which will be adopted in later theorems.

Assumption 1: All the node cost functions fi’s and the link
cost functions gij ’s are convex.

Assumption 2: All the node cost functions fi’s and the link
cost functions gij ’s have Lipschitz continuous gradients with
constant L > 0, i.e., (a) ∀i,xi ,x′i ∈ Rp :

‖∇fi(xi)−∇fi(x′i)‖2 ≤ L‖xi − x′i‖2 ; (2)

(b) ∀i, j ∈ Ωi ,xi ,xj ,x′i ,x
′
j ∈ Rp :

‖∇gij (xi ,xj )−∇gij (x′i ,x
′
j )‖2 ≤ L

∥∥∥∥

[
xi

xj

]
−
[
x′i
x′j

]∥∥∥∥
2

.

(3)

Assumption 3: All the node cost functions fi’s and the link
cost functions gij ’s are strongly convex with constant τ > 0,
i.e., (a) For any i = 1, ..., n:

(∇fi(xi)−∇fi(x′i))
T(xi − x′i) ≥ τ‖xi − x′i‖22 ,∀xi ,x′i ∈ Rp ;

(4)

(b) For any i, j ∈ Ωi :

([∇x i
gij (xi ,xj )

∇xj
gij (xi ,xj )

]
−
[
∇x ′i gij (x′i ,x

′
j )

∇x ′j gij (x′i ,x
′
j )

])T

·
([

xi

xj

]
−
[
x′i
x′j

])

≥ τ

∥∥∥∥

[
xi

xj

]
−
[
x′i
x′j

]∥∥∥∥
2

2

, ∀xi ,xj ,x′i ,x
′
j ∈ Rp . (5)

Remark 1: We note the following facts. When fi is twice
differentiable, the condition (4) of Assumption 3 is equivalent
to ∇2fi(xi) 	 τIp ,∀xi . Similarly, when gij is twice differ-
entiable, the condition (5) of Assumption 3 is equivalent to
∇2gij (xi ,xj ) 	 τI2p ,∀xi ,xj . This second order definition of
strong convexity is more intuitively acceptable and has been
used in the analysis of convex optimization algorithms in the
literature [30]. But it requires twice differentiability and is not
directly useful in the analysis in this work.

Remark 2: All three assumptions are standard in the litera-
ture of numerical optimization when analyzing the performance
of optimization algorithms [16], [30], [31].

B. Preliminaries of ADMM

ADMM is an optimization framework widely applied to var-
ious signal processing applications, including wireless commu-
nications [6], power systems [32] and multi-agent coordination
[33]. It enjoys fast convergence speed under mild technical con-
ditions [31] and is especially suitable for the development of
distributed algorithms [28], [34]. ADMM solves problems of
the following form:

Minimizex,zf(x) + g(z) s.t. Ax + Bz = c, (6)

where A ∈ Rp×n ,B ∈ Rp×m , c ∈ Rp are constants and x ∈
Rn , z ∈ Rm are optimization variables. f : Rn 
→ R and g :
Rm 
→ R are two convex functions. The augmented Lagrangian
can be formed as:

Lρ(x, z,y) = f(x) + g(z) + yT(Ax + Bz− c)

+
ρ

2
‖Ax + Bz− c‖22 , (7)

where y ∈ Rp is the Lagrange multiplier and ρ > 0 is some
constant. The ADMM then iterates over the following three
steps for k ≥ 0 (the iteration index):

xk+1 = arg min
x

Lρ

(
x, zk ,yk

)
, (8)

zk+1 = arg min
z

Lρ

(
xk+1 , z,yk

)
, (9)

yk+1 = yk + ρ
(
Axk+1 + Bzk+1 − c

)
. (10)

The ADMM is guaranteed to converge to the optimal point
of (6) as long as f and g are convex [28], [34]. It is recently
shown that global linear convergence can be ensured provided
additional assumptions on problem (6) holds [31].
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C. Development of the Distributed ADMM (DADMM) for
Network Cost Minimization

To develop an ADMM algorithm for (1), we introduce auxil-
iary variables yi and zij ∀i, j ∈ Ωi and reformulate (1) equiva-
lently as:

Minimize
n∑

i=1

fi(xi) +
n∑

i=1

∑

j∈Ω i

gij (yi , zij ). (11)

s.t. xi = yi , i = 1, ..., n, (12)

xj = zij , i = 1, ..., n, j ∈ Ωi . (13)

Further introducing Lagrangian multipliers λi ,μij ∈ Rp ,∀i
= 1, ..., n, j ∈ Ωi , we form the augmented Lagrangian of the
above optimization problem as:

Lρ(x,y, z,λ, μ) =
n∑

i=1

fi(xi) +
n∑

i=1

∑

j∈Ω i

gij (yi , zij )

+
n∑

i=1

λT
i (xi − yi) +

n∑

i=1

∑

j∈Ω i

μT
ij (xj − zij )

+
ρ

2

n∑

i=1

‖xi − yi‖22 +
ρ

2

n∑

i=1

∑

j∈Ω i

‖xj − zij‖22 , (14)

where x ∈ Rnp is the concatenation of all xi’s into a column
vector, i.e., x =

[
xT

1 , ...,xT
n

]T
; y,λ ∈ Rnp are analogously de-

fined; z ∈ Rmp is the concatenation of all zij ’s in an arbitrary
order of links; μ ∈ Rmp is analogously defined with the same
link order as z; ρ > 0 is some positive constant. The ADMM
algorithm can be derived as follows.

1) Updating x: The update of x in the ADMM is:

xk+1 = arg min
x

n∑

i=1

fi(xi) +
n∑

i=1

λkT
i xi +

n∑

i=1

∑

j∈Ω i

μkT
ij xj

+
ρ

2

n∑

i=1

∥∥xi − yk
i

∥∥2
2 +

ρ

2

n∑

i=1

∑

j∈Ω i

∥∥xj − zk
ij

∥∥2
2 , (15)

which can be decomposed across nodes: ∀i,
xk+1

i = arg min
x i

fi(xi) + λkT
i xi +

∑

l∈Ω i

μkT
li xi

+
ρ

2

∥∥xi − yk
i

∥∥2
2 +

ρ

2

∑

l∈Ω i

∥∥xi − zk
li

∥∥2
2 . (16)

2) Updating y, z: The update of y, z in the ADMM is:
{
yk+1 , zk+1}

= arg min
y ,z

n∑

i=1

∑

j∈Ω i

gij (yi , zij )−
n∑

i=1

λkT
i yi

−
n∑

i=1

∑

j∈Ω i

μkT
ij zij +

ρ

2

n∑

i=1

∥∥yi − xk+1
i

∥∥2
2

+
ρ

2

n∑

i=1

∑

j∈Ω i

∥∥zij − xk+1
j

∥∥2

2
, (17)

Algorithm 1: The DADMM algorithm run at node i.

1: Initialize x0
i = y0

i = λ0
i = 0 and z0

ij = μ0
ij = 0,∀j ∈

Ωi . k = 0.
2: Repeat:
3: Compute xk+1

i by solving the local optimization
problem (16) and then broadcast xk+1

i to the
neighbors Ωi .

4: Compute yk+1
i and zk+1

ij , j ∈ Ωi by solving the local

optimization problem (18) and then transmit zk+1
ij to the

neighbor node j for each j ∈ Ωi .
5: Compute λk+1

i and μk+1
ij , j ∈ Ωi according to (19) and

(20), respectively. Transmit μk+1
ij to the neighbor node j

for each j ∈ Ωi .
6: k ← k + 1.

which can be decomposed across nodes: ∀i,
{
yk+1

i ,
{
zk+1

ij

}
j∈Ω i

}

= arg min
y i ,{zi j }j ∈Ω i

∑

j∈Ω i

gij (yi , zij )− λkT
i yi −

∑

j∈Ω i

μkT
ij zij

+
ρ

2

∥∥yi − xk+1
i

∥∥2
2 +

ρ

2

∑

j∈Ω i

∥∥zij − xk+1
j

∥∥2

2
. (18)

3) Updating λ,μ: The update of λ,μ is also decomposed
across nodes: ∀i, j ∈ Ωi

λk+1
i = λk

i + ρ
(
xk+1

i − yk+1
i

)
, (19)

μk+1
ij = μk

ij + ρ
(
xk+1

j − zk+1
ij

)
. (20)

Equations (16), (18), (19) and (20) together lead to a dis-
tributed ADMM (DADMM) algorithm for problem (1), which
is summarized from the perspective of an arbitrary node i in
Algorithm 1. We note that only the values of x, z,μ at the neigh-
bors are needed for the ADMM updates. Therefore, in terms of
information exchange, each node i only needs to (i) broadcast
xi to the neighbors in Ωi ; (ii) transmit zij to the neighbor j for
each j ∈ Ωi ; (iii) transmit μij to the neighbor j for each j ∈ Ωi .

D. Development of the Distributed Linearized ADMM
(DLADMM) for Network Cost Minimization

In the DADMM, i.e., Algorithm 1, the updates for x,y, z
involve solving local optimization problems (16) and (18),
which generally do not admit close-form solutions and have
to be solved iteratively. This can be a major computational
burden for Algorithm 1 especially when individual node has
only limited computational capability, e.g., the cheap sensors
vastly deployed in sensor networks usually can only carry
out simple calculations. This motivates us to propose an al-
gorithm which can approximately solve the local optimiza-
tion problems efficiently and most preferably with closed form
solutions. To this end, we first define f(x) =

∑n
i=1 fi(xi)

and g(y, z) =
∑n

i=1
∑

j∈Ω i
gij (yi , zij ). We further define a

block matrix A ∈ Rmp×np consisting of m× n blocks of ma-
trices Akj ∈ Rp×p , where Akj is equal to Ip×p if the k-th
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p-dimensional block of z is zij for some i = 1, ..., n, other-
wise Akj is equal to 0p×p . Then, we may rewrite problem (11)
compactly as:

Minimize f(x) + g(y, z) (21)

s.t. x = y, (22)

Ax = z. (23)

Further define w =
[
yT, zT

]T
and B =

[
I,AT

]T
. Thus, (21)

can be rewritten as:

Minimize f(x) + g(w) (24)

s.t. Bx−w = 0. (25)

The augmented Lagrangian can be written as:

Lρ(x,w, α)

= f(x) + g(w) + αT(Bx−w) +
ρ

2
‖Bx−w‖22 , (26)

where α = [λT,μT]T is the Lagrangian multiplier. The origi-
nal DADMM algorithm necessitates solving local optimization
problems involving f and g. To avoid this burden, inspired by
the variants of ADMM proposed in [17], [18] for consensus op-
timization, we approximate f, g with their first order approxima-
tions and propose a distributed linearized ADMM (DLADMM)
algorithm for network cost minimization in the following.

1) Updating x: The update of x in DLADMM is:

xk+1 = arg min
x
∇f

(
xk
)T (

x− xk
)

+
c

2

∥∥x− xk
∥∥2

2

+ αkTBx +
ρ

2

∥∥Bx−wk
∥∥2

2 , (27)

where c > 0 is some positive constant and the term c
2

∥∥x− xk
∥∥2

2
is to refrain xk+1 from being too far away from xk as the first
order approximation of f around the point xk is only accurate
when x is close to xk . Note that this small step size or small
variation between iterations is common in the literature of nu-
merical optimization [30] and adaptive signal processing such
as least mean squares (LMS) [35]. Another meaning of the term
c
2 ‖x− xk‖22 is that it provides a quadratic approximation of f
at xk , namely,

f(x) ≈ f(xk ) +∇f(xk )T(x− xk ) +
c

2
‖x− xk‖22 .

This approximation is common in the literature of numerical
optimization and is indeed one of the most fundamental con-
cepts of gradient-based optimization. In fact, problem (27) can
be viewed as an iteration of solving minxLρ(x,wk ,αk ) ap-
proximately, by performing one proximal gradient step [36].

Since the objective function in (27) is a convex quadratic
function of x, the problem of (27) can be solved in closed form
through the first order condition:

∇f
(
xk
)

+ c
(
xk+1 − xk

)
+ BTαk

+ ρ
(
BTBxk+1 −BTwk

)
= 0. (28)

We note that the optimization problem (27) can be decomposed
across nodes:

xk+1
i

= arg min
x i

∇fi

(
xk

i

)T (
xi − xk

i

)
+

c

2

∥∥xi − xk
i

∥∥2
2 + λkT

i xi

+
∑

l∈Ω i

μkT
li xi +

ρ

2

∥∥xi − yk
i

∥∥2
2 +

ρ

2

∑

l∈Ω i

∥∥xi − zk
li

∥∥2
2 ,

which can be solved in closed form:

xk+1
i =

1
c + ρ + ρ|Ωi |

[
−∇fi

(
xk

i

)
+ cxk

i − λk
i −

∑

l∈Ω i

μk
li

+ ρyk
i + ρ

∑

l∈Ω i

zk
li

]
. (29)

2) Updating w, i.e., y and z: The update of w in the
DLADMM algorithm is:

wk+1 = arg min
w
∇g
(
wk
)T (

w −wk
)

+
c

2

∥∥w −wk
∥∥2

2

−αkTw +
ρ

2

∥∥w −Bxk+1
∥∥2

2 , (30)

which is equivalent to:

∇g(wk ) + c
(
wk+1 −wk

)−αk + ρ
(
wk+1 −Bxk+1) = 0.

(31)

Notice that the problem (30) can also be decomposed across
nodes:
{
yk+1

i ,
{
zk+1

ij

}
j∈Ω i

}

= arg min
y i ,{zi j }j ∈Ω i

∑

j∈Ω i

[
∇y i

gij

(
yk

i , zk
ij

)

∇zi j
gij

(
yk

i , zk
ij

)
]T [

yi − yk
i

zij − zk
ij

]

+
c

2

∥∥yi − yk
i

∥∥2
2 +

c

2

∑

j∈Ω i

∥∥zij − zk
ij

∥∥2
2 − λkT

i yi

−
∑

j∈Ω i

μkT
ij zij +

ρ

2

∥∥yi − xk+1
i

∥∥2
2 +

ρ

2

∑

j∈Ω i

∥∥zij − xk+1
j

∥∥2

2
,

(32)

which can be solved as:

yk+1
i

=
1

c + ρ

⎡

⎣−
∑

j∈Ω i

∇y i
gij

(
yk

i , zk
ij

)
+ cyk

i + λk
i + ρxk+1

i

⎤

⎦, (33)

zk+1
ij =

1
c + ρ

[−∇zi j
gij

(
yk

i , zk
ij

)
+ czk

ij + μk
ij + ρxk+1

j

]
.

(34)

3) Updating α, i.e., λ and μ: The update of α is:

αk+1 = αk + ρ
(
Bxk+1 −wk+1) , (35)

which can be implemented in a decentralized manner as in (19)
and (20). In other words, the update of the dual variables in
DLADMM is the same as that of DADMM. Combining (29),
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Algorithm 2: The DLADMM algorithm run at node i.

1: Initialize x0
i = y0

i = λ0
i = 0 and z0

ij = μ0
ij = 0,∀j ∈

Ωi . k = 0.
2: Repeat:
3: Compute xk+1

i according to (29) and then broadcast
xk+1

i to the neighbors Ωi .
4: Compute yk+1

i and zk+1
ij , j ∈ Ωi according to (33) and

(34), respectively. Then transmit zk+1
ij to the neighbor

node j for each j ∈ Ωi .
5: Compute λk+1

i and μk+1
ij , j ∈ Ωi according to (19) and

(20), respectively. Transmit μk+1
ij to the neighbor node

j for each j ∈ Ωi .
6: k ← k + 1.

(33), (34), (19) and (20) yields the proposed DLADMM algo-
rithm, which is summarized in Algorithm 2. We remark that,
as opposed to Algorithm 1, each iteration of Algorithm 2 only
involves direct closed form computations without solving any
local optimization problems iteratively. This enables DLADMM
to enjoy significantly lower computational complexity com-
pared to DADMM.

We remark that, in both the DADMM and the DLADMM,
each node i needs to transmit (2|Ωi |+ 1) p-dimensional vec-
tors, namely xi , zij , μij , j ∈ Ωi , to its neighbors in each it-
eration. Therefore, the per-node communication complexity of
both the DADMM and the DLADMM is (2|Ωi |+ 1)p, which
is not a heavy burden as long as the network is not too densely
connected.

We note that, in [37], an algorithm named Stochastic Gradient
Augmented Lagrangian Method (SGALM) has been proposed.
The SGALM is an variant of the ADMM algorithm that replaces
the primal updates (8) and (9) with their respective one step
gradient descent. Though SGALM bears some similarity with
the proposed DLADMM, there are several subtle differences,
which render the latter superior to the former, especially in the
particular problem of network cost minimization considered in
this paper. In the following, for the network cost minimization
problem (24), we compare the x-update of DLADMM with that
of the SGALM. The w-updates can be analogously compared.
Specifically, the x-update of SGALM for problem (24) is:

xk+1 = xk − η∇xLρ(xk ,wk ,αk ) (36)

= xk − η
[∇f(xk ) + BTαk + ρBT (Bxk −wk

)]
,

(37)

where η > 0 is the stepsize. On the other hand, the x-update of
the proposed DLADMM given in (28) can be rewritten as:

xk+1 =
(
cI + ρBTB

)−1

· [−∇f(xk ) + cxk −BTαk + ρBTwk
]
. (38)

Thus, we can see that the x-update in SGALM is different from
that in the proposed DLADMM. In particular, the x-update in
DLADMM includes a matrix inversion

(
cI + ρBTB

)−1
while

that of SGALM does not. The reason of the difference between

Fig. 1. Comparison between the DLADMM, the DADMM and the DGD.

the two algorithms is as follows. In the x-update of DLADMM,

only the term f(x) is linearized while the term ρ
2

∥∥Bx−wk
∥∥2

2
remains unchanged in the objective (c.f. (27)). In constrast,
in the x-update of SGALM, the derivative is taken for the
whole augmented Lagrangian Lρ(x,wk ,αk ) so that the term
ρ
2

∥∥Bx−wk
∥∥2

2 is also differentiated, i.e., it is also implicitely
linearized. This linearization will deteriorate the accuracy of
the approximation of the original ADMM update and is indeed
unnecessary from a computational perspective since, without
it, the DLADMM x-update in (38) can still be implemented
in a decentralized computationally efficient manner (c.f. (29)),
thanks to the special structure of the matrix B in the network
cost minimization problem under study. Due to the aforemen-
tioned discrepancy between DLADMM and SGALM, the anal-
ysis in [37] cannot be applied to the proposed DLADMM in
this paper. Furthermore, the theoretical guarantee for the con-
vergence rate of SGALM is O(1/k) in the deterministic setting
under the minimal assumption that the objective function is con-
vex. In contrast, under the more stringent assumption of strong
convexity, we show that the convergence rate of DLADMM
is exponential (linear convergence) both theoretically (c.f.
Theorem 2) and empirically (cf. Fig. 1). This further suggests
that the convergence analysis of DLADMM in this paper is
substantially different from that of the SGALM in [37].

Furthermore, we note that two algorithms, namely the prox-
imal ADMM and the majorized ADMM, have been developed
in [22] for non-convex non-differentiable distributed optimiza-
tion, extending the recent work [24] on non-convex ADMM.
These algorithms are different from the proposed DLADMM,
which enjoys lower computational complexity. Specifically, in
the majorized ADMM, there is no linearization in the algo-
rithm design. In each iteration, each node needs to solve two
optimization subproblems related to the node cost function and
the convex surrogate function of the link cost function, respec-
tively. Though these two subproblems are both convex, solving
them may still incur considerable computational burden in many
cases, e.g., the distributed logistic regression problem which
involves logarithmic functions in the objective function (c.f.
Section IV). On the other hand, in the proximal ADMM, though
the link cost subproblem is linearized to give closed-form up-
date equations, the node cost subproblem still needs to be solved
exactly (through proximal operator), which can be computation-
ally demanding. In contrast, in the proposed DLADMM in this
paper, both the node cost subproblem (i.e., update of x) and
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the link cost subproblem (i.e., update of y, z or equivalently w)
are linearized, leading to simple closed-form updates for all the
involved variables and rendering the DLADMM very computa-
tionally efficient. Due to these discrepancies in algorithm design
between the methods in [22] and the proposed DLADMM, the
convergence analyses of this paper is very different from those
in [22]. Besides, the algorithms in [22] are only guaranteed
to converge, but there is no theoretical results regarding their
convergence rates. In contrast, the proposed DLADMM will be
shown to converge linearly to the optimum both theoretically
(c.f. Theorem 2) and empirically (cf. Fig. 1).

In addition, though linearization has been applied to consen-
sus optimization in prior works, it has not been used in the
formulated network cost minimization problem (1), which has
attracted little attention in the literature. In fact, due to the exis-
tence of link cost functions gij in (1), the convergence analysis
of the linearized ADMM for consensus optimization in [17] no
longer holds and the impact of linearization on the performance
of distributed ADMM for problem (1) remains unknown. This
motivates us to study the performance of the DLADMM for
problem (1) rigorously in this paper. We note that the extension
of the convergence analysis of DLADMM to problem (1) is
nontrivial, due to the presence of the link cost functions gij and
the new coupling structure of individual variables.

As a last remark, we note that the network cost minimization
problem, i.e., problem (1), cannot be readily converted into a
consensus optimization problem in a computationally efficient
way and should not be viewed as a special case of consensus
optimization. To forcibly convert problem (1) into consensus
optimization, one has to concatenate all the local variables into
one high dimensional variable x = [xT

1 , ...,xT
n ]T and define the

functions φi(x) = fi(xi) +
∑

j∈Ω i
gij (xi ,xj ). Thus, problem

(1) is equivalent to minimizing
∑n

i=1 φi(x), which is a con-
sensus optimization problem. However, such an awkward con-
version is almost useless in designing practical computationally
tractable algorithms since x is of very high dimension, even
in moderately large scale networks. It is computationally pro-
hibitive for each node to update and exchange a local version of
x so that virtually all existing methods on consensus optimiza-
tion will fail. Therefore, practically, problem (1) is not a special
case of consensus optimization and consensus ADMM cannot
be applied to problem (1) directly.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence behaviors of the
proposed DLADMM algorithm for the network cost minimiza-
tion problem (1). Instead of analyzing the DLADMM algorithm
outlined in Algorithm 2, we will analyze its centralized version
in (28), (31) and (35), which are tantamount to their decentral-
ized counterpart in Algorithm 2. We perform convergence anal-
ysis based on (28), (31) and (35) as they are more compact and
thus more amenable to analyses and expositions.1 Before for-
mally analyzing the convergence of DLADMM, we first present

1 Note that completely equivalent analysis based on the decentralized im-
plementation in Algorithm 2 can be conducted, though the notations are more
cluttered.

some preliminaries. After that, we show the convergence guar-
antee of the DLADMM (Theorem 1) and in particular, a linear
convergence rate of the DLADMM (Theorem 2).

A. Preliminaries

First, we can derive Lipschitz continuity of∇f and∇g from
Assumption 2 as follows.

Lemma 1: If Assumption 2 holds, then∇f is Lipschitz con-
tinuous with constant L and ∇g is Lipschitz continuous with
constant M =

√
L2K2 + L2K, where K = maxi |Ωi | is the

maximum degree of the network.
We further note the following fact from convex analysis [38].
Lemma 2: For any differentiable convex function h : Rl


→ R and positive constant L > 0, the following two statements
are equivalent:

1) ∇h is Lipschitz continuous with constant L, i.e., ‖∇h
(x)−∇h(x′)‖2 ≤ L ‖x− x′‖2 ,∀x,x′ ∈ Rl .

2) ∀x,x′ ∈ Rl :

‖∇h(x)−∇h (x′)‖22 ≤ L (x− x′)T(∇h(x)−∇h (x′)) .

Utilizing the Lemma 1 and Lemma 2, we immediately have
the following result.

Lemma 3: If Assumptions 1 and 2 hold, we have: ∀x,x′

∈ Rnp ,

‖∇f(x)−∇f (x′)‖22 ≤ L (x− x′)T (∇f(x)−∇f (x′)) ,
(39)

and ∀w,w′ ∈ Rnp+mp ,

‖∇g(w)−∇g (w′)‖22 ≤M (w −w′)T (∇g(w)−∇g (w′)) ,
(40)

where M is defined in Lemma 1.

B. Convergence

We define a diagonal positive definite matrix Λ as:

Λ =

⎡

⎣
c
2 Inp

ρ+c
2 Inp+mp

1
2ρ Inp+mp

⎤

⎦ . (41)

For ease of notation, we define u ∈ R3np+2mp to be the con-
catenation of x,w,α into a single column vector and similarly
for uk ,u∗. Since Λ is a positive definite matrix, we can further
define a norm on R3np+2mp as: ‖u‖Λ =

√
uTΛu. We have the

following result.
Proposition 1: Suppose Assumptions 1 and 2 hold. Then, for

any primal/dual optimal point of problem (24) u∗ = [x∗T,w∗T,

α∗T]T, the sequence uk =
[
xkT,wkT,αkT

]T
generated by the

DLADMM algorithm satisfies ∀k ≥ 0:

∥∥uk+1 − u∗
∥∥2

Λ ≤
∥∥uk − u∗

∥∥2
Λ −

(
c

2
− L

4

)∥∥xk − xk+1
∥∥2

2

−
(

c− ρ

2
− M

4

)∥∥wk −wk+1
∥∥2

2 −
1
4ρ

∥∥αk+1 −αk
∥∥2

2 .

Proof: The proof is given in Appendix A. �
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Now, we are ready to state our first main theorem of conver-
gence.

Theorem 1: Suppose Assumptions 1,2 hold and c > M
2 + ρ.

Then, the sequence uk generated by the DLADMM algorithm
converges to some primal/dual optimal point of problem (24),
i.e., there exists a primal/dual optimal point of problem (24) u∗

such that limk→∞uk = u∗.
Proof: Given any primal/dual optimal point of problem (24)

u∗, according to Proposition 1 and c > M
2 + ρ, we know that∥∥uk − u∗

∥∥2
Λ is a decreasing sequence. Since it is clearly lower

bounded by 0, we have that
∥∥uk − u∗

∥∥2
Λ is convergent. From

Proposition 1, we further deduce that:

0 ≤
(

c

2
− L

4

)∥∥xk − xk+1
∥∥2

2

+
(

c− ρ

2
− M

4

)∥∥wk −wk+1
∥∥2

2 +
1
4ρ

∥∥αk+1 −αk
∥∥2

2

(42)

≤ ∥∥uk − u∗
∥∥2

Λ −
∥∥uk+1 − u∗

∥∥2
Λ . (43)

Because
∥∥uk − u∗

∥∥2
Λ is convergent, we know that the quantity

in (43) converges to zero as k goes to infinity. Hence, the quantity
in (42) converges to zero as well. Therefore,

lim
k→∞

(
xk − xk+1) = 0, (44)

lim
k→∞

(
wk −wk+1) = 0, (45)

lim
k→∞

(
αk −αk+1) = 0. (46)

Substituting the above limits into (28), (31) and (35) yields:

lim
k→∞

[∇f
(
xk
)

+ BTαk + ρ
(
BTBxk+1 −BTwk

)]
= 0,

(47)

lim
k→∞

[∇g
(
wk
)−αk + ρ

(
wk+1 −Bxk+1)] = 0, (48)

lim
k→∞

(
Bxk+1 −wk+1) = 0. (49)

Equation (49) clearly implies:

lim
k→∞

(
Bxk −wk

)
= 0. (50)

Combining (48) and (49) leads to:

lim
k→∞

[∇g
(
wk
)−αk

]
= 0. (51)

Moreover, from (49) and (45), we obtain:

Bxk+1 −wk = Bxk+1 −wk+1 + wk+1 −wk → 0,

as k →∞. (52)

Combining (52) and (47), we get:

lim
k→∞

[∇f
(
xk
)

+ BTαk
]

= 0. (53)

Since ∀k :‖uk−u∗‖Λ≤‖u0− u∗‖Λ , we know that {uk}k=0,1,...

is a bounded sequence. So, it has convergent subsequence, which
is denoted as

{
uki
}

i=1,2,...
. Let û be the limit of this convergent

subsequence, i.e., limi→∞uki = û. Equations (50), (51) and

(53) are still satisfied along the subsequence
{
uki
}

i=1,2,...
and

hence,

lim
i→∞

(
Bxki −wki

)
= 0, (54)

lim
i→∞

[∇g
(
wki

)−αki
]

= 0, (55)

lim
i→∞

[∇f
(
xki
)

+ BTαki
]

= 0. (56)

Making use of the convergence of the subsequence {uki }i=1,2,...

to û, we obtain:

Bx̂− ŵ = 0, (57)

∇g (ŵ)− α̂ = 0, (58)

∇f (x̂) + BTα̂ = 0. (59)

These are the KKT conditions of problem (24). So û is a pri-
mal/dual optimal point of problem (24). In the following, we
endeavor to show that the sequence uk converges to û. Before
that, we first present a lemma without proof.

Lemma 4: If the sequence {uk}k=0,1,... has two subse-
quences {uki }i=1,2,... and {uk ′i }i=1,2,... converging to u and u,
respectively, then u = u.

Now, we show that uk converges to û by making use of
Lemma 4. Suppose, on the contrary, uk does not converge to û.
Then, there exists some positive ε, such that for any positive inte-
ger N , there exists some k ≥ N with ‖uk − û‖2 ≥ ε. Thus, let-
ting N = 1, we get some k̃1 ≥ 1 with ‖uk̃1 − û‖2 ≥ ε. Letting
N = k̃1 + 1, we get some k̃2 ≥ k̃1 + 1 with ‖uk̃2 − û‖2 ≥ ε.
Continuing this process, we obtain a subsequence {uk̃ i }i=1,2,...

such that ‖uk̃ i − û‖2 ≥ ε,∀i. The subsequence {uk̃ i }i=1,2,...

is bounded as the original sequence {uk}k=0,1,... is bounded.

As such, the subsequence {uk̃ i }i=1,2,... has a convergent sub-

subsequence {uk̃ i j }j=1,2,... . Denote the limit of this conver-

gent sub-subsequence as ũ, i.e., limj→∞uk̃ i j = ũ. Obviously,
‖ũ− û‖2 ≥ ε. But, according to Lemma 4, we should have
ũ = û. This is a contradiction. So, we must have limk→∞uk =
û. Note that we have previously shown that û is a pri-
mal/dual optimal point of problem (24). We hence conclude the
theorem. �

C. Linear Rate of Convergence

With the strong convexity assumption, we can further guaran-
tee linear convergence rate of the DLADMM algorithm. Before
formally stating this result, we first present an implication of
Assumption 3.

Lemma 5: If Assumption 3 holds, then f and g are both
strongly convex with constant τ .

The strong convexity of f and g implies that there exists a
unique primal/dual optimal point u∗ for problem (24). Denote
the spectral norm (maximum singular value) of B as Γ. Now,
we are ready to state our second main theorem regarding linear
convergence rate. The proof follows analogous idea as the de-
velopment of linear convergence rate in [17], [18], [16] and is
omitted here.
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Theorem 2: Suppose Assumptions 2, 3 hold and c > max
{L2

2τ , ρ + M 2

2τ }. Then, ∀k:
∥∥uk+1 − u∗

∥∥2
Λ ≤

1
1 + δ

∥∥uk − u∗
∥∥2

Λ . (60)

In (60), δ > 0 is a positive constant defined as:

δ = min

{
τ − L2

2c
c
2 + 3ρμΓ2

μ−1

,
τ − β

2
c+ρ

2 + 3ρμ
μ−1 + 2M 2 μ

ρ

,
1
4

}
, (61)

where β ∈ ( M 2

c−ρ , 2τ) is the solution of the equation:

τ − β
2

c+ρ
2 + 3ρμ

μ−1 + 2M 2 μ
ρ

=
c−ρ
2 − M 2

2β

3c2 μ
ρ(μ−1) + 2M 2 μ

ρ

, (62)

and μ > 1 is any constant greater than 1.
Remark 3: The constant δ determining the convergence rate

of the DLADMM depends on the local cost functions (L,M, τ ),
the network topology (Γ) as well as the algorithm parameters
(ρ, c). This sheds some light on how to tune the parameters to
achieve better convergence speed in practice. Furthermore, we
note that the Theorem 2 only provides a sufficient condition
for linear convergence of the DLADMM. In later numerical
experiments, we will see that even when the assumptions of
Theorem 2 is violated (e.g., the local cost functions are not
strongly convex), the DLADMM algorithm may still converge
in linear rate.

IV. NUMERICAL EXPERIMENTS

In this section, numerical results are presented to corrobo-
rate the effectiveness of the proposed DLADMM algorithm. In
particular, we consider the problem of distributed logistic regres-
sion. Suppose each node i has a training set of q training exam-
ples {uil , til}l=1,...,q , where uil ∈ Rp is the input feature vector
and til ∈ {−1, 1} is the corresponding output label. Logistic re-
gression model postulates that, for node i, the probability of the
output ti given the input ui is Pr(ti = 1|ui) = 1

1+exp{−uT
i x i} ,

where xi is the classifier for node i. Our goal is to estimate
the classifiers of all nodes and thus, together with a decision
threshold, we can achieve a input-output mapping at each node.
Moreover, we note that neighbor nodes tend to have similar
classifiers. Incorporating this prior knowledge into the maxi-
mum likelihood estimator of the logistic regression yields the
following optimization problem:

Minimize{x i }i = 1 , . . . , n

n∑

i=1

q∑

l=1

log
(
1 + exp

(−tiluT
ilxi

))

+ β

n∑

i=1

∑

j∈Ω i

‖xi − xj‖22 . (63)

The problem (63) is clearly in the form of (1) with:

fi(xi) =
q∑

l=1

log
(
1 + exp

(−tiluT
ilxi

))
, (64)

gij (xi ,xj ) = β‖xi − xj‖22 . (65)

We note that fi and gij are all convex, i.e., they sat-
isfy Assumption 1. In addition, ∇fi is Lipschitz continuous

with constant 1
4

∑q
l=1 ‖uil‖22 and ∇gij is Lipschitz contin-

uous with constant 4β. So, Assumption 2 holds with L =
max

{
4β, 1

4 maxi=1,...,n

∑q
l=1 ‖uil‖22

}
. Thus, Theorem 1 can

be applied with appropriate algorithm parameters and con-
vergence of the DLADMM algorithm is guaranteed theoreti-
cally. Moreover, though neither fi nor gij is strongly convex
(Assumption 3 does not hold), we can still empirically observe
linear convergence of the DLADMM in later experiments.

A. Comparison between the DLADMM, the DADMM and
the DGD

We first conduct an experiment to compare the performance
of the DLADMM, the DADMM, and the distributed gradient
descent (DGD), in which each node updates its local variable
xi according to the local gradient descent step:

xk+1
i = xk

i − η

[
∇fi(xk

i ) +
∑

j∈Ω i

(
∇x i

gij (xk
i ,xk

j )

+∇x i
gj i(xk

j ,xk
i )
)]

, (66)

where η > 0 is the stepsize. We consider two scenarios: (i) a
random network with n = 10 nodes; the dimension of each
data sample is p = 2; and each node has q = 50 data samples;
(ii) a random network with n = 30 nodes; the dimension of each
data instance is p = 5; and each node has q = 10 data samples.
The average degree of the network is 2. The ADMM algorithm
parameter is set to be ρ = 50 and the linearization parameter is
c = 3 in scenario (i) and c = 5 in scenario (ii). The stepsize of
the DGD is set to be η = 0.01. In Fig. 1, we compare the relative

errors
‖xk −x∗‖2
‖x∗‖2 (x∗ is the optimal point of (63) obtained by solv-

ing the centralized optimization problem with the CVX package
[39], [40]) of the DLADMM, the DADMM and the DGD. We
observe that the convergence curve of the DLADMM algorithm
is very close to that of the DADMM algorithm in both scenarios.
Both the DADMM and the DLADMM converge linearly to the
optimal point. However, the computational complexity of the
DLADMM is much lower than that of the DADMM. It takes
several hours for the DADMM to finish 400 iterations while the
DLADMM only needs about 5 seconds to finish the same num-
ber of iterations. The reason is that, for each node, each iteration
of the DADMM necessitates solving a local optimization prob-
lem containing log functions, which must be approximated iter-
atively. Thus, each iteration of the DADMM is carried out very
slowly. On the contrary, each iteration of the DLADMM only
involves direct closed-form computations, which can be imple-
mented very quickly. This endows the DLADMM with great
computational advantage over the DADMM. Furthermore, we
observe that both the DLADMM and the DADMM outperform
the DGD in terms of convergence rate. This is unsurprising since
primal domain methods, such as DGD, usually converge slower
than primal dual methods such as ADMM and its variants.

B. Impact of Network Topology

Next, we investigate the impact of network topology on
the performance of the DLADMM. We set the total number
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Fig. 2. Different network topologies. (a) Line network. (b) Star network.
(c) Complete network. (d) Small-world network.

Fig. 3. Performance of the DLADMM on different network topologies.

of nodes to be n = 20 and the algorithm parameters to be
ρ = 100, c = 50. We consider four network topologies: the line
network, the star network, the complete network and the small-
world network. The four network topologies are illustrated in
Fig. 2. To obtain small-world network, we first generate a cycle
network, and then add 20 random links between them. As its
name suggests, in small-world networks, the distance between
two nodes, i.e., the length of the shortest path connecting these
two nodes, is small. Many properties of real-world networks can
be obtained by the small-world networks [41]. The convergence
curves of the DLADMM on different network topologies are
shown in Fig. 3. We observe that the convergence of the small-
world network and the star network are faster than that of the
line network and complete network. The phenomenon can be
explained as follows. For the complete network, the number of
constraints in the ADMM formulation of the network cost prob-
lem (11), i.e., the number of nodes plus the number of links, is
large. Thus, the number of dual variables at each node is also
large, resulting in slow convergence. For the line network, the
distance between nodes is generally large, so that information
from a node cannot propagate quickly to many distant nodes.
This also prohibits the DLADMM from fast convergence. In
contrast, for the star network and the small-world network:
(i) the distances between nodes are small so that information
can be efficiently diffused; (ii) the average degree of nodes is
small so that each node only has a small number of dual vari-
ables to update, which can converge quickly. Lastly, we remark
that though the DLADMM converges at different speeds for dif-
ferent network topologies, it converges linearly to the optimal
point in all circumstances.

Fig. 4. Performance of the DLADMM on the small-world networks with
different average degrees.

Fig. 5. Performance of the DLADMM with different values of c.

C. Impact of Network Connectivity

We further study the impact of network connectivity, mea-
sured by the average node degree, on the performance of the
DLADMM over small-world networks. To this end, we first
form a cycle network and then add different numbers of ran-
dom links to obtain small-world networks of different average
degrees. The convergence curves of the DLADMM algorithm
on small-world networks with different average degrees are re-
ported in Fig. 4. We observe that the small-world networks with
smaller average degree have faster convergence speed. The rea-
son is that for small-world networks, even when the average
degree is small (e.g., 3), the distances between nodes are short
so that information of one node can spread across the network
quickly. Additionally, for small-world network with lower de-
grees, each node only needs to update a small number of dual
variables and thus the convergence is faster. Note that when
the average degree is high, the small-world networks become
analogous to the complete network, over which the DLADMM
converges slowly (Fig. 3).

D. Impact of the Linearization Parameter c

Finally, in Fig. 5, we study the impact of the linearization
parameter c on the convergence of the DLADMM over small-
world networks. We observe that as long as the DLADMM
converges, the smaller the value of c , the faster the convergence
speed. But c cannot be too small, otherwise the DLADMM
may diverge, e.g., when c = 1. Recall that the parameter c is
introduced to limit the step size between consecutive iterations
and therefore plays a similar role as the step size parameter
in numerical optimization [30] and adaptive signal processing
[35]. A general tradeoff for such parameters is that (i) when
they are too large, the convergence is slow; (ii) when they are
too small, the algorithm risks divergence. We note that similar
phenomenon can be observed in Fig. 5.



636 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 4, NO. 3, SEPTEMBER 2018

V. CONCLUSION AND FUTURE WORK

In this paper, we study the generic form of network cost mini-
mization problem, in which the network cost includes both node
costs and link costs. The formulated problem has broad appli-
cations in distributed signal processing and control over multi-
agent networked systems. A distributed linearized ADMM algo-
rithm is presented for the formulated problem. The DLADMM
algorithm operates in a decentralized manner and each iteration
only involves simple closed-form computations, which endows
the DLADMM much lower computational complexity than the
distributed ADMM. Under the assumptions that the local cost
functions are convex and possess Lipschitz continuous gradi-
ents, we show that the DLADMM converges to an optimal point
of the network cost minimization problem. By further assum-
ing that the local cost functions are strongly convex, we can
guarantee linear convergence rate of the DLADMM. Numerical
simulations are carried out to validate the performance of the
DLADMM and we empirically observe that the DLADMM has
similar convergence performance as DADMM does while the
former has much lower computational overhead. The impacts
of network topology, connectivity and algorithm parameters on
the convergence behaviors of the DLADMM are also discussed.

One possible future direction is to examine the convergence
rate of the DLADMM in the absence of strong convexity as-
sumption (Assumption 3). In the literature, it has been shown
that ADMM converges to the optimal solution with the rate of
O(1/k) even when the objective function is not strongly con-
vex [42]. An analogous convergence rate is expected for the
DLADMM in network cost minimization.

APPENDIX A
PROOF OF PROPOSITION 1

According to Assumption 1, problem (24) is a convex op-
timization problem. Thus, the Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient for optimality. So,
the primal/dual optimal point u∗ satisfies the following KKT
conditions:

∇f(x∗) + BTα∗ = 0, (67)

∇g(w∗)−α∗ = 0, (68)

Bx∗ −w∗ = 0. (69)

Subtracting (67) from (28) and exploiting (69) yields gives:

∇f
(
xk
)−∇f(x∗) + c

(
xk+1 − xk

)
+ BT (αk −α∗

)

+ ρBTB
(
xk+1 − x∗

)
+ ρBT (w∗ −wk

)
= 0. (70)

Similarly, subtracting (68) from (31) and exploiting (69) yields:

∇g
(
wk
)−∇g (w∗) + c

(
wk+1 −wk

)
+ α∗ −αk

+ ρ
(
wk+1 −w∗

)
+ ρB

(
x∗ − xk+1) = 0. (71)

Combining (35) and (69) leads to:

αk+1 −αk + ρB
(
x∗ − xk+1)+ ρ

(
wk+1 −w∗

)
= 0.

(72)

According to Lemma 3, we have:

1
L

∥∥∇f
(
xk
)−∇f(x∗)

∥∥2
2 (73)

≤ (xk − x∗
)T (∇f

(
xk
)−∇f(x∗)

)
(74)

=
(
xk+1 − x∗

)T (∇f
(
xk
)−∇f(x∗)

)

+
(
xk − xk+1)T (∇f

(
xk
)−∇f(x∗)

)
. (75)

For the first term of (75), according to (70), we have:

(
xk+1 − x∗

)T (∇f
(
xk
)−∇f(x∗)

)

=
(
xk+1 − x∗

)T
[
c
(
xk − xk+1)+ BT (α∗ −αk

)

+ ρBTB
(
x∗ − xk+1)+ ρBT (wk+1 −w∗

)

+ ρBT (wk −wk+1)
]
. (76)

On the other hand, using Lemma 3 again, we have:

1
M

∥∥∇g
(
wk
)−∇g(w∗)

∥∥2
2 (77)

≤ (wk −w∗
)T (∇g

(
wk
)−∇g(w∗)

)
(78)

=
(
wk+1 −w∗

)T (∇g
(
wk
)−∇g(w∗)

)

+
(
wk −wk+1)T (∇g

(
wk
)−∇g(w∗)

)
. (79)

For the first term of (79), by using (71), we obtain:

(
wk+1 −w∗

)T (∇g
(
wk
)−∇g(w∗)

)
(80)

=
(
wk+1 −w∗

)T
[
c
(
wk −wk+1)+ αk −α∗

+ ρ
(
w∗ −wk+1)+ ρB

(
xk+1 − x∗

) ]
(81)

We note the following fact, which shall be used frequently.
Lemma 6: For any symmetric matrix A ∈ RN×N and any

vectors x,y, z ∈ RN , we have:

2(x− y)TA(z− x) = (z− y)TA(z− y)

− (x− y)TA(x− y)− (z− x)TA(z− x). (82)

Making use of Lemma 6, we obtain:

c
(
xk+1 − x∗

)T (
xk − xk+1)

=
c

2

∥∥xk − x∗
∥∥2

2 −
c

2

∥∥xk+1 − x∗
∥∥2

2 −
c

2

∥∥xk − xk+1
∥∥2

2 ,

(83)

and

c
(
wk+1 −w∗

)T (
wk −wk+1)

=
c

2

∥∥wk −w∗
∥∥2

2 −
c

2

∥∥wk+1 −w∗
∥∥2

2 −
c

2

∥∥wk −wk+1
∥∥2

2 .

(84)



CAO AND LIU: DISTRIBUTED LINEARIZED ADMM FOR NETWORK COST MINIMIZATION 637

Based on (72), we get:

(
xk+1 − x∗

)T
BT (α∗ −αk

)
+
(
wk+1 −w∗

)T (
αk −α∗

)

=
[−B

(
xk+1 − x∗

)
+ wk+1 −w∗

]T (
αk −α∗

)
(85)

=
1
ρ

(
αk −αk+1)T (

αk −α∗
)

(86)

= − 1
2ρ

∥∥α∗ −αk+1
∥∥2

2 +
1
2ρ

∥∥αk −αk+1
∥∥2

2

+
1
2ρ

∥∥α∗ −αk
∥∥2

2 . (87)

Again, using (72), we obtain:

(
xk+1 − x∗

)T [
ρBTB

(
x∗ − xk+1)+ ρBT (wk+1 −w∗

)]

+
(
wk+1 −w∗

)T [
ρ
(
w∗ −wk+1)+ ρB

(
xk+1 − x∗

)]

(88)

= −ρ
∥∥B
(
xk+1 − x∗

)
+ w∗ −wk+1

∥∥2
2 (89)

= −1
ρ

∥∥αk+1 −αk
∥∥2

2 . (90)

Once again, using (72), we have:

ρ
(
xk+1 − x∗

)T
BT (wk −wk+1) (91)

=
[
αk+1 −αk + ρ

(
wk+1 −w∗

)]T (
wk −wk+1) (92)

=
(
αk+1 −αk

)T (
wk −wk+1)+

ρ

2

∥∥wk −w∗
∥∥2

2

− ρ

2

∥∥wk+1 −w∗
∥∥2

2 −
ρ

2

∥∥wk −wk+1
∥∥2

2 (93)

≤ 1
2

∥∥∥∥
1√
2ρ

(
αk+1 −αk

)∥∥∥∥
2

2
+

1
2

∥∥∥
√

2ρ
(
wk −wk+1)

∥∥∥
2

2

+
ρ

2

∥∥wk −w∗
∥∥2

2 −
ρ

2

∥∥wk+1 −w∗
∥∥2

2

− ρ

2

∥∥wk −wk+1
∥∥2

2 (94)

=
1
4ρ

∥∥αk+1 −αk
∥∥2

2 +
ρ

2

∥∥wk −wk+1
∥∥2

2

+
ρ

2

∥∥wk −w∗
∥∥2

2 −
ρ

2

∥∥wk+1 −w∗
∥∥2

2 . (95)

Adding the results in (83), (84), (87), (90) and (95) all together
and noting (76) and (81), we get:

(
xk+1 − x∗

)T (∇f
(
xk
)−∇f(x∗)

)

+
(
wk+1 −w∗

)T (∇g
(
wk
)−∇g(w∗)

)
(96)

≤ c

2

∥∥xk − x∗
∥∥2

2 −
c

2

∥∥xk+1 − x∗
∥∥2

2 −
c

2

∥∥xk − xk+1
∥∥2

2

+
c

2

∥∥wk −w∗
∥∥2

2 −
c

2

∥∥wk+1 −w∗
∥∥− c

2

∥∥wk −wk+1
∥∥2

2

− 1
2ρ

∥∥α∗ −αk+1
∥∥2

2 +
1
2ρ

∥∥α∗ −αk
∥∥2

2 −
1
4ρ

∥∥αk+1 −αk
∥∥2

2

+
ρ

2

∥∥wk −w∗
∥∥2

2 −
ρ

2

∥∥wk+1 −w∗
∥∥2

2 +
ρ

2

∥∥wk −wk+1
∥∥2

2

(97)

=
∥∥uk − u∗

∥∥2
Λ −

∥∥uk+1 − u∗
∥∥2

Λ −
c

2

∥∥xk − xk+1
∥∥2

2

− c− ρ

2

∥∥wk −wk+1
∥∥2

2 −
1
4ρ

∥∥αk+1 −αk
∥∥2

2 . (98)

Combining (75), (79) and (98), we obtain:

1
L

∥∥∇f
(
xk
)−∇f(x∗)

∥∥2
2 +

1
M

∥∥∇g
(
wk
)−∇g(w∗)

∥∥2
2

≤ ∥∥uk − u∗
∥∥2

Λ −
∥∥uk+1 − u∗

∥∥2
Λ −

c

2

∥∥xk − xk+1
∥∥2

2

− c− ρ

2

∥∥wk −wk+1
∥∥2

2 −
1
4ρ

∥∥αk+1 −αk
∥∥2

2

+
(
xk − xk+1)T (∇f

(
xk
)−∇f(x∗)

)

+
(
wk −wk+1)T (∇g

(
wk
)−∇g(w∗)

)
(99)

≤ ∥∥uk − u∗
∥∥2

Λ −
∥∥uk+1 − u∗

∥∥2
Λ −

c

2

∥∥xk − xk+1
∥∥2

2

− c− ρ

2

∥∥wk −wk+1
∥∥2

2 −
1
4ρ

∥∥αk+1 −αk
∥∥2

2

+
L

4

∥∥xk − xk+1
∥∥2

2 +
1
L

∥∥∇f
(
xk
)−∇f(x∗)

∥∥2
2

+
M

4

∥∥wk −wk+1
∥∥2

2 +
1
M

∥∥∇g
(
wk
)−∇g(w∗)

∥∥2
2

(100)

We can rewrite (100) as:

∥∥uk+1 − u∗
∥∥2

Λ ≤
∥∥uk − u∗

∥∥2
Λ −

(
c

2
− L

4

)∥∥xk − xk+1
∥∥2

2

−
(

c− ρ

2
− M

4

)∥∥wk −wk+1
∥∥2

2

− 1
4ρ

∥∥αk+1 −αk
∥∥2

2 (101)
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