
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020 2215

Dynamic Sharing Through the ADMM
Xuanyu Cao and K. J. Ray Liu , Fellow, IEEE

Abstract—In this paper, we study a dynamic version of the shar-
ing problem, in which a dynamic system cost function composed
of time-variant local costs of subsystems and a shared time-variant
cost of the whole system is minimized. A dynamic alternating direc-
tion method of multipliers (ADMM) is proposed to track the varying
optimal points of the dynamic optimization problem in an online
manner. We analyze the convergence properties of the dynamic
ADMM and show that, under several standard technical assump-
tions, the iterations of the dynamic ADMM converge linearly to
some neighborhoods of the time-varying optimal points. The sizes
of these neighborhoods depend on the drifts of the dynamic objec-
tive functions: the more drastically the dynamic objective function
evolves across time, the larger the sizes of these neighborhoods.
We also upper bound the limiting optimality gaps of the dynamic
ADMM explicitly, and analyze its regret and constraint violation.
Finally, two numerical examples are presented to corroborate the
effectiveness of the proposed dynamic ADMM.

Index Terms—Alternating direction method of multipliers
(ADMM), dynamic optimization, the sharing problem.

I. INTRODUCTION

Many resource allocation problems can be posed as an optimization
problem that aims at minimizing a system cost consisting of local costs
of subsystems and a shared cost of the whole system. This can be
described as the following sharing problem [1]:

Minimize
n∑

i=1

f (i) (x(i)) + g

(
n∑

i=1

x(i)

)
(1)

with variables x(i) ∈ Rp , i = 1, . . ., n, where f (i) : Rp �→ R is the
local cost function of subsystem i and g : Rp �→ R is the global cost
function of some commonly shared objective of all subsystems. The
global cost function g takes the sum of all x(i) as its input argument.
One implicit assumption of the conventional sharing problem (1) is
that both the local cost function f (i) and the global cost function g are
static, i.e., they do not vary with time. However, in practice, the cost or
utility functions in many applications are intrinsically time varying. For
example, in power grids, the utility functions of the subsystems vary
across time as the users’ demands evolve, e.g., the demands climax
during evening and decline between midnight and early morning. The
generation cost of the power system also varies with time owing to the

Manuscript received December 19, 2017; revised June 11, 2018 and
December 16, 2018; accepted August 31, 2019. Date of publication
September 9, 2019; date of current version April 23, 2020. Recom-
mended by Associate Editor U. V. Shanbhag. (Corresponding author:
Xuanyu Cao.)

X. Cao is with the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail:,
xyc@illinois.edu).

K. J. R. Liu is with the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, MD 20742 USA (e-mail:,
kjrliu@umd.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2940317

intermittent renewable energy sources and the fluctuation of the market
prices of energy. Therefore, we are motivated to study the following
dynamic version of the sharing problem in this paper:

Minimize
n∑

i=1

f
(i)
k

(
x(i)) + gk

(
n∑

i=1

x(i)

)
(2)

where k is the time index. f
(i)
k : Rp �→ R is the local cost function of

subsystem i at time k and gk : Rp �→ R is the global cost function of
the shared objective at time k. We assume that all the cost functions
f

(i)
k , gk are strongly convex and gk has Lipschitz continuous gradient.

In the literature, dynamic optimization problems arise in various
research fields and have been studied from different perspectives. In
adaptive signal processing such as the recursive least squares, the in-
put/output data arrive sequentially, resulting in a time-varying objec-
tive function (the discounted total squared errors) to be minimized [2].
Another line of research for dynamic optimization is online convex op-
timization (OCO) [3]–[7]. In OCO, the time-varying cost functions are
unknown a priori and the goal is to design online algorithms with low
(e.g., sublinear) regrets, i.e., the solution from the algorithms is not too
worse than the optimal offline benchmarks. More broadly speaking,
online learning (e.g., the weighted majority algorithm and the mul-
tiplicative weight update method) [8]–[11] and (stochastic) dynamic
control/programming (e.g., Markov decision processes) [12], [13] also
lie in the category of dynamic optimizations, though their problem
formulations are very distinct from that of this paper.

To solve the dynamic sharing problem in an online manner, in this
paper, we present a dynamic alternating direction method of multi-
pliers (ADMM) algorithm. As a primal–dual method, the ADMM is
superior to its primal domain counterparts such as the gradient de-
scent method in terms of convergence speed. In fact, recent research
has shown that ADMM is among the fastest first-order methods [14],
[15]. Due to its broad applicability, the ADMM has been exploited in
various signal processing and control problems. A few recent studies
have investigated the performance of ADMM in dynamic scenarios. In
particular, an online ADMM algorithm is proposed in [16], whereas a
distributed online ADMM algorithm is developed in [17] for decentral-
ized optimization over networks. Wang and Banerjee[16] and Hosseini
et al. [17] focused on regret analysis and the benchmark used to define
the regret is the best fixed point in hindsight. This hinders their appli-
cations to problems in which the underlying systems are intrinsically
time varying and the best fixed point may not be very meaningful, e.g.,
tracking a moving object. In contrast, the tracking errors of the dynamic
optimal points are adopted as the performance measure in this paper.
For dynamic sharing problem, this is more meaningful than the best
fixed point since the underlying systems (e.g., power systems) may vary
intrinsically (e.g., varying renewable generation and market prices of
energy). Additionally, several stochastic ADMM algorithms [18]–[20]
have been proposed to solve stochastic programs iteratively using se-
quential samples. Though the stochastic ADMM operates in an online
manner as new samples arrive sequentially, the statistical characteristics
of the stochastic program and the optimal solution do not change over
time, which makes the problem setup very distinct from the dynamic
sharing problem considered here. A more closely related work is given
in [21], in which a dynamic ADMM algorithm is applied to the consen-
sus optimization problems. However, the convergence analysis of the

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0190-4362
https://orcid.org/0000-0001-5469-5811
mailto:xyc@illinois.edu
mailto:kjrliu@umd.edu

2216 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020

dynamic ADMM in [21] significantly relies on the special structure of
the consensus optimization problems, in which all the agents share the
same decision variable. This leaves the performance of the dynamic
ADMM in other optimization scenarios largely unknown. In fact, abun-
dant existing works have dealt with various aspects of static ADMM
for distributed consensus problems, e.g., distributed ADMM [22], lin-
earized ADMM for composite consensus [23], impact of network topol-
ogy [24], and weighted ADMM [25]–[27]. Nevertheless, none of them
can be directly applied to the dynamic sharing problem in this paper.

Our goal in this paper is to investigate the convergence behaviors of
the dynamic ADMM for the dynamic sharing problem both theoreti-
cally and empirically. Specifically, a dynamic ADMM algorithm (Algo-
rithm 1) is proposed for a more general dynamic optimization problem
[Problem (6)], which encompasses the dynamic sharing problem as a
special case. The dynamic ADMM can adapt to the time-varying cost
functions and track the optimal points in an online manner. We analyze
the convergence properties of the proposed dynamic ADMM algorithm.
We show that, under standard technical assumptions, the gaps between
the algorithm iterates and the time-varying optimal points converge lin-
early to some neighborhoods of zero. The sizes of the neighborhoods
are related to the drifts of the dynamic optimization problem: the more
drastically the dynamic problem evolves with time, the larger the sizes
of the neighborhoods. We also upper bound the limiting optimality gaps
of the dynamic ADMM explicitly. Additionally, regret and constraint
violation bounds of the dynamic ADMM are established in terms of
the cumulative drift of the dynamic problem.

The remaining part of this paper is organized as follows. In Section II,
the dynamic ADMM algorithm is proposed. In Section III, theoretical
analysis of the convergence properties of the dynamic ADMM is pre-
sented. Two numerical examples are shown in Section IV, following
which we conclude this paper in Section V.

II. ALGORITHM DEVELOPMENT

In this section, we first give an application of the dynamic sharing
problem in power systems to justify its usefulness. Then, we develop a
dynamic ADMM algorithm for a more general dynamic optimization
problem, which encompasses the dynamic sharing problem as a special
case.

A. Application of the Dynamic Sharing Problem

The dynamic sharing problem in (2) can be applied to many dynamic
resource allocation problems. For example, consider a power grid that
is divided into n power subsystems. If subsystem i receives x(i) amount
of power supplies at time k, then it gains a utility of −f

(i)
k (x(i)) by

consuming the supplies. The utility function is time variant because
users often have different power demands at different time, e.g., 6–
11 P.M. may be the peak demand period, whereas 2–6 A.M. may be
a low demand period. On the other hand, the generation of the total
power supplies of

∑n
i=1 x(i) can incur a cost of gk (

∑n
i=1 x(i)) for

the power generator due to resource consumptions and pollution. The
generation cost function gk also varies across time owing to factors
such as the intermittent renewable energy generation and the varying
market prices of the traditional energy sources. Thus, the overall social
cost minimization problem can be posed as a dynamic sharing problem
as in (2).

Furthermore, one can consider the more general dynamic optimiza-
tion problem of minimizing

∑m
j=1 h

(j)
k (x(Sj)), in which x(Sj) is the

concatenation of all x(i) for i ∈ Sj and h
(j)
k is a time-varying func-

tion. The sets {Sj }j=1 , . . . ,m capture the general dependence structure
between the terms in the objective function and the optimization vari-
ables, which encompasses the dynamic sharing problem as a special
case. In principle, the analysis presented in this paper can be extended
to this general problem since it is also amenable to ADMM after some
problem reformulation. Details are left as future work.

B. Development of the Dynamic ADMM

Define x = [x(1)T, . . .,x(n)T]T, A = [Ip , . . ., Ip], and

fk (x) =
n∑

i=1

f
(i)
k

(
x(i)) . (3)

Then, the dynamic sharing problem (2) can be reformulated as

Minimize
x∈Rn p ,z∈Rp

fk (x) + gk (z) (4)

s.t. Ax − z = 0. (5)

In the remaining part of this paper, we study the following more general
dynamic optimization problem:

Minimize
x∈RN ,z∈RM

fk (x) + gk (z) (6)

s.t. Ax + Bz = c (7)

where fk : RN �→ R and gk : RM �→ R are two functions, A ∈
RM ×N and B ∈ RM ×M are two matrices, and c ∈ RM is a vec-
tor. Problem (4) is clearly a special case of problem (6) by taking
N = np, M = p,B = −I, c = 0, and fk decomposable as in (3). To
apply the ADMM, we form the augmented Lagrangian of problem (6)

Lρ ,k (x, z, λ) = fk (x) + gk (z) + λT(Ax + Bz − c)

+
ρ

2
‖Ax + Bz − c‖22 (8)

where λ ∈ RM is the Lagrange multiplier and ρ > 0 is some positive
constant. Applying the traditional static ADMM [1] to the dynamic
augmented Lagrangian Lρ ,k , we propose a dynamic ADMM algorithm,
as specified in Algorithm 1. The main difference between the dynamic
ADMM in Algorithm 1 and the traditional static ADMM described
in Section II-B is that the functions fk and gk vary across iterations
of the ADMM. The aim of this paper is to study the impact of these
varying functions on the ADMM algorithm. Further, we note that one
can conduct multiple ADMM iterations in each time k, i.e., multiple
rounds of the updates (9)–(11) for each time k. This will potentially
improve the performance of dynamic ADMM at the cost of higher
computational complexity. In this paper, we focus on the case of single
ADMM iteration per time slot and the analysis can be extended to
the case of multiple iterations straightforwardly. In the following, we
introduce two linear convergence concepts.

Definition 1: A sequence sk is said to converge Q-linearly to s∗ if
there exists some constant θ ∈ (0, 1) such that |sk+1 − s∗| ≤ θ|sk −
s∗| for k sufficiently large.

Definition 2: A sequence vk is said to converge R-linearly to v∗ if
there exists a positive constant τ > 0 and some sequence sk Q-linearly
converging to some number s∗ such that |vk − v∗| ≤ τ |sk − s∗| for k
sufficiently large.

We remark that these linear convergence notions are widely adopted
in the literature [25], [26], [28].

III. CONVERGENCE ANALYSIS

In this section, convergence analysis for the dynamic ADMM algo-
rithm, i.e., Algorithm 1, is conducted. We first make several standard
assumptions for algorithm analysis. Then, we show that the gaps be-
tween the algorithm iterates and the dynamic optimal points converge
linearly (either Q-linearly or R-linearly) to some neighborhoods of
zero (Theorems 1 and 2). The sizes of these neighborhoods depend
on the drift (to be formally defined later) of the dynamic optimization
problem (6). Further, we upper bound the limiting optimality gaps of
the dynamic ADMM explicitly. Finally, regret and constraint viola-
tion bounds of the dynamic ADMM are established in terms of the
cumulative drift of the dynamic problem.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020 2217

Algorithm 1: The dynamic ADMM for problem (6).

1: Initialize x0 = 0, z0 = λ0 = 0, k = 0
2: Repeat:
3: k ← k + 1
4: Update x according to:

xk = arg min
x

fk (x) + λT
k−1Ax +

ρ

2
‖Ax + Bzk−1 − c‖22 . (9)

5: Update z according to:

zk = arg min
z

gk (z) + λT
k−1Bz +

ρ

2
‖Bz + Axk − c‖22 . (10)

6: Update λ according to:

λk = λk−1 + ρ(Axk + Bzk − c). (11)

A. Assumptions

Throughout the convergence analysis, we make the following stan-
dard assumptions on the functions fk and gk [28]–[30].

Assumption 1: For any k, gk is strongly convex with constant m >
0 (m is independent of k), i.e., for any k and any z, z′ ∈ RM

(∇gk (z)−∇gk (z′))T (z − z′) ≥ m‖z − z′‖22 . (12)

Assumption 2: For any k, fk is strongly convex with constant m̃ >
0 (m̃ is independent of k), i.e., for any k and any x,x′ ∈ RN

(∇fk (x)−∇fk (x′))T (x − x′) ≥ m̃‖x − x′‖22 . (13)

Assumption 3: For any positive integer k,∇gk is Lipschitz contin-
uous with constant L > 0 (L is independent of k), i.e., for any positive
integer k and any z, z′ ∈ RM

‖∇gk (z)−∇gk (z′)‖2 ≤ L‖z − z′‖2 . (14)

We note that when fk is decomposable as in (3) of the dynamic
sharing problem, if for any i = 1, . . ., n and positive integer k, f

(i)
k

is strongly convex with constant m̃i > 0, then Assumption 2 holds
with m̃ = mini=1 , . . . ,n m̃i > 0. We further assume that the matrix B ∈
RM ×M is nonsingular.

Assumption 4: B is nonsingular.

B. Convergence Analysis

In this section, we study the convergence behavior of the proposed
dynamic ADMM algorithm under Assumptions 1–4. Before formal
analysis, we note that if multiple ADMM iterations per time slot are
allowed, existing results on the static ADMM can be applied to show
small optimality gaps of the dynamic ADMM in each time slot sepa-
rately. One drawback of this approach is high computational burden,
which renders it not suitable for many real-time applications with low
computational capabilities, e.g., cheap sensors processing real-time
data stream. In contrast, Algorithm 1 conducts only one single ADMM
iteration per time slot and thus enjoys low computational overhead. Due
to this single iteration, new analysis is needed to establish convergence
in the dynamic setting in which the underlying optimization problem
is varying.

Owing to the strong convexity assumption in Assumptions 1 and 2,
there is a unique primal/dual optimal point pair (x∗k , z∗k , λ∗k) for the
dynamic optimization problem (6) at time k. Denote uk = [zT

k , λT
k]T

and u∗k = [z∗Tk , λ∗Tk]T. Since B is a square matrix, the eigenvalues of
BBT are the same as those of BTB. Denote the smallest eigenvalue of
BBT, which is also the smallest eigenvalue of BTB, as α. According
to Assumption 4, B is nonsingular, so BBT and BTB are positive

definite and α > 0. Define matrix C ∈ R2M ×2M to be

C =
[ρ

2 BTB
1
2ρ

IM

]
. (15)

Since B is nonsingular (Assumption 4), we know that C is positive
definite. Therefore, we can define a norm on R2M as ‖u‖C =

√
uTCu.

Define t to be any arbitrary number within the interval (0, 1). A positive
constant δ > 0 is defined as

δ = min
{

2mt

ρ‖B‖22
,
2αρ(1 − t)

L

}
(16)

where ‖B‖2 is the spectral norm, i.e., the maximum singular value.
Proposition 1: For any positive integer k, we have

‖uk − u∗k ‖C ≤
1√

1 + δ
‖uk−1 − u∗k ‖C . (17)

Proof: The updates of x and z can be rewritten as

∇fk (xk) + ATλk−1 + ρAT(Axk + Bzk−1 − c) = 0 (18)

∇gk (zk) + BTλk−1 + ρBT(Axk + Bzk − c) = 0. (19)

Combining (19) and (11) yields

∇gk (zk) + BTλk = 0. (20)

Combining (18) and (11) gives

∇fk (xk) + AT(λk + ρB(zk−1 − zk)) = 0. (21)

According to Assumptions 1 and 2, problem (6) is a convex optimiza-
tion problem. Thus, Karush–Kuhn–Tucker conditions are necessary
and sufficient for optimality. Hence,

∇fk (x∗k) + ATλ∗k = 0 (22)

∇gk (z∗k) + BTλ∗k = 0 (23)

Ax∗k + Bz∗k = c. (24)

Because of the convexity of gk (Assumption 1) and Lipschitz continuity
of its gradient (Assumption 3), we have [31]

‖∇gk (zk)−∇gk (z∗k)‖22
≤ L(zk − z∗k)T(∇gk (zk)−∇gk (z∗k)). (25)

Further using (23) and (20), we obtain

(zk − z∗k)TBT(λ∗k − λk) ≥ 1
L

∥∥BT(λk − λ∗k)
∥∥2

2 . (26)

According to the strong convexity of gk (Assumption 1), we have

m‖zk − z∗k ‖22 ≤ (∇gk (zk)−∇gk (z∗k))T(zk − z∗k)

=
(−BTλk + BTλ∗k

)T
(zk − z∗k). (27)

Combining (26) and (27), we know that for any t ∈ (0, 1)

(zk − z∗k)TBT(λ∗k − λk)

≥ tm‖zk − z∗k ‖22 +
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 . (28)

According to the convexity of fk (Assumption 2), we have

0 ≤ (xk − x∗k)T(∇fk (xk)−∇fk (x∗k)). (29)

Further making use of (21) and (22), we get

0 ≤ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1)). (30)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

2218 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020

Adding (28) and (30) leads to

(zk − z∗k)TBT(λ∗k − λk)

+ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1))

≥ tm‖zk − z∗k ‖22 +
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 . (31)

From (11) and (24), we get

A(xk − x∗k) + B(zk − z∗k) =
1
ρ
(λk − λk−1). (32)

Making use of (32), we derive

(zk − z∗k)TBT(λ∗k − λk)

+ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1)) (33)

= (λ∗k − λk)T[B(zk − z∗k) + A(xk − x∗k)]

+ ρ(xk − x∗k)TATB(zk − zk−1) (34)

=
1
ρ
(λ∗k − λk)T(λk − λk−1) + ρ(A(xk − x∗k))TB(zk − zk−1)

=
1
ρ
(λk−1 − λk)T(λk − λ∗k)

+ (λk − λk−1 − ρB(zk − z∗k))TB(zk − zk−1). (35)

Rearranging (35), we obtain

1
ρ
(λk−1 − λk)T(λk − λ∗k) + ρ(zk − z∗k)TBTB(zk−1 − zk)

= (λk − λk−1)TB(zk−1 − zk) + (zk − z∗k)TBT(λ∗k − λk)

+ (xk − x∗k)TAT(λ∗k − λk + ρB(zk − zk−1)). (36)

Noting that the last two product terms of the right-hand side of (36) are
the same as the left-hand side of (31), we get

1
ρ
(λk−1 − λk)T(λk − λ∗k) + ρ(zk − z∗k)TBTB(zk−1 − zk)

≥ (λk − λk−1)TB(zk−1 − zk) + tm‖zk − z∗k ‖22

+
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 (37)

which is equivalent to

1
ρ
(λk−1 − λk)T(λk − λk−1 + λk−1 − λ∗k)

+ ρ(zk−1 − zk)TBTB(zk − zk−1 + zk−1 − z∗k) (38)

≥ (λk − λk−1)TB(zk−1 − zk) + tm‖zk − z∗k ‖22

+
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 . (39)

This can be further rewritten as

1
ρ
(λk−1 − λk)T(λk−1 − λ∗k) + ρ(zk−1 − zk)TBTB(zk−1 − z∗k)

≥ 1
ρ
‖λk−1 − λk ‖22 + ρ‖Bzk−1 −Bzk ‖22

+ (λk − λk−1)TB(zk−1 − zk)

+ mt‖zk − z∗k ‖22 +
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 . (40)

We have

1
ρ
(λk−1 − λk)T(λk−1 − λ∗k) = − 1

2ρ
‖λ∗k − λk ‖22

+
1
2ρ
‖λk−1 − λk ‖22 +

1
2ρ
‖λ∗k − λk−1‖22 (41)

ρ(zk−1 − zk)TBTB(zk−1 − z∗k) = −ρ

2
‖Bz∗k −Bzk ‖22

+
ρ

2
‖Bzk−1 −Bzk ‖22 +

ρ

2
‖Bz∗k −Bzk−1‖22 . (42)

Combining (41) and (42) and further utilizing (40) gives

1
2ρ
‖λk−1 − λ∗k ‖22 +

ρ

2
‖Bzk−1 −Bz∗k ‖22 −

1
2ρ
‖λk − λ∗k ‖22

− ρ

2
‖Bzk −Bz∗k ‖22 (43)

=
1
ρ
(λk−1 − λk)T(λk−1 − λ∗k)

+ ρ(zk−1 − zk)TBTB(zk−1 − z∗k)

− 1
2ρ
‖λk−1 − λk ‖22 −

ρ

2
‖Bzk−1 −Bzk ‖22 (44)

≥ 1
2ρ
‖λk−1 − λk ‖22 +

ρ

2
‖Bzk−1 −Bzk ‖22

+ (λk − λk−1)TB(zk−1 − zk)

+ mt‖zk − z∗k ‖22 +
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 (45)

=
1
2ρ
‖λk − λk−1 + ρ(Bzk−1 −Bzk)‖22 + mt‖zk − z∗k ‖22

+
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 (46)

≥ mt‖zk − z∗k ‖22 +
1 − t

L

∥∥BT(λk − λ∗k)
∥∥2

2 (47)

≥ mt

‖B‖22
‖Bzk −Bz∗k ‖22 +

α(1 − t)
L

‖λk − λ∗k ‖22 (48)

≥ δ

(
1
2ρ
‖λk − λ∗k ‖22 +

ρ

2
‖Bzk −Bz∗k ‖22

)
(49)

where the last step is due to the definition of δ in (16). Noticing the
definition of ‖ · ‖C , we get

‖uk−1 − u∗k ‖2C ≥ (1 + δ)‖uk − u∗k ‖2C (50)

which is tantamount to (17). �
Remark 1: Proposition 1 states that uk is closer to u∗k than uk−1

with a shrinkage factor of δ. The bigger the δ, the stronger the shrinkage.
Note that there is an arbitrary factor t ∈ (0, 1) in the definition of δ in

(16). By choosing t = αρ2 ‖B ‖22
m L+αρ2 ‖B ‖22

, we get the maximum δ as δmax =
2m αρ

m L+αρ2 ‖B ‖22
. In the expression of δmax, only ρ is a tunable algorithm

parameter, whereas all other parameters are given by the optimization
problem. Further, we note that δmax is maximized when ρ =

√
m L

α ‖B ‖22
,

for which the theoretical performance bound of the dynamic ADMM is
the best. This suggests that the optimal value of ρ should be neither too
large nor too small. Nevertheless, in practice, this optimal ρ is hard to
compute since we may not have access to m and L. Instead, we usually
just use trial and error to find a reasonably “good” value for ρ.

Proposition 1 establishes a relation between ‖uk − u∗k ‖C and
‖uk−1 − u∗k ‖C . However, to describe the convergence behavior of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020 2219

the dynamic ADMM algorithm, what we really want is the relation
between ‖uk − u∗k ‖C and ‖uk−1 − u∗k−1‖C . This is accomplished by
the following theorem.

Theorem 1: Define the drift dk of the dynamic problem (6) to be

dk =
√

ρ

2
‖B‖2‖z∗k−1 − z∗k ‖2

+
1√
2ρα
‖∇gk−1 (z∗k−1)−∇gk (z∗k)‖2 . (51)

Then, for any integer k ≥ 2, we have

‖uk − u∗k ‖C ≤
1√

1 + δ
(‖uk−1 − u∗k−1‖C + dk). (52)

Proof: See Section S.1 of the supplementary material. �
Remark 2: Theorem 1 means that the optimality gap ‖uk − u∗k ‖C

converges Q-linearly (with contraction factor
√

1 + δ) to some neigh-
borhood of zero. The size of the neighborhood is characterized by
dk , the drift of the dynamic problem (6), which is determined by the
problem formulation instead of the algorithm. The more drastically the
dynamic problem (6) varies across time, the bigger the drift dk , and
the larger the size of that neighborhood. When the dynamic problem
(6) degenerates to its static counterpart, i.e., fk and gk do not vary
with k, dk becomes zero. In such a case, Theorem 1 degenerates to
the linear convergence result of the static ADMM in [30]. Further,
we note that the target optima u∗k is a time-varying sequence instead
of a fixed point. Thus, Theorem 1 indicates that the algorithm iterate
uk tracks the dynamic optima u∗k instead of converging to some fixed
point. This is due to the temporal variations of the underlying optimiza-
tion problems and differs from existing works on static optimization,
in which the algorithm iterates usually converge to a fixed (optimal)
point.

Remark 3: If higher computational overhead is affordable, one can
conduct multiple ADMM iterations in each time slot to improve the
performance of dynamic ADMM. As far as performance analysis is
concerned, this can be regarded as repeating the same optimization
problem for multiple time slots and all the analyses for the single
iteration case still hold under minor modifications. In particular, when
the same problem is repeated multiple times, the corresponding drift dk

is zero and the gap ‖uk − u∗k ‖C decreases geometrically for multiple
rounds according to (52). This partially explains why multiple ADMM
iterations per time slot can improve the performance.

Remark 4: We note that in the proof of Theorem 1, the sole role of
the drift dk is to upper bound ‖u∗k−1 − u∗k ‖C . Thus, one may define a

new notion of drift as d̃k = ‖u∗k−1 − u∗k ‖C and (52) (as well as other
later theorems) still holds for this new drift. In this paper, we define
drift dk according to (51) because it only involves quantities in the
primal optimization problem (6) such as the primal optimal point z∗k
and the primal objective function gk . It is more natural to characterize
the drift of the primal problem (6) using only these primal quantities
instead of the dual optimal point λ∗k used in ‖u∗k−1 − u∗k ‖C . The reason
is that the temporal variations of primal quantities, e.g., ‖z∗k−1 − z∗k ‖2 ,
are usually easier to estimate than those of the dual variables. For
example, if z∗k represents the location of a moving target, we may
estimate the variations of z∗k by the knowledge of the target’s speed
range. By defining the drift in terms of the primal variables, we may
obtain more accurate estimates of the drifts and thus know more about
the convergence performance of the dynamic ADMM. Further, we note
that the drift dk depends on the ADMM parameter ρ, which may seem
unnatural at the first glance. Nevertheless, this is indeed reasonable
(and inevitable) since the optimality gap ‖uk − u∗k ‖C that we want to
bound in (52) also depends on ρ implicitly through the norm ‖ · ‖C
(recall that the definition of C in (15) depends on ρ) and uk , which is
generated by the dynamic ADMM with parameter ρ.

Remark 5: The notion of drift and the linear convergence result in
Theorem 1 are analogous to that of [21]. Nevertheless, Ling and Ribeiro

[21] focused on decentralized consensus optimization problems over
networks and the analysis heavily relies on the special structures of
consensus optimization, in which networked agents share one common
decision variable. For instance, in [21], owing to the special struc-
tures of consensus optimization, some primal/dual variables can be
eliminated under appropriate initializations, which simplifies the per-
formance analysis. Such structures no longer hold for the dynamic
sharing problem in this paper. In fact, the proofs of linear convergence
for the dynamic sharing problem in this paper are very different from
that of [21].

The convergence property of uk has been established in Theorem 1.
A more meaningful result will be about the convergence properties of
xk , zk , and λk . To this end, we want to link the quantities ‖xk − x∗k ‖2 ,
‖zk − z∗k ‖2 , and ‖λk − λ∗k ‖2 with ‖uk − u∗k ‖C . This is accomplished
by the following theorem.

Theorem 2: For any integer k ≥ 2, we have

‖xk − x∗k ‖2

≤ 1
m̃
‖A‖2

[(
√

2ρ + ‖B‖2
√

2ρ

α

)
‖uk − u∗k ‖C

+ ‖B‖2
√

2ρ

α
‖uk−1 − u∗k−1‖C +

√
2ρdk

]
(53)

where ‖A‖2 is the spectral norm, i.e., the largest singular value, of A.
Furthermore, for any positive integer k, we have

‖zk − z∗k ‖2 ≤
√

2
αρ
‖uk − u∗k ‖C (54)

‖λk − λ∗k ‖2 ≤
√

2ρ‖uk − u∗k ‖C . (55)

Proof: See Section S.2 of the supplementary material. �
Remark 6: Since ‖uk − u∗k ‖C converges Q-linearly to some neigh-

borhood of zero, Theorem 2 indicates that ‖xk − x∗k ‖2 , ‖zk − z∗k ‖2 ,
and ‖λk − λ∗k ‖2 converge R-linearly to neighborhoods of zero. When
the dynamic optimization problem (6) degenerates to its static version,
i.e., fk and gk do not vary with k, Theorem 2 also degenerates to its
static counterpart in [28] and [30].

Theorems 1 and 2 characterize the transient behaviors of the dynamic
ADMM for each time k in terms of the drift dk . Based on these results,
we can bound the limiting optimality gaps of the algorithm iterates as
the time k goes to infinity in the following.

Theorem 3: Suppose the drift defined in (51) satisfies dk ≤ d, ∀k,
for some d ∈ R. Then, we have

lim sup
k→∞

‖uk − u∗k ‖C ≤
d√

1 + δ − 1
(56)

lim sup
k→∞

‖xk − x∗k ‖2 ≤
‖A‖2

m̃

⎡

⎣
√

2ρ + ‖B‖2
√

8ρ
α√

1 + δ − 1
+
√

2ρ

⎤

⎦ d

lim sup
k→∞

‖zk − z∗k ‖2 ≤
√

2
αρ

d√
1 + δ − 1

(57)

lim sup
k→∞

‖λk − λ∗k ‖2 ≤
√

2ρ
d√

1 + δ − 1
. (58)

Proof: See Section S.3 of the supplementary material. �
The dynamic problem (6) falls into the general category of con-

strained online optimization problems [3], for which regret and con-
straint violation are two prevalent performance criteria. Specifically,
for problem (6), the regret and the constraint violation of an algorithm

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

2220 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020

at time K are defined as

Reg(K) =
K∑

k=1

[fk (xk) + gk (zk)− fk (x∗k)− gk (z∗k)] (59)

Vio(K) =
K∑

k=1

‖Axk + Bzk − c‖2 (60)

where the time-varying primal optimal point (x∗k , z∗k) serves as a dy-
namic benchmark sequence. Generally, sublinear regret and sublin-
ear constraint violation, i.e., Reg(K) ≤ o(K) and Vio(K) ≤ o(K),
are regarded as “good” performance. In such a case, the time-
average performance of the algorithm iterates is no worse than that
of the benchmark optima asymptotically since Reg(K)

K
≤ o(1)→ 0 and

Vio(K)
K
≤ o(1)→ 0 as K →∞. If gk and fk are β- and β̃-Lipschitz

continuous, respectively, it can be shown that the regret and the con-
straint violation can be upper bounded in terms of the tracking errors
‖xk − x∗k ‖2 and ‖zk − z∗k ‖2 as follows:

Reg(K) ≤
K∑

k=1

(
β̃‖xk − x∗k ‖2 + β‖zk − z∗k ‖2

)
(61)

Vio(K) ≤
K∑

k=1

(‖A‖2‖xk − x∗k ‖2 + ‖B‖2‖zk − z∗k ‖2). (62)

These bounds manifest the connections between the regret/constraint
violation and the tracking errors used in Theorems 1–3. In the follow-
ing, by exploiting these connections, we establish upper bounds for the
regret and the constraint violation in terms of the drift.

Theorem 4: Suppose that gk and fk are Lipschitz continuous with
positive constants β and β̃, respectively, i.e.,∀k, ∀z, z′ ∈ RM , ∀x,x′ ∈
RN , we have

|gk (z)− gk (z′)| ≤ β‖z − z′‖2 (63)

|fk (x)− fk (x′)| ≤ β̃‖x − x′‖2 . (64)

Define the cumulative drift of problem (6) at time K as DK =∑K
k=2 dk . Then, the regret and the constraint violation of the dynamic

ADMM can be bounded as

Reg(K) ≤ O(DK + 1), Vio(K) ≤ O(DK + 1). (65)

Proof: See Section S.4 of the supplementary material. �
From Theorem 4, we know that the dynamic ADMM achieves sub-

linear regret and sublinear constraint violation as long as the cumulative
drift DK is sublinear. Conversely, if the cumulative drift DK is not sub-
linear, then the per time drift dk is in constant order at least, i.e., the
underlying optimization problem (6) varies in constant speed at least.
In such a case, it is hard for the algorithm iterates to track the dy-
namic optimal points so that the regret and the constraint violation may
not be sublinear. Additionally, we note that the benchmark (x∗k , z∗k)
that we use in (59) is a dynamic sequence instead of a fixed point. In
the literature, regret analysis with respect to dynamic benchmark has
been carried out for other algorithms of constrained online optimiza-
tion, e.g., the saddle point method in [32]. The corresponding regret
and constraint violation bounds often depend on various forms of the
drifts of the underlying dynamic problems. Here, Theorem 4 gives such
bounds for the proposed dynamic ADMM algorithm.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to validate the
efficacy of the proposed dynamic ADMM algorithm. The first example
is a dynamic sharing problem and the second one is the dynamic least
absolute shrinkage and selection operator (LASSO). We note that the
dynamic LASSO is not a dynamic sharing problem. Recall that the
dynamic ADMM (Algorithm 1) is designed for the general dynamic

optimization problem (6), which includes the dynamic sharing problem
as a special case. Here, we study dynamic LASSO numerically to
confirm that applications of the proposed dynamic ADMM are indeed
not limited to dynamic sharing problem.

A. Dynamic Sharing Problem

1) Problem Formulation: We first consider the following dy-
namic sharing problem:

Minimize
x (1) , . . . ,x (n) ∈Rp

n∑

i=1

(
x(i) − θ

(i)
k

)T
Φ(i)

k

(
x(i) − θ

(i)
k

)
+γ

∥∥∥∥∥

n∑

i=1

x(i)

∥∥∥∥∥
1

(66)

where θ
(i)
k ∈ Rp , Φ(i)

k ∈ Rp×p positive definite, and γ > 0 are given
problem data. Problem (66) is clearly in the form of (2) with

f
(i)
k

(
x(i)) =

(
x(i) − θ

(i)
k

)T
Φ(i)

k

(
x(i) − θ

(i)
k

)
(67)

gk (z) = γ‖z‖1 . (68)

Define x = [x(1)T, . . . ,x(n)T]T, θk = [θ(1)T
k , . . . , θ

(n)T
k]T, and Φk =

diag{Φ(1)
k , . . . ,Φ(n)

k }. Thus, in terms of problem (4), we have
fk (x) = (x − θk)TΦk (x − θk). Applying the dynamic ADMM al-
gorithm, i.e., Algorithm 1, to this dynamic sharing problem, we can
obtain closed-form updates for (9) and (10) in each iteration by invok-
ing the soft-threshold function since gk is 	1 -norm.

2) Generation of Φ(i)
k and θ

(i)
k : We generate the problem data

Φ(i)
k and θ

(i)
k recursively as follows. Given Φ(i)

k−1 (k ≥ 1), we first

generate Φ̃
(i)
k according to Φ̃

(i)
k = Φ(i)

k−1 + η
(i)
k E(i)

k , where η
(i)
k is

some small positive number and E(i)
k is a random symmetric matrix

with entries uniformly distributed on [−1, 1]. Then, we construct the
matrix Φ(i)

k as

Φ(i)
k =

⎧
⎨

⎩
Φ̃(i)

k , if λm in

(
Φ̃

(i)
k

)
≥ ε, i.e., Φ̃

(i)
k � εI

Φ̃(i)
k +

[
ε− λm in

(
Φ̃

(i)
k

)]
I, otherwise

(69)

where λm in (·) denotes the smallest eigenvalue and ε > 0 is some posi-
tive constant. Through this construction, we ensure that Φ(i)

k � εI, k =
1, 2, In addition, Φ0 is a random symmetric matrix whose entries
are uniformly distributed on [−1, 1]. Given θ

(i)
k−1 (k ≥ 1), we generate

θ
(i)
k according to θ

(i)
k = θ

(i)
k−1 + η

(i)
k h(i)

k , where h(i)
k is a random p-

dimensional vector whose entries are uniformly distributed on [−1, 1].
θ

(i)
0 is also a random p-dimensional vector with entries uniformly dis-

tributed on [−1, 1].
3) Simulation Results: In the first simulation, we set the pa-

rameters as η = 0.2, ε = 1, γ = 1, ρ = 1, p = 5, n = 20. We use the
CVX package [33] to compute the optimal point x∗k of the dynamic
sharing problem (66) at time k. In each time k, we use single or mul-
tiple iterations of the ADMM updates, i.e., single or multiple rounds
of the updates (9)–(11) for each time k (the original Algorithm 1 uses
one single ADMM iteration per time slot). The convergence curves of
‖xk − x∗k ‖2 (xk is the online solution given by the dynamic ADMM
algorithm) for different numbers of ADMM iterations per time slot are
shown in Fig. 1. The results are the average of 100 independent tri-
als. We observe that ‖xk − x∗k ‖2 converges to some neighborhoods of
zero after about 7–30 iterations, depending on the number of ADMM
iterations per time slot. This corroborates the efficacy of the proposed
dynamic ADMM algorithm. Unsurprisingly, we observe that the per-
formance of the dynamic ADMM algorithm can be enhanced by using
more ADMM iterations per time slot at the expense of higher com-
putational overhead. We note that the choice of gk (z) = γ‖z‖1 does
not satisfy the strong convexity and Lipschitz continuous gradient as-
sumptions used in the theoretical analysis. In light of this, we further

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020 2221

Fig. 1. Convergence curves of ‖xk − x∗k ‖2 for different numbers of
ADMM iterations per time slot.

Fig. 2. Impact of the algorithm parameter ρ on the convergence be-
haviors (‖xk − x∗k ‖2) of the dynamic ADMM.

run the dynamic ADMM for the quadratic function gk (z) = γ‖z‖22 ,
which is strongly convex and has Lipschitz continuous gradient (all As-
sumptions 1–4 are satisfied). The convergence curve for this quadratic
function g is also shown in Fig. 1, and one ADMM iteration is con-
ducted in each time slot. Comparing this curve with the red cross curve,
we observe that the performance of dynamic ADMM is better for the
quadratic function g than for the 	1 -norm function g. This suggests that
the assumptions made for theoretical analysis can also be important for
empirical performance.

In the second simulation, we investigate the impact of the algorithm
parameter ρ on the convergence performance of the dynamic ADMM.
We consider three different values for ρ: 0.01, 0.1, 1. The corresponding
convergence curves (‖xk − x∗k ‖2) are shown in Fig. 2. We find that
ρ = 0.1 yields the best convergence performance among the three
circumstances. This indicates the importance of an appropriate value of
ρ, which should be neither too large nor too small. We note that similar
observations have been made in the traditional static ADMM [1].

B. Dynamic LASSO

1) Problem Formulation: LASSO is an important and
renowned problem in statistics and signal processing. It embodies
sparsity-aware linear regression. Here, we consider a dynamic ver-
sion of the LASSO since the problem data often vary with time in
many real-time applications as new measurements arrive sequentially

Minimize
x∈Rp

1
2
‖Fk x − hk ‖22 + γ‖x‖1 (70)

where Fk ∈ Rm×p and hk ∈ Rm are time-variant problem data and
γ > 0 is some positive constant controlling the sparsity of the so-
lution. Problem (70) is clearly in the form of (6) with fk (x) =
1
2 ‖Fk x − hk ‖22 , gk (z) = γ‖z‖1 , A = I, B = −I, and c = 0. Thus,
we can apply Algorithm 1 to problem (70), where both (9) and (10) ad-
mit closed-form solutions. Note that problem (70) does not fall into the
category of dynamic sharing problem (2) as fk (x) cannot be decom-
posed across several parts of x. Our goal in this numerical example
is to verify that the proposed dynamic ADMM works well for the

Fig. 3. Results for the gaps ‖xk − x∗k ‖2 , ‖xk − x̃k ‖2 , and ‖x∗k − x̃k ‖2 .
(a) Slowly varying case (η = 0.01). (b) Fast varying case (η = 0.1).

general dynamic optimization problem (6), not just the dynamic shar-
ing problem.

2) Generation of Fk and hk : The problem data Fk and hk are
generated as follows. Given Fk−1 (k ≥ 1), we generate Fk according
to Fk = Fk−1 + ηk Wk , where ηk is some small positive constant and
Wk ∈ Rm×p is a random matrix with entries uniformly distributed on
[−1, 1]. F0 is also a random matrix with entries uniformly distributed
on [−1, 1]. To generate the sequence hk , we construct an auxiliary
ground-truth sequence x̃k as follows. We randomly select q differ-
ent numbers {j1 , . . .jq } from the set {1, . . ., p}, where q � p. Given
x̃k−1 (k ≥ 1), we generate x̃k based on: x̃k = x̃k−1 + ηk uk , where
uk ∈ Rp is a random vector with jl th entry uniformly distributed on
[−1, 1], l = 1, . . ., q, and other entries equal to zero. x̃0 is a random
vector whose jl th entry is uniformly distributed on [0,1], l = 1, . . ., q,
and other entries are zero. This enforces sparsity of the ground-truth
x̃k to be estimated, which is the underlying hypothesis of the LASSO.
With x̃k and Fk in hands, we generate hk according to hk = Fk x̃k +
vk , where vk ∼ N (0, σ2I) is an m-dimensional Gaussian random
vector.

3) Simulation Results: In the simulations, we set the param-
eters as: m = 10, p = 30, q = 2, ρ = 1, γ = 0.2, σ = 0.1. All results
except Fig. 4 are the average of 100 independent trials. We consider
two values, 0.01 and 0.1, for η, the parameter controlling the varia-
tion of the problem data across time. We call η = 0.01 and η = 0.1
the slowly time-variant case and the fast time-variant case, respectively.
Denote the online estimate generated by applying the dynamic ADMM
to the dynamic LASSO (70), the estimate given by the offline optimi-
zor through the CVX package [i.e., the optimal point of (70)] and the
ground-truth as xk ,x∗k , and x̃k , respectively. The gaps between these
three quantities, i.e., ‖xk − x∗k ‖2 , ‖xk − x̃k ‖2 , and ‖x∗k − x̃k ‖2 , in
the slowly time-variant case and the fast time-variant case are reported
in Fig. 3(a) and (b), respectively. A few remarks are in order. First,
the solution of the optimizor x∗k should be regarded as the benchmark
for the dynamic ADMM as the former is the optimal point of (70),
or in other words, the best that the dynamic LASSO can achieve. For
both slowly and fast time-variant cases, the gaps between the dynamic
ADMM and the offline optimizor, i.e., the blue line with square marker,
converge to some small values after about 40 iterations. This indicates
that the dynamic ADMM can track the optimal point of (70) well. Sec-
ond, the gaps between the dynamic ADMM and the truth (red line with
cross markers) as well as the gaps between the offline optimizor and the
truth (black line with triangle markers) are similar after some 50 iter-
ations in both slowly and fast time-variant cases. This suggests that in
terms of tracking the ground-truth, the dynamic ADMM and the offline
optimizor have similar performances while the former has much less
computational complexity than the latter. Third, unsurprisingly, com-
paring Fig. 3(a) with (b), we observe that the tracking performances
of both the dynamic ADMM and the offline optimizor are related to
the value of η: the larger the η, the more drastically the change of the
problem data across time, the poorer the tracking performance.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

2222 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020

Fig. 4. Trajectories of the two nonzero dimensions in one trial.

Lastly, a more palpable result of the tracking performance is shown
in Fig. 4, in which the trajectories of the two nonzero dimensions
(i.e., i1 , i2 , corresponding to the horizontal axis and the vertical axis,
respectively) of the dynamic ADMM, the offline optimizor, and the
ground-truth in one trial of the fast time-variant case are shown. The
starting point corresponds to k = 10 and the time gap between two
adjacent points is 10. We observe that the dynamic ADMM can track
the truth well. The tracking performance of the offline optimizor is
somewhat better, but at the expense of its heavy or even intractable
computational burden in many real-time applications.

V. CONCLUSION

In this paper, motivated by the dynamic sharing problem, we propose
and study a dynamic ADMM algorithm, which can adapt to the time-
varying optimization problems in an online manner. Theoretical analy-
sis is presented to show that the gaps between the algorithm iterates and
the dynamic optimal points converge linearly to some neighborhoods
of zero. The sizes of the neighborhoods depend on the inherent evolu-
tion speed, i.e., the drift, of the dynamic optimization problem across
time: the more drastically the problem evolves, the bigger the size
of the neighborhood. Explicit upper bounds of the limiting optimality
gaps of the dynamic ADMM are given. Moreover, regret and constraint
violation bounds of the dynamic ADMM are developed in terms of the
cumulative drift of the dynamic problem. Finally, numerical results are
presented to validate the proposed dynamic ADMM.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, pp. 1–122, 2011.

[2] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 1996.

[3] E. Hazan et al., “Introduction to online convex optimization,” Found.
Trends Optim., vol. 2, no. 3/4, pp. 157–325, 2016.

[4] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: Online
convex optimization with long term constraints,” J. Mach. Learn. Res.,
vol. 13, no. Sep., pp. 2503–2528, 2012.

[5] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm
for networked online convex optimization,” IEEE Trans. Signal Process.,
vol. 63, no. 19, pp. 5149–5164, Oct. 2015.

[6] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex opti-
mization in the bandit setting: Gradient descent without a gradient,” in
Proc. Symp. Discr. Algorithms, 2005, pp. 385–394.

[7] M. Zinkevich, “Online convex programming and generalized infinitesimal
gradient ascent,” in Proc. Int. Conf. Mach. Learn., 2003, pp. 928–936.

[8] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
in Proc. Found. Comput. Sci., 1989, pp. 256–261.

[9] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update
method: A meta-algorithm and applications,” Theory Comput., vol. 8,
no. 1, pp. 121–164, 2012.

[10] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus gradient
descent for linear predictors,” Inf. Comput., vol. 132, no. 1, pp. 1–63,
1997.

[11] C. Tekin, J. Yoon, and M. van der Schaar, “Adaptive ensemble learning
with confidence bounds,” IEEE Trans. Signal Process., vol. 65, no. 4,
pp. 888–903, Feb. 2017.

[12] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Hoboken, NJ, USA: Wiley, 2014.

[13] D. P. Bertsekas, Dynamic Programming and Stochastic Control. New
York, NY, USA: Academic, 1976.

[14] G. França and J. Bento, “An explicit rate bound for over-relaxed ADMM,”
in Proc. IEEE Int. Symp. Inf. Theory, 2016, pp. 2104–2108.

[15] P. Giselsson and S. Boyd, “Linear convergence and metric selection for
Douglas-Rachford splitting and ADMM,” IEEE Trans. Autom. Control,
vol. 62, no. 2, pp. 532–544, Feb. 2017.

[16] H. Wang and A. Banerjee, “Online alternating direction method,” in Proc.
Int. Conf. Mach. Learn., 2012, pp. 1119–1126.

[17] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed ADMM
on networks: Social regret, network effect, and condition measures,” 2014,
arXiv:1412.7116.

[18] H. Ouyang, N. He, L. Tran, and A. G. Gray, “Stochastic alternating di-
rection method of multipliers,” in Proc. Int. Conf. Mach. Learn., 2013,
vol. 28, pp. 80–88.

[19] W. Zhong and J. T.-Y. Kwok, “Fast stochastic alternating direction method
of multipliers,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 46–54.

[20] T. Suzuki, “Dual averaging and proximal gradient descent for online al-
ternating direction multiplier method,” in Proc. Int. Conf. Mach. Learn.,
2013, pp. 392–400.

[21] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through the
alternating direction method of multipliers,” IEEE Trans. Signal Process.,
vol. 62, no. 5, pp. 1185–1197, Mar. 2014.

[22] A. Makhdoumi and A. Ozdaglar, “Broadcast-based distributed alternating
direction method of multipliers,” in Proc. 52nd Annu. Allerton Conf.
Commun., Control, Comput., 2014, pp. 270–277.

[23] N. S. Aybat, Z. Wang, T. Lin, and S. Ma, “Distributed linearized alter-
nating direction method of multipliers for composite convex consensus
optimization,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 5–20, Jan.
2018.

[24] G. França and J. Bento, “How is distributed ADMM affected by network
topology?” 2017, arXiv:1710.00889.

[25] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed ADMM
over networks,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5082–
5095, Oct. 2017.

[26] Q. Ling, Y. Liu, W. Shi, and Z. Tian, “Communication-efficient weighted
ADMM for decentralized network optimization,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2016, pp. 4821–4825.

[27] A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, and M. Johansson,
“Optimal scaling of the ADMM algorithm for distributed quadratic pro-
gramming,” in Proc. IEEE Conf. Decis. Control, 2013, pp. 6868–6873.

[28] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the ADMM in decentralized consensus optimization,” IEEE Trans.
Signal Process., vol. 62, no. 7, pp. 1750–1761, Apr. 2014.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[30] W. Deng and W. Yin, “On the global and linear convergence of the general-
ized alternating direction method of multipliers,” J. Sci. Comput., vol. 66,
no. 3, pp. 889–916, 2016.

[31] L. Vandenberghe, “Gradient method,” Lecture Notes, University of
California–Los Angeles, Los Angeles, CA, USA, 2016.

[32] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization
approach to proactive network resource allocation,” IEEE Trans. Signal
Process., vol. 65, no. 24, pp. 6350–6364, Dec. 2017.

[33] M. Grant and S. Boyd, “CVX: MATLAB software for disciplined
convex programming, version 2.1,” Mar. 2014. [Online]. Available:
http://cvxr.com/cvx

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:34:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

