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Abstract—In this paper, we model and analyze the information
diffusion in heterogeneous social networks from an evolutionary
game perspective. Users interact with each other according to
their individual fitness, which are heterogeneous among different
user types. We first study a model where in each social interaction
the payoff of a user is independent of the type of the interacted
user. In such a case, we derive the information diffusion dynamics
of each type of users as well as that of the overall network. The
evolutionarily stable states (ESSs) of the dynamics are determined
accordingly. Afterwards, we investigate a more general model
where in each interaction the payoff of a user depends on the type
of the interacted user. We show that the local influence dynamics
change much more quickly than the global strategy population
dynamics and the former keeps track of the latter throughout
the information diffusion process. Based on this observation,
the global strategy population dynamics are derived. Finally,
simulations are conducted to verify the theoretical results.

I. INTRODUCTION

Social networking is becoming ubiquitous nowadays, which
draws great research attention recently. In large-scale social
systems, numerous users are exchanging various information
every day and the tremendous information flow creates the
“Big Data” phenomenon. In the literature, great efforts have
been made to understand the information diffusion process
over the social networks [1]–[6]. Pinto et al. in [1] predict
the future information diffusion by using early popularity data
on Youtube, while Weng et al. in [2] take the network and
community structure into account to predict successful memes.
Several general information diffusion dynamics patterns are
identified in [3], and the diffusion cascades are studied in [4].
The great success of some popular social networks such as
Facebook and Twitter provides researchers with extensive data
to analyze information diffusion, e.g., Wang et al. [5] study
the influence of a node on Twitter from the rate of diffusion,
and Ilyas et al. [6] consider the rumor spreading on Facebook.

Most of the existing works analyze the information dif-
fusion using data mining/machine learning techniques while
completely ignoring the interactions among the rational in-
dividuals. However, the overall information diffusion process
is determined by the actions of numerous rational individuals
and hence it is important to study it from a microeconomics
perspective [7]. In this regard, Goyal and Kearns [13] studied
the competitive contagions in networks by using game theory
while Kampe et al. [14] proposed algorithms to find the initial
targets to maximize the future contagions. Additionally, we
found in [9] and [10] that the information diffusion process
in social networks is actually very similar to the evolution

process in ecological systems and thus can be modeled as an
evolutionary game [8]. With a graphical evolutionary game
approach, we derive the evolutionarily stable states (ESSs)
of the diffusion process in [9] and evolutionary dynamics in
[10]. One assumption we made before is that the underlying
social network is homogeneous, i.e., all users have the same
degree of interest and influence in the diffusion process.
But, in practice, social systems generally exhibit significant
heterogeneity among different users. For example, some may
be interested in sport news while some may not; some may
be active in a social system while some tends to be silent.
This motivates the understanding of real heterogeneous social
networks.

In this paper, we model and analyze the information diffu-
sion over heterogeneous social networks by introducing het-
erogeneous payoff matrices to the evolutionary game theoretic
framework. We propose two different models, namely the
Type Independent Model and the Type Dependent Model,
to characterize the heterogeneity of the social networks to
different extent. For both models, we derive the evolutionary
dynamics of the information diffusion states. Accordingly,
we determine the ESSs of the Type Independent Model and
observe that the local dynamics will always keep track of the
corresponding global dynamics in the Type Dependent Model.
Finally, simulations are conducted to validate our theoretical
results.

II. SYSTEM MODEL

Consider a social network as a graph with nodes repre-
senting users and edges representing relationships between
users, e.g., friendship in Facebook. The information diffusion
over the network can be modeled as a graphical evolutionary
game as follows. The players of the game are the N users. To
characterize the heterogeneity of the network, we categorize
the users into M types and the payoffs of the interactions
between users depend on their types, which will be specified
later. The proportion of type-i users in the entire social
networks is denoted as q(i). Therefore,

∑M
i=1 q(i) = 1. We

assume each user has k neighbors (friends), i.e., a k-regular
network. When a piece of information emerges, each user has
two possible strategies: forwarding the information (Sf ) or
not forwarding it (Sn). We denote pf (i) the proportion of
users adopting strategy Sf among all the type-i users. Thus,
pf =

∑M
i=1 q(i)pf (i) is the proportion of users adopting

strategy Sf among users of all types. The definitions for pn(i)

978-1-4799-7088-9/14/$31.00 ©2014 IEEE

GlobalSIP 2014: Network Theory

737



and pn are analogous. In heterogeneous social networks, each
user knows its own type. But it may or may not know the
types of its neighbors since the type of a user is private
information, which can only be inferred gradually. For this
regard, we present two models for the heterogeneous payoffs,
namely the Type Independent Model and the Type Dependent
Model, which are specified as follows.

A. Type Independent Model

In this model, we assume a player’s utility does not depend
on the type of the interacted user in a social interaction.
However, the utility does depend on the player’s own type.
This can model the case where the type of a user is a private
information that others do not know. Specifically, we model
the payoff matrix of a type-i user as follows:

Sf SnÇ
Sf uff (i) ufn(i)

Sn ufn(i) unn(i)

å
.

When a type-i user with strategy Sf is interacting with an
user with strategy Sf , its payoff will be uff (i) regardless
of the type of the interacted user. The definitions of ufn(i)
and unn(i) are similar. Here, a symmetric payoff structure is
considered as in [9], [10]. In other words, when a type-i user
with strategy Sf (Sn) meets an user with strategy Sn(Sf ), its
payoff will be ufn(i). The value of the payoff matrix depends
on both the content of the information and types of the users.
For example, if the information is a recent hot topic and
forwarding it can attract more popularity from others, then
generally uff (i) is big while unn(i) is small. And if some
users are very interested in that hot topic or they strongly
desire to become more popular, then they may have larger
uff (i) and smaller unn(i) compared to other types of users.

Suppose a type-i user adopting strategy Sf has k neighbors,
among which kf users also adopt strategy Sf . Then, the fitness
of this user is defined as:

πf (i, kf ) = 1− α+ α[kfuff (i) + (k − kf )ufn(i)], (1)

where α is the selection strength and the baseline fitness is
normalized to 1. We assume in this paper that α is very small
as in [9]–[12], i.e., weak selection. Similarly, if the user adopts
strategy Sn, its fitness will be:

πn(i, kf ) = 1− α+ α[kfufn(i) + (k − kf )unn(i)]. (2)

The (1) and (2) clearly indicate that a user’s fitness is influ-
enced by its interactions with its neighbors.

B. Type Dependent Model

Through repeated interactions, a user may somehow manage
to know the types of its neighbors. To model such a scenario,
we propose the Type Dependent Model specified as follows.

Consider a type-i user A, which is interacting with one
of its type-j neighbor B. Since A knows the type of B, the
payoff of A in this interaction should depend on the type of B.
Specifically, if A,B both adopt strategy Sf , then the payoff of

Fig. 1. DB update rule. The central user is selected to update its strategy
and it chooses the gray neighbor’s strategy for its new strategy.

A is uff (i, j). If A,B adopt strategy Sf and Sn respectively,
then the payoff of A is ufn(i, j). Similarly, we can define
unf (i, j) and unn(i, j). From these notations, we can see that
in Type Dependent Model, the payoff of a user depends on not
only its own type but also the type of the interacted user, i.e.,
to identify a payoff we need a pair of type arguments (i, j).

As for the fitness, similar to (1) and (2), the fitness of a
user with strategy Sf or Sn is given by:

πf (i) = 1− α+ α
M∑
j=1

[kf (j)uff (i, j) + kn(j)ufn(i, j)], (3)

πn(i) = 1− α+ α
M∑
j=1

[kf (j)unf (i, j) + kn(j)unn(i, j)], (4)

where kf (j) (kn(j)) denotes the number of type-j users with
strategy Sf (Sn) among all the neighbors.

With the definition of fitness in both models, we could
specify the strategy update rule of the users. In this paper, we
adopt the death-birth (DB) update rule. At each time slot, one
user is randomly and uniformly selected to update its strategy.
Then, the chosen user will adopt one of its neighbor’s strategy
with probability proportional to fitness, as shown in Fig. 1.

III. ANALYSIS FOR THE TYPE INDEPENDENT MODEL

In this section, we derive the evolutionary dynamics of
the network states pf (i) and accordingly determine the ESSs
under the Type Independent Model.

In a certain time slot, suppose a type-i user with strategy
Sf (in the following, we will call this user as the center user)
is chosen to update its strategy. Among its k neighbors, there
are kf users adopting strategy Sf and (k−kf ) users adopting
strategy Sn. Thus, the fitness πf (i, kf ) of the center user is
given in (1). If the center user changes its strategy to Sn,
its fitness will become πn(i, kf ) (2). In DB update rule, the
center user updates its strategy according to the fitness of
its neighbors. Since different types of users generally have
different payoff matrices, the center user only want to learn
strategies from its neighbors of the same type, i.e., type i.
However, in the Type Independent Model, the center user does
not know the types of its neighbors. So, the center user has to
treat all of its neighbors as type i. Thus, from the perspective
of the center user, a neighbor adopting strategy Sf (Sn) has
fitness πf (i, kf ) (πn(i, kf )). According to the DB update rule,
the probability that the center user changes its strategy from
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Sf to Sn is given by:

Pf→n(i, kf ) =
(k − kf )πn(i, kf )

kfπf (i, kf ) + (k − kf )πn(i, kf )
. (5)

Substituting (1) and (2) into (5) yields:

Pf→n(i, kf )

=
k − kf
k

+ α(k − kf )

ï
k2f
k2

∆(i) +
kf
k

∆n(i)

ò
+O(α2),

(6)

where ∆(i) := 2ufn(i)−uff (i)−unn(i), ∆n(i) := unn(i)−
ufn(i). Because α is very small due to weak selection, we will
omit the O(α2) term in the following. Since the proportion of
users with strategy Sf is pf over the entire network, each
neighbor has probability pf of adopting strategy Sf . Thus kf
is a binomial distributed random variable with probability mass

function: θ(k, kf ) =

Ç
k

kf

å
p
kf

f (1 − pf )k−kf . Hence, taking

expectation of (6) gives:

E[Pf→n(i, kf )] = 1 − pf +
α

k2
∆(i)[−k(k − 1)(k − 2)p3f

+ (k3 − 4k2 + 3k)p2f + (k2 − k)pf ]

+
α

k
∆n(i)

[
−k(k − 1)p2f + k(k − 1)pf

]
.

(7)

In each round of DB update, one of the N users will be
selected to update its strategy randomly. The proportion of
type-i users with strategy Sf among all the users is pf (i)q(i).
Thus, we have:

Pr

Å
δpf (i) = − 1

Nq(i)

ã
= pf (i)q(i)E[Pf→n(i, kf )], (8)

where δ denotes increment. With a similar argument as above,
one can compute the probability that a type-i user changes its
strategy from Sn to Sf as follows:

Pr

Å
δpf (i) =

1

Nq(i)

ã
= pn(i)q(i)(1−E[Pf→n(i, kf )]). (9)

Combining (7), (8) and (9), we can derive the dynamic of
pf (i) as follows:

ṗf (i)

=
1

Nq(i)

[
Pr

(
δpf (i) =

1

Nq(i)

)
− Pr

(
δpf (i) = −

1

Nq(i)

)]
=

1

N
pf −

1

N
pf (i)

+
α(k − 1)

Nk
pf (pf − 1)[∆(i)((k − 2)pf + 1) + k∆n(i)].

(10)

Hence, the dynamic of pf is given by:

ṗf =
M∑
i=1

q(i)ṗf (i)

=
α(k − 1)

Nk
pf (pf − 1)[(k − 2)∆pf + ∆ + k∆n],

(11)

where ∆ :=
∑M

i=1 q(i)∆(i) and ∆n :=
∑M

i=1 q(i)∆n(i).
The evolutionary dynamics and their ESSs are summarized
in the following theorem. The proof is omitted due to space
limitation.

Theorem 1: In the Type Independent Model, the evolution-
ary dynamics of the network states pf (i), 1 ≤ i ≤ M are

given by (10) while the evolutionary dynamic of pf is given
by (11). The corresponding ESSs of the dynamical system can
be summarized as follows:

p∗f =


0, if unn > ufn,

1, if uff > ufn,

(k − 2)ufn − (k − 1)unn + uff

(k − 2)(2ufn − unn − uff )
, if max{uff , unn} < ufn,

(12)

p∗f (i) = p∗f − α(k − 1)

k
p∗f (1 − p∗f )[((k − 2)p∗f + 1)

· (2ufn(i) − unn(i) − uff (i)) + k(unn(i) − ufn(i))],
(13)

where uff =
∑M

i=1 q(i)uff (i) and ufn, unn are similarly
defined.

IV. ANALYSIS FOR THE TYPE DEPENDENT MODEL

In this section, we first discuss about the network states in
the Type Dependent Model and then derive their evolutionary
dynamics.

A. Network States

In the Type Dependent Model, since a user’s type and
strategy affect its neighbors’ utilities, they will also influence
the neighbors’ strategies. Thus, the edge information is also
required to fully characterize the network state. Specifically,
we define network edge states as pff (i, j), pfn(i, j), pnn(i, j),
where pff (i, j) (pnn(i, j)) denotes the proportion of edges
connecting a type-i user with strategy Sf (Sn) and a type-
j user with strategy Sf (Sn), and pfn(i, j) denotes the
proportion of edges connecting a type-i user with strategy
Sf and a type-j user with strategy Sn. Moreover, we denote
pf |f (i, j) the percentage of type-i neighbors adopting strategy
Sf , given a center type-j user using strategy Sf . Similarly,
we can define pf |n(i, j), pn|f (i, j), pn|n(i, j). In summary, we
have population states (e.g. pf (i)), relationship states (e.g.
pff (i, j)) and influence states (e.g. pf |f (i, j)) as our network
states. Since these states are dependent with each other, we
only need a subset of them to characterize the entire network
state. For example, we can use pf (i), 1 ≤ i ≤ M and
pff (i, j), 1 ≤ i, j ≤M to compute all the other states.

B. Analysis

Consider a type-i user using strategy Sf (the center user),
who is chosen to update its strategy. Then, its fitness is given
in (3). Rigorously speaking, kf (j) and kn(j) in (3) are random
variables with expection kq(j)pf |f (j, i) and kq(j)pn|f (j, i)
respectively. Since in real world social networks, k is relatively
large (more than 100 for typical online social networks such as
Facebook) and a small number of types (i.e., M ) is enough to
capture the user behaviors, we substitute kf (j), kn(j) by their
expectations for ease of analysis in the following. Hence, (3)
becomes:

πf (i) = 1−α+αk

M∑
j=1

q(j)[pf |f (j, i)uff (i, j)+pn|f (j, i)ufn(i, j)].

(14)
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Similarly, if a type-i user is adopting strategy Sn, its fitness
in (4) can be approximated as:

πn(i) = 1−α+αk

M∑
j=1

q(j)[pf |n(j, i)unf (i, j)+pn|n(j, i)unn(i, j)].

(15)
The center user should only update its strategy according

to its type-i neighbors since other types of neighbors have
different payoff matrices and learning strategies from them
is meaningless. Furthermore, on average, there are kpf |f (i, i)
type-i neighbors using strategy Sf and kpn|f (i, i) type-i
neighbors using strategy Sn. Thereby, according to the DB
update rule, the probability that the center user will update its
strategy to be Sn is:

Pf→n(i) =
πn(i)pn|f (i, i)

πf (i)pf |f (i, i) + πn(i)pn|f (i, i)
. (16)

Then, following a procedure similar to that of the Type
Independent Model, we can prove the following two theorems.

Theorem 2: In the Type Dependent Model, the population
dynamics pf (·) are given by:

ṗf (i) =
αk

N
pf (i)pn|f (i, i)(pn|n(i, i) + pf |f (i, i))

×
M∑
j=1

q(j)[pf |f (j, i)uff (i, j) + pn|f (j, i)ufn(i, j)

− pf |n(j, i)unf (i, j)− pn|n(j, i)unn(i, j)].

(17)

while the relationship dynamics pff (·, ·) are given by (l 6= i):

ṗff (i, l)

=
2

N
q(i)q(l)pf (i)(1− pf|f (i, i))

[
pf (l)

pn(i)
(1− pf|f (i, l))− pf|f (l, i)

]
+

2

N
q(i)q(l)pf (l)(1− pf|f (l, l))

[
pf (i)

pn(l)
(1− pf|f (l, i))− pf|f (i, l)

]
,

(18)

and

ṗff (i, i) =
2

Npn(i)
q2(i)pf (i)(1−pf |f (i, i))(pf (i)−pf |f (i, i)).

(19)
Theorem 3: Under the Type Dependent Model, in a small

time scale where the population states pf (·) remain constant,
the influence dynamics pf |f (·, ·) are given by:

ṗf |f (l, i) =
1

N
(pf (l)−pf |f (l, i))

ï
1 − pf |f (i, i)

pn(i)
+

1 − pf |f (l, l)

pn(l)

ò
.

(20)
From Theorem 3, we observe that the influence states

pf |f (l, i) will always keep track of the corresponding pop-
ulation states pf (l). Hence, we can make the approximation
that pf |f (l, i) = pf (l),∀l, i. Thus, the population dynamics in
(17) can be simplified as in the following corollary.

Corollary 1: In the Type Dependent Model, the population
dynamics pf (i) for each type i = 1, 2, ...M are given by:

ṗf (i) =
αk

N
pf (i)pn(i)

M∑
j=1

q(j)[pf (j)(uff (i, j) − unf (i, j))

+ pn(j)(ufn(i, j) − unn(i, j))].

(21)

0 1 2 3 4 5 6 7 8 9

x 10
5

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

time

p
o
p
u
la

ti
o
n
 d

y
n
a
m

ic
s

 

 

type 1 simulation

type 2 simulation

type 1 theory

type 2 theory

Fig. 2. Simulation results for population dynamics

V. SIMULATIONS

In this section, we show simulation results to validate our
theoretical results. We focus on the Type Independent Model
here, and set the parameters as follows: N = 1000, k =
20, α = 0.05, uff (1) = 0.4, uff (2) = 0.2, ufn(1) =
0.6, ufn(2) = 0.4, unn(1) = 0.3, unn(2) = 0.5. According
to Theorem 1, the theoretical ESS can be calculated as
p∗f (1) = 0.3421, p∗f (2) = 0.2875. The theoretical dynamics
pf (1) and pf (2) can also be computed by (10). On the other
hand, we carry out computer simulations based on the model.
The result is reported in Fig. 2, where the simulation result
is averaged over 100 independent runs. We observe that our
theoretical result matches well with the simulation result.

To see the advantage of our heterogeneous modeling ap-
proach, we use the homogeneous model in [9] to analyze the
heterogeneous setup here. The payoff matrix of each type is set
to be the average over all types. Then, the theoretical ESS of
pf can be calculated as 0.3148. Since the network is modeled
as homogeneous, the theoretical ESSs of pf (1) and pf (2) are
both 0.3148. In this case, compared to the simulation result,
the average relative ESS error (ESS error over the simulated
ESS) of the two types is 6.83% while that in the heterogeneous
model is 3.54%, which shows the advantage and necessity of
using heterogeneous model.

VI. CONCLUSION

In this paper, we study the information diffusion process in
social networks from an evolutionary game perspective. We
propose two game-theoretic models to analyze the diffusion
process. Evolutionary dynamics are derived and the ESSs are
determined accordingly. Simulations are carried out to confirm
the theoretical results. We find that when the underlying social
network is heterogeneous, the heterogeneous model gives more
accurate theoretical ESSs than the homogeneous model does.
For future work, we would like to test our model and theory
by using real-world datasets.
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