
THE HIERARCHICAL TIMING PAIR MODEL

Nitiiz Chaizdrachoodaiz, Shuvm S. Bhattacharyyabzd K. J. Ray Liu

Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742

(nitin,ssb,kjrliu @eng.umd.edu)

ABSTRACT

We present a new model for representing timing information
for functions in High-Level Synthesis (HLS). We identify short-
comings of the conventional timing model, which is a very simple
model derived from the combinational logic model, and show that
our new model overcomes many of these defects. In particular, we
are able to provide a unified timing model that describes hierar-
chical combinational and iterative circuits and provides a compact
representation of the information, that can be used to streamline
system performance analysis.

We present experimental results that demonstrate the effective-
ness of our new approach, and describe an efficient algorithm to
easily compute the required timing parameters from a description
of the graph.

1. INTRODUCTION

High-Level Synthesis (HLS) refers to the task of constructing an
architecture, binding and schedule for an algorithm that has been
described at a high level of abstraction. The algorithm is usually
represented as a dataflow graph whose vertices represent functions
and edges represent communication or dependencies. To map such
a dataflow graph onto an architecture (either hardware or software)
efficiently, we need to annotate the application specification and
architecture with infomiation about the execution times of vertices,
and the area utilization and power consumption of processing re-
sources. The timing information is used to generate a set of con-
straints related to the system that the actual implementation must
satisfy.

The conventional model for describing timing in this context
is derived from the method used in combinational logic analysis.
Here each vertex is assigned a single value (called the “propaga-
tion delay”) representing the maximum delay among all its input-
output pairs.

An important requirement of a timing description is the ability
to represent systems hierarchically. For example, Fig. I shows the
circuit of a full adder. If we were to consider this as part of a larger
system (say a 4-bit adder made of 4 full adders), we would pre-
fer to use the timing information for the hierarchical block view.
rather than the expanded gate-level view. The reason for this is that
algorithms for path length computations are typically O(11,71 [El)
where Il/7J is the number of vertices and [El is the number of edges
in the graph. The hierarchical view uses 1 vertex and S edges to

This research was suppoited in p a t by the US National Science Foun-

tAlso with the University of Mruyland Institute for Advanced Com-
dation Grant #9734275 and NSF NYI Award MIP9457397

puter Studies.

Figure 1: (a) Full adder circuit. (b) Hierarchical block view.

represent the same information as the expanded graph that has 5
vertices and 14 edges. In large systems, the savings offered by us-
ing hierarchical representations are essential to retaining tractabil-
ity. A hierarchical representation would also be very useful in
commonly used sequential circuits such as digital filter implemen-
tations.

A major disadvantage of the conventional approach is that
it does not allow a hierarchical description of the system timing
when the system.contains delay elements (iterative systems) such
as the digital filter mentioned above. These delay elements roughly
correspond to registers in a hardware implementation, but are more
flexible in that they do not impose the restriction that all the de-
lay elements are activated at the same instant of time [I . 9. 31.
This allowance for variable phase clocking is an important way in
which HLS differs from combinational logic implementation. The
r-ephnsirzg optimization in [I] provides a good example of how this
can be used. Even in sequential logic synthesis. variable phase
clocking has been considered in such forms as clock skew opti-
mization [4] and shimming delays [SI.

To the best of our knowledge. there does not appear to be any
other timing model that addresses this issue. Using conventional
models, a complicated subsystem containing sequential elements
will need to be represented in full in the context of the overall
system design. rather than using a more convenient condensed de-
scription of the timing parameters alone.

In this paper, we propose a different timing model that over-
comes these difficulties. By introducing a slightly more complex
data structure that allows for multiple input-output paths with dif-
fering numbers of delay elements, we are able to provide a single
timing model that can describe both purely combinational and it-
erative systems. For purely combinational systems. the model re-
duces with minimal overhead to the existing combinational logic
timing model. Further details are also available in 161.

Our model provides compact representations of the timing data
for large systems. We have used the ISCAS 89/93 benchmark cir-
cuits to test our ideas and have obtained promising results.

0-7803-6685-910 1 /$10.000200 1 IEEE
V-367

In the next section, we discuss the requirements that a timing
model must meet. and examine some of the shortcomings of the
conventional model. Section 3 then presents a new model that
overcomes these defects, and explains how it can be efficiently
stored and manipulated. Section 4 presents the results obtained
by apqlying the new technique to benchmark circuits. Finally, we
present our conclusions and some interesting directions for future
research.

2. REQUIREMENTS OF A TIMING MODEL

In order to understand the requirements of timing descriptions for
hierarchical systems, it is first useful to clarify certain assumptions
that are made in describing simple combinational systems.

First, the combinational delay of a system is the rizn.vin7urn de-
lay between any input/output pair in the system. So after the inputs
are stable, we can wait for the amount of time specified by this de-
lay, and be sure that the output is stable. In some cases, especially
in HLS. the time is in terms of integer multiples of a system clock.

For multiple-input-multiple-output (MIMO) systems, we as-
sume that the inputs are synchronized so that the overall system
can be treated as single-input-single-output (SISO). This is a com-
mon assumption in combinational timing models [5, 71. To see
why. consider for example the full adder circuit from fig. I . Since
the output depends on all the inputs, it is acceptable to assume that
the computation start only after all inputs are available, thus syn-
chronizing the inputs. It is clear that this assumption breaks down
when different outputs do not depend on all inputs, but in most
cases. this is considered an acceptable tradeoff as it reduces the
complexity of the analysis.

For dataflow graphs used in HLS. we use essentially the same
combinational timing model that is described above. Delay el-
ements, however. are treated differently [I . 2. 31. In sequential
logic circuits. all delays are treated as pip-pops that are triggered
on a common clock edge. In HLS scheduling. we assume no such
restriction on the timing of delays. We assume that each functional
unit can be started at any time (possibly by providing a start sig-
nal).

Now we can see what exactly are the uses of a timing model.
The timing information associated with a block is used primarily
for the purpose of establishing constraints on the earliest time that
the successor elements of the block can start operating (i.e. when
its outputs become stable once the inputs are applied). By using
these constraints. additional metrics can be obtained relating to the
throughput and latency of the system, such as the iterntior? period
Doiirid. which is the same as the riin.vimitni cvclc rnenr? [SI for single
rate graphs. The constraints are used for determining the feasibility
of different schedules of the system, where a schedule consists
of an ordering of the vertices on resources that can provide the
required functionality.

3. THE HIERARCHICAL TIMING PAIR MODEL

Having identified the requirements of a timing model and the short-
comings of the existing model. we can now use Fig. 2 to illustrate
the ideas behind the new model for timing. In this figure, we use
t - to refer to the propagation delay of a block. and 2- to refer to
the stcirt rime of the block. T is the iteration interval (clock period
for the delay elements).

To provide timing information for a complex block, we should
be able to emulate the timing characteristics that this block would

R

Figure 2: Timing of complex blocks

imply between its input and output. To clarify this idea, consider
the block in Fig. 2 . If we were to write the constraints in terms of
the internal blocks zi and zo, we would obtain

xi - 2 1 2 t1;zo -xi 2 t i - 1 x T ; x ~ - x0 > - t o

Now we would like to compute certain information such that
if we were to combine the complex blocli‘ B under the single start
time 26. we would still be able to write down equations that would
provide the same constraints to the environment outside the block
L?. We see that this is achieved by the following constraints:

21, - . T i 2 tl I 22 - 26 2 t ; -k to - 1 X T

In other words, if we assume that the execution time of the block
B is given by the expression ti + to - 1 x T , we can put down
constraints that exactly simulate the effect of the complex block
B.

In general, consider a path from input vi = VI to output vo =
v k through vertices {VI ~ . . . ~ v k } given by p : v1 +v2+ . . . +vk,
with edges ei : ?J~+v~+I. Let t i be the execution time (propaga-
tion delay assuming it is a simple combinational block) of vi. and
let d, be the number of delays on edge eJ . Now we can define the
corisrrairit time of this path as

k k - 1

t c (p) =) : t i - T x x d d ,
i = l j = 1

We use the term “constraint time” to refer to this quantity be-
cause it is in some sense very similar to the notion of the execution
time of the entire path, but at the same time is relevant only within
the context of the constraint system it is used to build. Also, we
use the term cIl to refer to the sum x!=l t ; , and inp to refer to the
sum dJ . The ordered pair (mpl c p) is referred to as a rirning
pflir.

We therefore see that by obtaining the pair (r n , , c p) (in the
example of Fig. 2 . cp = t i + t o and T T L ~ = l), we can derive
the constraints for the system without needing to know the internal
construction of B.

We can understand the constraint time as follows: if we have
a SISO system with an input data stream z(n) and an output data
stream :r/(n) = 0.5 x z(n - l), the constraint time through the sys-
tem is the time difference between the arrival of z(0) on the inpul.
edge and the appearance of y(0) on the corresponding output edge.
This is very similar to the definition of pnirwise latencies in [I] . 11:
is obvious that y(0) can appear on its edge before x (0) , since ?/(0)
depends only on z(-1) which (if we assume that the periodicity
of the data extends backwards as well as forwards) would have
appeared exactly T before z(0). So the constraint time through
this system is t , - T , where t , is the propagation delay of the!
unit doing the multiplication by 0.5 and T is the iteration period of

V-368

Figure 3: Second order filter section [3].

the data on the system. This number can be negative, and in fact,
depends on the value chosen for T .

This description of timing pairs makes it clear that the actual
constraint time of a path through the graph depends on the itera-
tion interval T . In particular, for different values of T , it is possible
that a different path through the circuit results in the largest con-
straint time. In other words, the longest path through the graph
now depends on T . As a result, we need to efficiently compute
and store enough information about all input-output paths so that
we can easily find the actual value of the largest constraint time
between the input and output.

An example of this is seen in Fig. 3, which shows a second-
order filter section [3]. Here 4 and p.2 are distinct 1-0 paths. Let
the execution time for all multipliers be 2 time units and for adders
be I time unit. except for A..; which is 2 time units. In this case,
for an iteration period (T) between 3 and 4, p.2 is the dominant
path, while for T > 4, PI is the dominant path. So we now need
to store both these (7 n p . c p) values.

We therefore end up with a lisr of timing pairs that model the
timing of the circuit. The actual constraint time of the overall sys-
tem can then be readily computed by traversing this list to find
the maximum path constraint time. The size of the list is bounded
above by the number of delays in the system ((DI).

We now have a model where the rirniiig pairs that we defined
above can be used to compute a corwrruirzr ririze on a system, which
can be used in place of the execution time of the system in any cal-
culations. This model is now capable of handling both combina-
tional and iterative systems, and can capture the hierarchical nature
of these systems easily. We therefore refer to it as the Hier-orcllical
Tirniri~ Prrir (H T P) Model.

for determining the iteration period or maximum cycle mean of the
graph. Lawler's method [9] combined with the adaptive negative
cycle detection techniques from [SI provides an efficient method
of computing the maximum cycle mean of the system, since it op-
erates by fixing T and testing the system for consistency, using
a binary search to iteratively improve the estimated value of T .
Because the constraint time of each path depends on the iteration
period which is as yet unknown. it is not obvious how other algo-
rithms for the MCM can be extended to this model.

This definition of constraint time also results in a simple method

3.1. Data structure and Algorithms

We now present an efficient algorithm to compute the list of timing
pairs associated with a system.

Consider n system where there are two distinct 1-0 paths PI
and P,. with corresponding timing pairs (r p , . inp,) and (c ; ~ > ~ . ~ i i ~ ? ~) .

Table I showy how the two paths can be treated based on their tim-
ing pair values. We have assumed without loss of generality that

Table 1 : Tests for dominance of a path.

Algorithm 1 relax-edqe
Input: edge e : w, -+ v in graph G; t(u.) is the execution time

of source vertex U, d (e) is the number of delays on edge e ;
Zz.qt(u), Eist(v) are timing pair lists.

Output: Use the conditions from Table 1 to modify Eist(v) using
elements of &st(w.). Return TRUE if a modification was made,
else return FALSE

1 : RELAXED +-FALSE
2: for all timing pairs t , from Zist(u) do
3: t,+-t, + (t (w,) ,d(e))
4:
5: insert t,, adjust Eist(v)
6: RELAXED +TRUE
7: end if
8: end for
9: retum RELAXED

if t , dominates an element of Eist(v) then

r n p l 2 mp2. The minimum iteration interval allowed on the sys-
tem is denoted TO. This would normally be the iteration period
bound of the circuit, but may be set to a higher positive value for
design safety margins.

The conditions from Table 1 can be used to find which timing
pairs are necessary for a system and which can be safely ignored.
For the example of Fig. 3, PI has the timing pair (0; 3) while Pz
has (1: 7) with timing as assumed in section 3. Thus from con-
dition 2 above, P2 will dominate for 3 < T < 4, and PI will
dominate for T 2 4.

The algorithm we use to compute the timing pairs is based
on the Bellman-Ford algorithm for shortest paths in a graph. We
have adapted it to compute the longest path information we re-
quire. while simultaneously maintaining information about mul-
tiple paths through the circuit corresponding to different register
counts.

Ford algorithm [IO, p.520]. However, since there are now multiple
paths (with different delay counts) to keep track of, the algorithm
handles this by iterating through the timing pair lists that are be-
ing constructed for each vertex. An important point to note here is
that the constraint time around a cycle is always negative for feasi-
ble values of T , so the relax-edge algorithm will not send the
timing pair computations into an endless loop.

Using algorithm 1. the overall timing pairs are easily com-
puted using the Bellman-Ford algorithm [10, p.5311. The com-
plexity of the overall algorithm is O (~ D ~ ~ l ~ r ~ ~ E ~) where (DI is the
number of delay elements in the graph (therefore a bound on the
length of a timing pair list of a vertex), 11;*1 is the number of ver-
tices. and (El is the number of edges in the graph. Note that (Dl is
quite a pessimistic estimate, since it is very rare for all the delays
in a circuit to be on any single dominant path from input to output.

Algorithm 1 implements the edge relclsnrion step of the Bellman-

V-369

#timingpairs I 1 2 3 4 5
circuits 121 13 5 4 1

Table 2: Number of dominant timing pairs computed for ISCAS
benchmark circuits.

4. RESULTS

As was mentioned in the introduction, the main benefit of the
model we propose is in the ability to hierarchically model sys-
tems. Also, the model allows us to represent all relevant input-
output paths using a list of timing pairs as described in sec. 3.1.
So a suitable measure of the merit of the system would be to see
the size (number of elements) of the list required to represent the
timing behavior of a graph.

We have run the algorithm described in section 3.1 on the IS-
CAS 89/93 benchmarks. A total of 44 benchmark graphs were
considered. For this set, the average number of vertices is 3649.86,
and the average number of output vertices in these circuits is 39.36.

First we consider the case where synchronizing nodes were
used to convert the circuit into an SISO system. We are interested
in the number of elements that the final timing list contains. since
this is the amount of information that needs to be stored. Table 2
shows the breakup of the number of list elements. We find that the
average number of list elements is 1.89.

Next, instead of assuming complete synchronization, we con-
sidered the case where inputs are synchronized, and measured the
number of list elements at each output. The number of distinct
values obtained for this was an average of 14.73. If we make an
additional assumption that if two list elements have the same nip
they are the same, this number drops to 3.68. This assumption
makes sense when we consider that several outputs in a circuit
pass through essentially the same path structures and delays, but
may have one or two additional gates in their path that creates a
slight and usually ignore-able difference in the path length. For
example, the circuit s386 has 6 outputs. When we compute the
timing pairs, we find that 3 have an element with I delay, and the
corresponding pairs are (1 ~ 53) ! (1 ! 53) . (1 ! 57). Thus instead of 3
pairs, it seems reasonable to combine the outputs into 1 with the
timing pair (1: 5 7) corresponding to the longest path.

In order to compare these results, note that if we did not use
this condensed information structure, we would need to include
information about each vertex in the graph. In other words, if we
accept the (in most cases justifiable) penalty for synchronizing in-
puts and outputs, we need to store an average of 1.89 terms instead
of 3649.86.

We have not considered the case of relaxing the assumptions
on the inputs as well. This would obviously increase the amount
of data to be stored, but as we have argued, our assumption of
synchronized inputs and outputs has a very strong case in its favor.

We have also computed the timing parameters for HLS bench-
marks such as the elliptic filter and 16-point FIR filter from [3].
These are naturally SISO systems which makes the synchroniz-
ing assumptions unnecessary. If we allow the execution times of
adders and multipliers to vary randomly, we find that the FIR filter
has a number of different paths which can dominate at different
times. The elliptic filter tends to have a single dominant path, but
even this information is useful since it can still be used to repre-
sent the filter as a single block. In general, systems which have
delay elements in the feed-forward section, such as FIR filters and
filters with both forward and backward delays. tend to have more

timing pairs than systems where the delay elements are restricted
to a relatively small m o u n t of feedback.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented the Hierarchical Timing Pair model, and asso-
ciated data structures and algorithms to provide timing infomation
for use in the analysis and scheduling of dataflow graphs. We have
shown that the HTP model overcomes many limitations of the con-
ventional timing models, while incurring a negligible increase in
complexity.

Using the examples of the ISCAS and HLS benchmarks. we
have demonstrated the power of our approach, and have shown that
if we can accept the assumption of synchronizing nodes, we can
obtain a reduction by several orders of magnitude in the amount of
information about the circuit that we need to store in order to use
its timing information in the context of a larger system.

It appears that the HTP model can be efficiently extended to
also include multi-rate systems. With certain simple assumptions
on the regularity of behavior of such systems, they can be analyzed
in the same framework as single rate systems. We are currently
working on extending the HTP model to such multirate systems.

6. REFERENCES

M. Potkonjak and M. Srivastava, “Behavioral optimization
using the manipulation of timing constraints,” IEEE Trans-
actioris on Coinpiiter Aided Design, vol. 17. pp. 936-947.
Oct 1998.
P. G. Paulin and J. P. Knight. “Force-directed scheduling for
the behavioral synthesis of ASIC‘s,” IEEE Trarisacrions on
Conputer Aided Design, vol. 8, pp. 661-679, Jun 1989.
S. M. H. de Groot. S. H. Gerez. and 0. E. Henmann,
“Range-chart-guided iterative data-flow graph scheduling,”
IEEE Trtrrisactioris oii Circuits and S.vsteni.~ - I. vol. 39.

J. P. Fishburn. “Clock skew optimization,” I€€€ Tmisac-
tioris 011 C O I I I ~ U ~ E I S , vol. 39, pp. 945-95 1, Jul 1990.
H. V. Jagadish and T. Kailath. “Obtaining schedules for
digital systems,” IEEE Tvaiisctcrior1.s on Signa/ Processing,
vol. 39, pp. 2296-2316. Oct 1991.
N. Chandrachoodan, S. S. Bhattacharyya, and K. J. R.
Liu, “The hierarchical timing pair model for synchronous
dataflow graphs,” Tech. Rep. UMIACS-TR-2000-75. Univer-
sity of Maryland Institute for Advanced Computer Studies.
Nov 2000. hrtp://dspser~reng. unid.edii/l,ub/dsycnd/~apers/.
N. Kobayashi and S. Malik, “Delay abstraction in combina-
tion logic circuits,” IEEE Trtrrisactioris on Cornpiiter. Aided
Design. vol. 16, pp. 1205-1212, Oct 1997.
N. Chandrachoodan, S. S. Bhattacharyya. and K. J. R.
Liu, “Negative cycle detection in dynamic graphs,“ Tech.
Rep. UMIACS-TR-99-59, University of Maryland Insti-
tute for Advanced Computer Studies, September 1999.
littp://d.spser~ erig. U I ~ C I . ed l r /p i rb /d .~ i~ca~~a~ef , .~ / .
E. Lawler. Cornbiiintorial 0ptimi:ation: Networks niid Ma-
troids. New York: Holt, Rhinehart and Winston, 1976.
T. H. Cormen, C. E. Leiserson. and R. L. Rivest. Iritrodircriori
to Algor-irlms. Cambridge. MA: MIT Press, 1990.

pp. 35 1-364, May 1992.

V-370

