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ABSTRACT 

We consider the problem of representing timing information 
associated with functions in a dataflow graph used to represent a 
signal processing system in the context of high-level hardware (ar- 
chitectural) synthesis. This information is used for synthesis of ap- 
propriate architectures for implementing the graph. Conventional 
models for timing suffer from shortcomings that make it difficult to 
represent timing information in a hierarchical manner, especially 
for multirate signal processing systems. 

We identify some of these shortcomings, and provide an al- 
ternate model that does not have these problems. We show that 
with some reasonable assumptions on the way hardware imple- 
mentations of multirate systems operate, we can derive general hi- 
erarchical descriptions.of multirate systems similarly to single rate 
systems. Several analytical results such as the computation of the 
iteration period bound, that previously applied only to single rate 
systems can also easily be extended to multirate systems under the 
n e w  assumptions. 

We have applied our model to several multirate signal pro- 
cessing applications, and obtained favorable results. We present 
results of the timing information computed for several multirate 
DSP applications that show how the new treatment can streamline 
the problem of performance analysis and synthesis of such sys- 
tems. 

1. INTRODUCTION 

High-Level Synthesis (HLS) refers to the task of deriving an ef- 
ficient architecture and implementation of a system based on an 
abstract description of its functionality. In HLS for digital signal 
processing (DSP) applications, the algorithm is often represented 
in the synchronous dataflow (SDF) model [ I ]  as an SDF graph 
whose vertices represent functions and edges represent communi- 
cation or dependencies. This model uses consumption and pro- 
duction parameters on edges to model multiple sample rates in an 
application. To map such a dataflow graph onto an architecture 
(either hardware or software) efficiently, we need to annotate the 
application specification and architecture with information about 
the execution times of vertices, and the area utilization and power 
consumption of processing resources. The timing information is 
used to generate a set of constraints related to the system that the 
actual implementation must satis@. 
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The conventional model for describing timing in this context 
is derived from the method used in combinational logic analysis. 
Here each vertex is assigned a single value (called the “propaga- 
tion delay”) representing the maximum delay among all its input- 
output pairs. 

A major disadvantage of this approach is that it does not allow 
an efficient hierarchical description of the system timing when the 
system contains delay elements (iterative systems) and a hardware 
implementation is desired. Delay elements roughly correspond to 
registers in a hardware implementation, but are more flexible in 
that they do not impose the restriction that all the delay elements 
are activated at the same instant of time [2, 3, 41. This kind of 
variable phase clocking has been recognized as a useful feature 
even in sequential logic synthesis [5,6]. 

In multirate systems under the SDF model, the most com- 
mon interpretation of execution time is as follows: each vertex is 
assumed to be enabled when sufficient dataflow tokens have en- 
queued on its inputs. Once enabled, i t  canfire at any time, con- 
suming a number of tokens from each input edge equal to the con- 
sumption parameter on that edge, and producing a number of to- 
kens on each output edge equal to the production parameter on 
that edge. The execution time of the vertex is the time between the 
(instantaneous) consumption and production events. 

This model has been used in the context of SDF to derive sev- 
eral useful results regarding consistency, liveness, and throughput 
of graphs modeling DSP systems. However the treatment is quite 
different from that for single-rate graphs, and many analytical re- 
sults for single rate systems cannot be extended to multirate sys- 
tems. 

To the best of our knowledge, there does not appear to be any 
other timing model that addresses the hierarchical timing issues 
for dataflow based DSP system design. Conventional models can- 
not easily be used to represent systems that are either hierarchical 
or contain multirate elements. Models such as the processor tim- 
ing data used in [7] capture the effects of real system parameters 
and latency for single rate systems, but they do not provide ways to 
take advantage of skewed clock phases or multirate graphs directly. 
Multirate systems are usually handled by some technique such as 
deriving the homogeneous equivalent expanded graph (which can 
lead to an exponential increase in the graph size), while hierarchi- 
cal systems need to be completely flattened and expanded in the 
context of the overall graph. 

In this paper, we propose an extension of the hierarchical tim- 
ing pair (HTP) model [8] that overcomes these difficulties. For 
multirate systems, the new model allows a treatment very simi- 
lar to that for normal single rate systems, while still allowing im- 
portant features of the multirate execution to be represented. The 
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Figure 1 : Timing of complex blocks. 

model also allows several analytical results for single rate systems 
to be applied to multirate systems. As an example we derive an 
expression for the iteration period bound of a multirate graph. 

We have used our model to compute timing parameters of a 
number of multirate graphs used in signal processing applications. 
The results show that the new model can result in compact repre- 
sentations of fairly large systems that can then be used as hierar- 
chical subsystems of larger graphs. 

In the next section, we present an overview of the HTP model 
for single rate systems. Section 3 then considers multirate sys- 
tems, and extends the timing pair model to handle multirate sys- 
tems. Section 4 presents results of applying the model to several 
examples from signal processing, and finally we present our con- 
clusions and some interesting directions for further work. 

2. THE HIERARCHICAL TIMING PAIR MODEL FOR 
SINGLE RATE SYSTEMS 

The Hierarchical Timing Pair model is a new model for represent- 
ing timing information in dataflow graphs that is described in [8]. 
We present a brief overview of the main features of the model in 
order to understand how they can be extended to multirate systems. 
Further details on the. application of the model to both single and 
multirate systems is found in [8]. 

The HTP model is developed around the concept of the "con- 
straint time" of a path in a dataflow graph. Consider a path in 
a dataflow graph such as the path from 51 to 2 2  in the graph of 
Fig. I .  The first step is to recognize that the timing information 
associated with each vertex in the graph is used primarily for the 
purpose of establishing constraints on the earliest time that the ver- 
tex can execute (when its inputs are ready). 

To provide timing information for a complex block, we should 
be able to emulate the timing characteristics that this block would 
imply between its input and output. For Fig. 1, if we were to write 
the constraints in terms of the internal blocks xi and zo, we would 
obtain 

zi - 21 >. t1;  zo - 2; 2 ti - 1 x T ;  2 2  - zo 2 to .  

We would now like to compute certain information such that 
if we were to combine the complex block B under the single start 
time Z b ,  we would still be able to write down equations that would 
provide the same constraints to the environment outside the block 
B. We see that this is achieved by the following constraints: 

26 - 2 1  2 t l ;  22 - 2 b  2 ti -k t o  - 1 X T.  

In other words, if we assume the execution time of the block B is 
given by the expression ti +to - 1 x T ,  we can put down constraints 
that exactly simulate the effect of the complex block B. 

Consider a path from input vi = V I  of a graph G to output 
vo = Vk given by p : VI +VZ+ . . . +U,+, with edges e; : vi   vi+^ 

for i =: 1 . . k - 1. Let ti be the execution time of vi, and let dj 
be the number of delays on edge ej .  We define the constraint time 
ofthis path as t c ( p )  = ti - T x dj. 

We use the term cp to refer to the sum E:=, t i ,  and mp to 
refer to the sum d j .  The ordered pair (my, c p )  is referred 
to as a timingpair. 

When there are multiple paths between the pair of vertices 
with different numbers of delay elements, it is possible that for 
different values of the system iteration period T ,  different paths 
have the maximum constraint time and are responsible for the ac- 
tual operational constraint. To handle this, we can store all pos- 
sible timing pairs in a list and use this list to compute the actual 
constraint time for a given value of T .  Note that the list will not 
be too large, since we can remove redundant elements using the 
simple rules which are discussed in [8]. In [8], we also detail an 
efficient algorithm for computing the timing pair lists required to 
completely specify the timing information associated with a graph. 

3. MULTIRATE SYSTEMS 

In this section, we consider some problems that arise in the treat- 
ment ofmultirate systems. We examine some examples to see how 
these difficulties can be overcome, and motivate new restrictions 
that make mathematical analysis more tractable. Using these re- 
strictions, which frequently hold in practical hardware implemen- 
tations of DSP applications, the timing pair model can be extended 
to multirate systems also. 

The conventional interpretation of SDF execution semantics 
has been based on token counts on edges. A vertex is enabled when 
each 'of its input edges has accumulated a number of tokens greater 
than lor equal to the consumption parameter on that edge. At any 
time after it is enabled, the vertex may fire, producing a number 
of tokens on each output edge equal to the production parameter 
on that edge. In the following discussion, we use c to refer to the 
consumption parameter on an edge, andp to refer to the production 
parameter. The edge in question will be understood from context. 

This interpretation, though very useful in obtaining a strict 
mathematical analysis of the consistency and throughput of such 
multirate systems and for design of software implementations, has 
some: unsatisfactory features with regard to dedicated hardware 
implementations. One is the fact that it results in tokens being 
produced in bursts of p at a time on output edges and similarly 
consumed in bursts of c at a time. This is not the consumption 
pattern in a synchronous hardware implementation of a DSP appli- 
cation, where tokens refer to data samples on edges, and as such, 
will iisually appear periodically at the sample rate specified for that 
edge. 

Another important problem is with regard to the criterion used 
for firing vertices. Consider the example of the 3 : 5 rate changer 
shown in Fig. 2 .  According to the SDF interpretation, this vertex 
can only fire after 5 tokens are queued on its input, and will then 
instantaneously produce 3 tokens on its output. However, a real 
rate changer need not actually wait for 5 tokens before producing 
its first output. . 

Figure 2 illustrates these issues. This is the timing pattern of 
a 3 : 5 fractional rate conversion assuming a 7-tap filter is used 
for interpolation. It is clear from the filter length and interpolation 
rate that the first output in each iteration (an iteration ends when 
the system returns to its original state) depends on the first 2 inputs 
only, the second depends on inputs 2 to 4, and the third depends on 
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Figure 2: 3 : 5 sample rate changer. 

Figure 3: Deadlock in an SDF system: if n < 10 the graph dead- 
locks. 

inputs 4 and 5. Therefore, the delay pattern shown in the figure is 
valid as long as there is sufficient time for the filters to act on their 
corresponding inputs. In other words, it is not necessary to wait 
for 5 inputs to be consumed before starting to produce the outputs. 

The interpretation we use for execution of SDF graphs is there- 
fore as follows: each node receives its inputs in a periodic stream, 
and can start computing its outputs some time after the first input 
becomes available (this time would depend on intemal features 
such as the number of taps in the filter in the above example). The 
outputs are also generated in a periodic stream at the appropriate 
rate required for consistency of the system. 

An important effect of this alternate interpretation is that it 
changes the criteria for deadlock in a graph. Under normal SDF 
semantics, the graph in Fig. 3 would be deadlocked if the edge 
AB has less than 10 delays on it. On the other hand, 6 delays are 
sufficient on edge BC, while 16 delays are required on edge C A  
in order to prevent deadlock. Under the new interpretation, as long 
as each cycle in the graph contains at least one token, deadlock is 
broken and the system can execute. This is the same condition that 
applies to single rate graphs. 

It is important to understand that this interpretation of multi- 
rate SDF execution is useful because in the context of synchronous 
hardware implementations, multirate DSP applications rarely re- 
quire the conventional, interpretation in terms of token consump- 
tion. Typical multirate blocks in DSP applications are decimators 
and interpolators, multirate filters (rate changers), block coders 
and decoders etc. A notable feature of these applications is that 
few of them actually require a consumption of c tokens before 
starting to produce p tokens. Even for block coders and serial-to- 
parallel converters, the data are still periodic, or can be assumed to 
be so without much loss of performance. This assumption is also 
useful as it can simplify buffering requirements. 

3.1. The HTP model for Multirate systems 

We now specify how the HTP model can be applied to the analysis 
of multirate systemsin the SDF formulation with the above exe- 
cution and timing model. For simplicity and clarity, we assume 
that the unit to be modeled is a Single-Input Single-Output (SISO) 
system and that the,propagation delay through sub-units is con- 
stant. However, our model can easily be extended to handle the 
Multiple-Input Multiple Output (MIMO) case. 

Given a multirate system represented as an SDF graph, we 
follow the usual technique [ 11 to compute the repetitions vector 
for the graph. The balance equation on each edge e : u+w in the 
graph is given by pe x q,, = ce x qu, where pe is the production 
parameter on e,  ce is the consumption parameter, and qu and qv are 
the repetition counts for the source and sink actors ofthe edge. Let 
T denote the overall iteration period of the graph. This is the time 
required for each actor to execute the minimum number of times 
required to retum the system to its starting state (the repetition 
count of the actor). Therefore, the sample period on edge e is 
given by T - 2- = 2. 

Now exten ing the analogy of the single rate case, we define 
the constraint time on a path as 

e - p P .  PV’C.  

b 1.-1 

where Tj is the sample period on edge j. By noting that the ef- 
fect of a delay on any edge (in both the single rate and multirate 
cases) is to give an offset of -Te to the constraint time of any 
path through that edge, we can see that this gives the correct set of 
constraints. Also, the values of the starting times for the different 
vertices that are obtained as a solution to the set of constraints will 
give a valid schedule for the multirate system. 

It is possible to view the constraint times in terms of “normal- 
ized delays”. Here the delays on each edge are normalized to a 
value of dn (e) = & = A. In terms of the normalized de- 
lays, the expression for constraint time becomes the same as that 
for the single rate case. 

For single rate graphs, the minimum iteration period that can 
be attained by the system is known as the iteration period bound 
and is known to be equal to the maximum cycle-mean (MCM) [9]. 
So far, no such tight bound is known for multirate SDF graphs, 
though some good approximations have been found [IO]. Under 
our proposed model, it is easy to determine an exact bound similar 
to the one for single rate graphs. By considering the cumulative 
constraints around a loop for the single rate case, we can easily 

obtain the iteration period bound Tmin = maxcEc e, where 

C is the set of directed cycles in,the graph. Similarly, for the mul- 
tirate case, we can obtain the result 

where Tmin is the iteration period of the overall system as dis- 
cussed above. In addition, the start times for each operation are 
directly obtained as a solution to the constraint system that is set 
up using the timing information. 

One factor here is that, unlike the single rate case, the number 
of timing pairs in the list for a path is not bounded by the number 
of delay elements. However, in practice this number is usually 
quite small. 

4. EXAMPLES AND RESULTS 

We have applied the HTP model to the SDF graphs represent- 
ing typical multirate signal processing applications. The examples 
we have taken are from the Ptolemy system [ 1 I ]  (CD-DAT, DAT- 
CD conversion, 2 channel non-uniform filter bank) and from [ 12, 
p.2561 (QMF bank). 
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timing paths (polyphase implementation) 

Figure 4: Multirate FIR filter structure. 

{(15/7,15), (0,12)1 
{(5/2, lo) ,  (1 ,9) ,  (0,8)} 

I Benchmark I Timine. Dairs 
QMF bank (input to y3) 1 {(7,1$, (3,14), (1,13), (0,12)} 
CD-DAT(160:147) {(93/32, ZO), (0,16)} 

The basic unit in several of these examples is the multirate FIR 
filter that is capable of performing rate conversion as described in 
section 3. Due to the polyphase implementation of this filter, com- 
puting it’s timing parameters requires care, as different filter com- 
ponents receive different numbers of inputs. This problem is ex- 
plained in greater detail in the technical report [8]. For the purpose 
of the examples we are considering, we assume for the sake of the 
other multirate examples that any rate conversion is performed us- 
ing a MR FIR filter that has the timing parameters {(l, 5), (0,4)}. 

For the examples we considered, the rate conversions result 
in several 1-0 paths with different numbers of delays at different 
rates. The resulting timing pairs that are obtained for these systems 
are summarized in Table 1. 

To understand these results in context, note that each exam- 
ple contains roughly 5-10 vertices, and the same order of edges 
in its natural hierarchical representation. If we flatten a design 
containing I O  such multirate systems, the resulting graph has over 
50 vertices. If this is expanded, the result is a very large graph, 
since the sample rates here result in a large expanded equivalent 
graph. Since most network algorithms including shortest paths 
have complexity O(lVllEl) or higher where IVI is the number of 
vertices and IEI the number of edges, the saving obtained by the 
new model can be substantial, since it avoids the need both for hi- 
erarchical flattening and for deriving the homogeneous equivalent 
expanded graph. 

A general observation we can make about the timing model is 
that systems that have delay elements in the feed-forward section, 
such as FIR filters and filters with both forward and backward de- 
lays, tend to have more timing pairs than systems where the delay 
elements are restricted to a relatively small amount of feedback. 
This is because feedback delay elements must necessarily exist in 
a loop that has a total negative constraint time, which means they 
will not contribute towards a dominant constraint time in the for- 
ward direction. 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

We have presented a multirate extension of the Hierarchical Tim- 
ing Pair model for use in analysis and synthesis of hardware re- 
alizations of multirate dataflow graphs. The HTP model is able 

to efficiently store information about multirate graphs, and allows 
exact computation of important system parameters such as the it- 
eration period bound easily. We have shown that the HTP model 
overcomes many limitations of conventional timing models, while 
making certain frequently applicable assumptions on the execution 
patterns of multirate systems. 

We have considered several typical multirate DSP applications 
and computed timing pairs for these models. The results demon- 
strate the power of our approach. In particular, the results show 
that the model can be used to obtain large reductions in the amount 
of information about the circuit that we need to store in order to 
use its timing information in the context of a larger system. 

The model as it exists now requires the ability to choose the 
start times of operations (variable phase clocking). We are cur- 
rently examining ways of extending the model to more general 
circuits, that include some fixed phase registers along with other 
nodes in which the delay can be adjusted. 
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