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Abstract—Indoor positioning systems are drawing ascending
attention from the academia as well as industry, motivated by
a wide variety of indoor location-based services. Among the
existing indoor positioning systems, WiFi-based schemes are
more favorable because of the ubiquitous WiFi infrastructures.
However, both strong non-line-of-sight scenario and severe ambi-
guity among location-specific fingerprints prevent most existing
WiFi-based indoor positioning systems from achieving centime-
ter accuracy for localization. In this paper, we propose an
indoor positioning system which achieves centimeter accuracy
and maintains the performance under non-line-of-sight scenarios
using a single pair of off-the-shelf WiFi devices. By harvesting
the inherent diversity in WiFi systems, the proposed indoor
positioning system formulates a large effective bandwidth to
provide a fine-grained location-specific fingerprint with a much
higher resolution compared with the fingerprints in most WiFi-
based indoor positioning systems. Extensive experiment results in
a typical indoor environment show that the centimeter accuracy
as well as robustness against environment dynamics can be
achieved simultaneously with a large effective bandwidth.

I. INTRODUCTION

The Global Positioning System (GPS) is a space-based
navigation system that can provide location and time infor-
mation whenever there is an unobstructed line-of-sight (LOS)
path to four or more GPS satellites [1]. Such a system
provides critical capabilities to military, civil and commercial
applications around the world. On the other hand, considering
the fact that people nowadays spend more than 80% of their
time in indoor environments, accurate indoor localization is
highly desirable and has great potential impact on many
applications. Unfortunately, the use of GPS satellites to en-
able indoor localization is a non-starter due to a variety of
reasons including poor signal strength, multipath effect and
limited on-device computation and communication power [2].
Therefore, over the past two decades, the research community
has been urgently seeking new technologies that can enable
high accuracy indoor localization. However, the results are
still mostly unsatisfied. Microsoft hosted Indoor Localization
Competitions in recent years and concluded that “The Indoor
Location Problem is NOT Solved” [3].

Many indoor positioning systems (IPSs) have been devel-
oped by leveraging radio wave, magnetic field, acoustic signal,
or other sensory information collected by mobile devices [4].
Most of these systems are based on the ranging technique.
Ranging is a process to determine the distance from one
location to another location by utilizing the collected infor-
mation such as the received signal strength indicator (RSSI)

Fig. 1: State-of-the-art indoor positioning systems.

and/or time of arrival (TOA). Typically, these systems require
multiple anchors at known locations and dedicated devices to
collect fine-grained information for accurate ranging.

However, when there exist obstacles between the localized
device and the anchors, the localization performance degrades
significantly. In other words, the ranging-based systems cannot
maintain highly accurate localization performance under non-
line-of-sight (NLOS) scenarios, which is very common in the
indoor environment. The performance degradation is funda-
mentally due to that the physical ranging rules that translate
the collected information into distance are impaired by the
blockage and multipaths naturally existing in the indoor envi-
ronment. Developing a general physical ranging rule that suits
for NLOS conditions is practically difficult, if not impossible,
due to the complicated indoor environment, which motivates
the development of the fingerprint-based IPSs. A summary
of the existing state-of-the-art capabilities from the Microsoft
hosted Indoor Localization Competitions is given in Fig. 1,
in which one can see that under the LOS condition, with
more than one anchors, sub-meter accuracy can be achieved.
However, under the NLOS condition, only the meter-range can
be obtained by most methods, except the recently proposed
time-reversal approach that can obtain 1− 2 cm accuracy for
both LOS and NLOS conditions [5].

In an indoor environment, there naturally exists some
location-specific information, known as the fingerprint. Ex-
amples include magnetic field, RSSI, and channel state in-
formation (CSI). All these fingerprints can be exploited for
indoor localization. Specifically, in the fingerprint-based IPS,
the location-specific fingerprints are collected and stored into
a database in the mapping phase. Then, in the localization
phase, the location of the device is determined by comparing
the device fingerprint with those in the database. In [5], it
was shown that the physical phenomenon of time-reversal
focusing effect can provide a high-resolution fingerprint for



indoor localization. The authors used a dedicated device to
obtain the channel impulse response under the 5 GHz ISM
band with a bandwidth of 125 MHz as the fingerprint, and
utilized the time-reversal resonating strength (TRRS) as the
similarity measure, which gives an accuracy of 1− 2 cm.

The question now is: can one use the ubiquitous WiFi
devices to achieve the same? The answer is yes as evidenced
from the recent works in [6]–[8]. The work in [6], [7]
leveraged frequency hopping, while the work in [8] used multi-
antenna spatial diversity to increase the effective bandwidth.
As a result, the localization resolution can be significantly
improved to 1− 2 cm.

This paper will enlighten the basic principles of how one
can achieve indoor locationing resolution down to centimeter
accuracy level using standard WiFi devices. A unified view by
combining both the frequency and spatial diversities is also
presented.

II. HOW BANDWIDTH AFFECTS THE LOCALIZATION
PERFORMANCE?

The main reason that most of fingerprint-based methods
utilizing CSI in WiFi systems cannot achieve centimeter
localization accuracy is due to the bandwidth limitation. More
specifically, the maximum bandwidth in mainstream WiFi
devices is only either 20 MHz or 40 MHz, which introduces
severe ambiguity into the fingerprints of different locations
and thus leads to the poor accuracy for indoor localization.

To clearly illustrate the impact of bandwidth on localization
performance, we have conducted experiments to collect CSIs
under different bandwidths in a typical indoor environment.
Two channel sounders are placed in an NLOS setting, where
one of them is placed on a customized experiment structure
with 5mm resolution.

To characterize the similarity between CSIs collected at
different locations, the TRRS is calculated as
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where H and H′ represent two fingerprints, K is the total
number of usable subcarriers, Hk and H ′k are the CSIs on
subcarrier k, η is the modified cross-correlation between H
and H′ with synchronization error compensation, and Λ,Λ′ are
the channel energies of H and H′, respectively. Realizing that
the WiFi receiver may not be fully synchronous with the WiFi
transmitter due to mismatches in their radio-frequency front-
end components [9], an additional phase rotation of e−jkφ is
employed to counteract the phase distortions incurred by the
synchronization errors in the calculation of η. Eqn. (1) implies
that TRRS ranges from 0 to 1. More specifically, a larger
TRRS indicates a higher similarity between two fingerprints
and thus the two associated locations.

The corresponding TRRS between the target location and
nearby locations are illustrated in Fig. 2 under different
bandwidth settings. It is shown in Fig. 2(a) that with 40 MHz
bandwidth, a large region of nearby locations is ambiguous
with the target location in terms of the TRRS. Enlarging the
bandwidth shrinks down the area of ambiguous regions. As
demonstrated in Fig. 2(c), when the bandwidth increases to
360 MHz, the ambiguous region is reduced to a ball of 1 cm
in radius which implies centimeter accuracy in localization.

The experiment results motivate us to formulate a large
effective bandwidth by exploiting diversities on WiFi devices
to facilitate centimeter accuracy indoor localization.

III. INCREASING EFFECTIVE BANDWIDTH VIA DIVERSITY
EXPLOITATION

Two different diversities exist in current WiFi system,
i.e., frequency diversity and spatial diversity. According to
IEEE 802.11n, 35 channels differing in center frequencies are
dedicated for WiFi systems in 2.4 GHz and 5 GHz frequency
bands, with a maximum bandwidth of 40 MHz for each
channel. The multitude of WiFi channels leads to frequency
diversity in that, they provides opportunities for WiFi devices
to perform frequency hopping when experiencing deep fading
or severe interference. On the other hand, spatial diversity can
be exploited on multiple-input-multiple-out (MIMO) WiFi de-
vices, which is a mature technique that significantly boosts the
spectral efficiency. MIMO has not only become an essential
component of IEEE 802.11n/ac, but also been ubiquitously
deployed on numerous commercial WiFi devices. For WiFi
systems, both types of diversity can be harvested to provide
fingerprint with much finer granularity and thus less ambiguity
in comparison with the fingerprint measured with a bandwidth
of only 40 MHz.

For a WiFi system, the spatial diversity is determined by the
number of antenna links, denoted as S, while the frequency
diversity is dependent on the number of WiFi channels, de-
noted as F . Assume that the bandwidth for each WiFi channel
is W , the effective bandwidth can be calculated as S×F×W .

IV. ACHIEVING CENTIMETER ACCURACY VIA
TIME-REVERSAL RESONATING STRENGTH

A. Calculating Time-Reversal Resonating Strength by Diver-
sity Exploitation

As discussed in Section II and III, in order to achieve
centimeter localization accuracy, a large effective bandwidth
beyond 40 MHz is required, which can be obtained by
diversity exploitation. For WiFi devices with a spatial diversity
of S and a frequency diversity of F , the CSI measurements
can be written as H = {Hs,f}f=1,2,··· ,F

s=1,2,··· ,S , where Hs,f stands
for the CSI measured with the s-th antenna link on the f -
th WiFi channel, denoted as the virtual link (s, f). H =
{Hs,f}f=1,2,··· ,F

s=1,2,··· ,S can provide fine-grained fingerprint with an
effective bandwidth of S×F×W . Consequently, TRRS in (1)
can be extended to the fine-grained fingerprint H and H′, with
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(a) 40 MHz Bandwidth (b) 120 MHz Bandwidth (c) 360 MHz Bandwidth

Fig. 2: Ambiguity with nearby locations under different bandwidths.
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represents the modified cross-correlation on the virtual link
(s, f), and Λs,f =

∑K
k=1 |Hs,f,k|2, Λ′s,f =

∑K
k=1 |H ′s,f,k|2

are the channel energies of Hs,f and H′s,f on the virtual
link (s, f), respectively. The combined TRRS is calculated
the same as (1).

B. Localization using Time-Reversal Resonating Strength

There are two phases in the proposed IPS: a mapping
phase and a localization phase. During the mapping phase,
the CSIs are collected from L locations-of-interest using WiFi
devices with S antenna links and across F WiFi channels,
denoted by

{
H`

}
`=1,2,··· ,L. In the localization phase, H′ is

obtained at a testing location, which may either be one of the L
locations-of-interest or an unmapped location in the mapping
phase. Then, the pairwise TRRS γ[H`,H′] is calculated for all
locations-of-interest. Finally, the location is determined based
on γ[H`,H′], i.e,

ˆ̀=

 argmax
`=1,2,··· ,L

γ[H`,H′], max
`=1,2,··· ,L

γ[H`,H′] ≥ Γ

0, Otherwise
(5)

where Γ is a threshold introduced to balance off the true
positive rate and false positive rate in location determination.
When γ[H`,H′] falls below Γ, the IPS cannot obtain a cred-
ible location estimation and returns 0 to imply an unmapped
location.

V. EXPERIMENT RESULTS

Extensive experiments are conducted to validate the theoret-
ical analysis and evaluate performance of proposed IPS. The
proposed system contains two WiFi devices, each equipped
with three antennas. One WiFi device, called Origin, estimates
CSI from the other WiFi device, named as Bot. With the pro-
posed algorithm in Section IV, Origin estimates the location
of Bot.

The experiments are conducted in a typical office of a multi-
storey building. The indoor space is filled with a large number
of reflectors, e.g., chairs, desks, shelves, sofas, walls, and
ceilings. The CSIs of 50 candidate locations are measured,
with 20 measurements for each location.

To evaluate the performance, the CSIs at each location
are partitioned into a training set and a testing set, with 10
CSIs for each. The TRRS matrix is calculated using the CSIs
collected at the 50 candidate locations. Each element of the
matrix represents the TRRS between the CSIs at the training
location and the testing location. In other words, the diagonal
elements of matrix indicate the similarity between CSIs at the
same location, while the off-diagonal elements stand for the
similarity between CSIs of different locations.

Fig. 3 illustrates the TRRS matrices under effective band-
widths of 10, 40, 120, and 360 MHz. First of all, it is easily
seen from Fig. 3 that the diagonal elements of the matrices are
close to 1, signifying high similarities among CSIs of the same
locations. Regarding the off-diagonal elements, they become
smaller with an increasing effective bandwidth. When the
effective bandwidth is small, e.g., 10 MHz, some off-diagonal
elements are even larger than the diagonal elements, giving
rise to localization errors. In other words, it is very likely
to localize the Bot to incorrect positions when the effective
bandwidth is small. When the effective bandwidth is increased,
the gap between diagonal and off-diagonal elements enlarges,
which provides a clear watershed between the correct and in-
correct locations, leading to an enhanced system performance
in return.

To provide a statistical point of view, Fig. 4 shows the
cumulative density functions (CDF) of the diagonal and off-
diagonal elements in TRRS matrices under a variety of ef-
fective bandwidths. As we can see, the gap between the
diagonal and off-diagonal elements increases with the effective
bandwidth, indicating a better distinction between different
locations. Whenever there is a gap between the diagonal and
off-diagonal elements, a perfect localization can be achieved
with an appropriate threshold, i.e., 100% true positive rate and
0% false positive rate.

In a practical indoor environment, there usually exists
environment dynamics that might degrade the localization
performance. To evaluate the proposed IPS in a dynamic
indoor environment, the testing CSIs are re-collected in the
presence of human activities and large object movement. In
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Fig. 3: TRRS matrix under an effective bandwidth of (a) 10 MHz (b) 40 MHz (c) 120 MHz (d) 360 MHz.
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Fig. 4: CDF of the TRRS of the diagonal and off-diagonal
elements.

particular, to emulate dynamics from human activities, one
participant was asked to walk continuously in the vicinity of
the Bot. Then, the participant was asked to open and close a
door which blocks the direct link between the Origin and Bot
so as to emulate the dynamics from large object movement.
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Fig. 5: ROC curve with dynamics. (a) Dynamics from human
movement. (b) Dynamics from large object movement.

Fig. 5(a) demonstrates the receiver operating characteristic
(ROC) curve with human acitivities. For a fixed false positive
rate 0.15%, the true positive rate increases from 94.17%
with 40 MHz effective bandwidth to 99.11% with 120 MHz
effective bandwidth. Further enlarging the effective bandwidth
to 240 MHz and 360 MHz boosts the true positive rate to
99.61% and 99.89%, respectively. On the other hand, Fig. 5(b)
depicts the ROC curve with large object movement. For a fixed
false positive rate 0.15%, the true positive rate increases from
75% with 40 MHz effective bandwidth to 76.38%, 87.12%,
and 95% with 120, 240, and 360 MHz effective bandwidths,
respectively. This can be justified by that with a large effective
bandwidth, the environment dynamics only affect very limited

information in the fingerprint while leaving majority of the
fingerprint intact. In other words, a large effective bandwidth
enhances the robustness of the proposed IPS against environ-
ment dynamics.

VI. CONCLUSION

In this paper, we present a time-reversal method for in-
door localization that achieves centimeter accuracy with a
single-pair of off-the-shelf WiFi devices. The high accuracy
for localization is maintained under strong NLOS scenarios.
With the exploitation of the inherent frequency and spatial
diversities in WiFi systems, it is capable of creating a large
effective bandwidth to enable centimeter accuracy. Extensive
experiment results in a typical office environment shows that
the centimeter accuracy as well as robustness against dynamics
can be simultaneously achieved with a large effective band-
width. The global GPS can achieve 3− 15 meter of accuracy
by mapping the world into latitude and longitude coordinates.
The presented “indoor GPS” can achieve 1 − 2 cm accuracy
when an indoor environment is fingerprinted and mapped.
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