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A B S T R A  CT 

We propose a novel fully-pipelined parallel CORDIC archi- 
tecture (CORDIC-DXT-ME) employing the DCT Pseudo- 
Phase Techniques for Motion Estimation. Its low computa- 
tional complexity, O(N2) as compared with O ( N " )  of BKlI -  
ME;  makes it fascinating in real time applications. In addi- 
tion, the DCT-based nature enables us to replace all multipli- 
ers by CORDICs with simple shift-and-add operations and t o  
incorporate its implementation with the DCT codec design 
to gain further savings in hardware complexity. The archi- 
tecture is regular, modular, and has solely local connection 
and is suitable for MPEGB compatible video codec design on 
a dedicated single chip. 

I .  INTRODUCTION 

Extensive research has been done in the past in designing 
cost-effective MPEG compatible video codec architectures 
[I]. The most commonly used Block Matching .4lgorithm 
(BKM-ME) motion estimation architectures are based on the 
matching of blocks between the current and a reference frame 
in terms of the mean absolute difference (MAD). Exhaustive 
search block matching architectures implemented on VLSI 
chips [2] decompose four dimensional search onto lower di- 
mension systolic arrays. In spite of the simplicity, the com- 
putational complexity is very high, i.e. O ( N 4 )  for a A- x A' 
block. To reduce the computational complexity, some hierar- 
chical search structures which require two or more sequential 
steps to find suboptimal estimates have been proposed. Be- 
sides the block-based approaches, the pel recursive motion 
estimation architecture proposed in [3]  is very vulnerable to 
noise and may suffer from the instability problem. 

In this paper, we propose a novel fully-pipelined parallel 
CORDIC (Cooridinate Rotation Digital Computer) [5] ar- 
chitecture (CORDIC-DXT-ME) employing the DCT Pseudo- 
Phase Techniques for Motion Estimation. Unlike fast block 

*search motion estimation methods which simply pick several 
displacement candidates out of all possible displacement val- 
ues in terms of minimum MAD values of a reduced number of 
pixels, the DCT Pseudo-Phase Techniques employ the sinu- 
soidal orthogonal principles t o  directly extract displacement 
information from the discrete sinusoidal DXT(DCT/DST) 
transform coefficients of images. The hybrid DCT motion- 
compensated video coder structure used in MPEGB, H.261 
and H.263 is an undesirable coder architecture because the 
throughput of the coder is limited by the processing speed of 
the feedback loop which is the  major bottleneck of the entire 
digital video system for high-end real-time applications. On 
the other hand, the DCT-Based Motion Estimation (DXT- 
ME) algorithm [4] works in the DCT transform domain so 
that we can moved DCT/IDCT out of the loop. This not 
only reduces the complexity of the coder but also achieves 
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higher system throughput by resolving the bottleneck prob- 
lem without any tradeoff of the performance. From the im- 
plement point of view, we can get rid of the IDCT used for 
DST-ME by interleaving it with the  DCT. Furthermore, now 
the DCT and motion estimation are combined into a single 
component of relatively low complexity. This major break- 
through makes the PIPEG2 compatible video codec design 
on a single dedicated chip feasible in no sacrifice of the per- 
formance. 

The matrix rotational property of the DXT-ME algo- 
rithm motivates us to  choose CORDIC as the basic computa- 
tion units instead of conventional multiplier-and-adder units 
(ILAC). Because CORDIC with simple shift-and-add is more 
efficient in evaluating square roots, divisions, trigonometric 
functions and their inverse, and, somewhat less often, hy- 
perbolic transformations. In addition, COR.DIC processing 
elements are extremely simple and quite compact to realize, 
while being no slower than the bit serial multipliers widely 
proposed for VLSI array structures. 

In the next section, we introduce the time-recursive 
CORDIC 2D-DCT/2D-IDCT and the type conversion struc- 
tures. In Section 111. we present the pipelined CORDIC 
Pseudo-Phase computation structure and the peak searching 
architecture along with the simulation results. Finally, the 
paper is concluded in Section IV. 

11. 2D-DCT/BD-IDCT A N D  TYPE CONVERSION 

A .  Tame-Recursrve 2 D - D X T  and rts inverse Structure 

The one-dimensional DCT/DST (1D-DXT-11) of a sequential 
input data starting from z ( t )  and end ending with z ( t  + N) 
is defined as 

t+,V-1 
2 k n  1 

% ( k )  = - C ( k )  N rc(n)cos[-[(n N - t )  + ;]I; 2 
n=t 

for IC = 0 or N, (I 1, otherwise, 

Here the time index t in X ; ( k )  and Xg(IC) denotes that the 
transform starts from z ( t ) .  The time-recursive updating is 
derived in [7] as: 

where C ( k )  = 

I For k = 1 . .  . N - 11 
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The commonly used row-column 2D-DCT structures are 
not able to simultaneously generate dual DCT and DST out- 
puts which will be used for computing the Pseudo Phases. 
The multiplications in the plane rotation matrix R(m) can 
be implemented by CORDICs shown in Fig. 1. For IC = 0 

Fig. 1. ,N-1 

in the DCT and k = N in the DST, R(m) can be reduced 
to  addition and subtraction. If N is even, we can save one 
CORDIC in the % t h  channel, because R(2) can be simplified 
to addition and subtraction. 

In the same fashion, the one-dimensional time-recursive in- 
verse IDCT/IDST (1D-IDXT-11) updating are derived in [7]. 
The purpose to introduce the auxiliary variable ~ ; ~ ( n )  is to 
maintain the lattice structure same as in 1D-DXT-I1 case. By 
spreading out $ ( n ) ,  Z ? ~ ( T I , )  and canceling the common terms, 
we get 

1 
z ; ( n )  = z?S(n) + ( - l ) n - S ( t  + N); Jz 

Therefore, similar to the DCT/DST casc!, the inverse trans- 
form IDCT/IDST actually can be combined and dully gen- 
erated shown in Fig. 2. From the above discussion, we find 

x 

Fig. 2. The CORDIC structure for 1D-IDXT-I1 

both 1D-DXT-I1 and inverse 1D-IDXT-I1 modules share the 
similar CORDIC structure. N such niodules can be used for 
parallel computing lD-DXT-II/lD-IDX7'-11 coefficients for 
different channels. I t  takes N clock cycles to dually generate 
X ; ( k ) , X , S ( k )  and their inverse z;(n),z;(n). So the computa- 
tional complexity is O ( N 2 )  and it needs 2(N - 1) CORDICs 
for 1D-DXT-I1 and 2N for its inverse ID-IDXT-I1 . 

We extend and modify the two dimensional DCT structure 
in [S] to simultaneously generate DCCT, DCST, DSCT and 
DSST coefficients by eliminating the circular shift a.rray, be- 
cause it is superfluous and only causes extra O ( N )  delay for 
the Shift Register Array to  rewind the final results. Using the 
similar approach, we can get its inverse counterpart structure 
shown in Fig. 3. Both 2D-DXT-I1 and inverse 2D-IDXT-I1 
share the same structure shown in Fig. 3 except the transform 

II/2D-IDXT-II is composed of three 1D-DXT-II/lD-IDXT-I1 
thus the coder needs total of 6(N-1) CORDICs for 2D-DXT- 
I1 and 6N for 2D-IDXT-11. (If N is even, we can save three 
CORDICs for the $th channel in 2D-DXT-11). Since it is 
fully pipelined, the computational complexity is still O( N 2 )  
and the latency is 2N.  

module used in front of' I D - D X T / I D - I D X T  ~ T T G ~ .  PD-DXT- 

Fig. 3. inverse 2D-IDXT-I1 corder structure 

B.  2D-DXT-11 to 2 D - D X T - I  T y p e  Conversion 

The DXT-ME algorithm requires type I 2D-DXT-I cocffi- 
cients Ziz,(k,l), ZfE,(k,l), Z;c,(k,l) and Z~~,(k,l) to gener- 
ate the Pseudo Phases. Actually the 2D-DXT-I functions can 
be obtained by the plane rotation of the 2D-DXT-I1 kernels. 

The lattice and its corresponding CORDIC structure for 
the conversion kernel is depicted in Fig. 4. The conversion 

(a) conversion kernel (b) its CORDIC structure 

Fig. 4. The structure of the conversion kernel 

a t  the block boundary can be simplified to  one dimensional 
relationship. Thus the structure for the conversion at  thc 
block boundary is similar to  the one in Fig. 4 but only has 
one stage. A parallel lattice array consists of N - 1 con- 
version kernel mbdules in Fig. 4 along with one conversion 
boundary module can be used for parallel transformation and 
it improves thc computational speed drastically. The whole 
structure requires 4N CORDICs and takes O ( N )  time to 
finish 2D-DXT-I1 to 2D-DXT-I transformation. The compu- 
tational complexity is O ( N 2 ) .  

111. PSEUDO PHASE COMPUTATION & PEAK SEARCH 

A .  Pipelined Pseudo-Phase Computation Structure 

In a two dimensional space, the two Pseudo Phase functions 
f(k, I )  and g ( k ,  I )  are defined in [4] by taking the block bound- 
ary into consideration. The Zt-l(k,l) E R 4 x 4  is the system 
matrix  of the DXT-ME algorithm at  ( k ,  I ) .  At the boundaries 
of each block in the transform domain, the DCT coefficients 
of z t - l (m,  n )  and zt (m,  n)  have only one dimensional relation- 
shiD. 

!For IC = 0,I = 1.. . N - 11 

. .  

is equivalent to soivi the following linear equation 

(2) 
Here * stands for don't care. 
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We can cascade circular backward rotation CORDIC to com- 
pute K and ct and circular forward CORDIC to  calculate 
f ( 0 ,  I )  followed by a linear backward rotation to scale f ( 0 ,  I )  
by as shown in Fig. 5. The similar approach can be 

1 For k = 0,Z = N 1 

" -  
This is much easier to compute by using only one linear 

backward rotation CORDIC followed by a right shifter to  
half the previous result. We can get Pseudo Phase g ( k ,  I )  at 
the block boundary with the same method. 

Fig. 5. The Pseudo Phase f(k,l) a t  block boundary 

To find the Pseudo Phase f(k,Z) and g(k,l) for k , 1  E 
(1 , .  , . ~ N - l} [4], it requires to solve the following linear 
equation with Zt-l(k,l) E R4x4 .  

If we adopt Gauss elimination or Givens rotation method, it 
incurs a heavy computational burden. However, by explor- 
ing the structure embedded in the Zt-l(k,l)! we can reduce 
the two dimensional problem to one dimension. Let us first 
introduce the following Lemma which inspires us to  find the 
way of solving (5). 

Lemma 1 When $& = g, ~+-1(k,l) zn (5) is a orthogonal 
matrzx 

Q C  

In this situation, we can adopt the similar CORDIC structure 
in Fig. 4 to find the Pseudo Phases f ( k ,  1 )  and g ( k ,  I )  

p e m ]  

By multiplying both sides of ( 5 )  by Z T - l ( k , I ) ,  we get 

where 

K = (Z,c41(k,l))2 + (Z;?l(k,l))z + (zp'1(k,I))2 + ( Z , S ? l ( k , l ) ) 2 ,  

G = 2* [Z;?,(k,l)Z,S:,(k,l) - Z;.,(k,l)zp?,(k.1)1 

Here we are only interested in solving Pseudo Phase f ( k )  I )  

r2 

(7) 
Then f ( k j  I )  and g ( k ,  1 )  can be found as: 

where A = K 2  - G2.  
Based on the previous derivation, a 2-stage pipelined struc- 

ture can be designed. In the first stage, we can compute K 
and G ,  rl and I'z in parallel. Then the  results are fed coinci- 
dentally into the second stage to compute the Pseudo Phases. 
Here we need to  employ the somewhat less often, hyperbolic 
transformations to evaluate I ' l ,  I ' 2  and the Pseudo Phases 
f(k; 1 )  and g(k l  1).  In summary, we can parallelize N - 1 ker- 
nel modules with a boundary module to speed up the Pseudo 
Phases computation. I t  needs (14N-6) CORDICs and O ( N )  
time to accomplish the work. And the computational com- 
plexity is o(N ' )  

B .  Peak Searchzny & Simulat ion Results 
The two-dimensional search for the peak value among 
F ( m , n )  and G ( m ,  n)  in [4] where F ( m , n )  = IDCSTlI(f(k,I)) 
and G(m,n) = I D S C I I ( g ( k , 1 ) )  can be reduced to  the one- 
dimensional search by the row-column decomposition search 
which looks for the peak value of each row, followed by a ver- 
tical search of the previous results shown in Fig. 6 (here we 
use G ( m ,  n) as an example, it is also applicable to F ( m ,  n) 
) .  The 2 is the peak among G(m,n). The flow diagram for 

Fig. 6 .  The two  dimensional peak search structure 

designing the process clement (PE) and the corresponding 
hardware structure are shown in Fig. 7. The peak search 
needs 2(N + 1) PES and takes 2N time to  finish. The com- 
putational complexity is o ( N ~ )  

The assemble CORDIC-DXT-ME architecture block diagram 
depicted in Fig. 8. The current frame zt are fed into 2D- 
DXT-I1 which computes four coefficients X f c ( k ,  I ) ,  X F S ( k ,  l ) ,  
X s c ( k ,  1 )  and X f S ( k ,  1 )  meanwhile the coefficients of previ- 
ous frame zt-1 are transformed to  2D-DXT-I coefficients 
Z;:,(k,l), Z;:,(k,l), Z,SC,(k,l) and Z,SS,(k,l). The Pseudo 
Phases Computatzon module utilizes all the previous param- 
eters and takes N times to produce two Pseudo-Phase func- 
tions f ( k .  I )  and g ( k , I ) .  Then f ( k ,  1 )  and g ( k , l )  undergo in- 
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x i  of size N=32 SNR=10 

Stage 

1 

2 
3 
4 

(a) flowchart (b) corresponding structure 

Fig. 7. The process element for peak search 

Component 
Complexity 

4N Conversion 
Pseudo Phase 14N-6 
2D-IDXT-I1 6N 
Peak Searching 0 

2D-DXT-I1 

1 

Fig. 8. The assemble CORDIC-DXT-ME block diagram 

verse IDCST-I1 and IDSCT-I1 transform to generate F ( m ,  n) 
and G ( m , n ) .  Finally we search the peak values among 
F ( m ,  n) and G ( m ,  n)  to determine the motion vector. So the 
CORDIC-DXT-ME are fully-pipelined while it has massively 
parallel local operations. As we mentioned in the introduc- 
tion, we can eliminate inverse 2D-IDXT-I1 by interleaving it 
with 2D-DXT-I1 to trade the speed for the silicon area. The 
computational complexity and hardware cost of each stage 
are summarized in Table 1. In Fig. 9, we move the image 

X1 in the direction (6,-4) corresponding to image X2 with 
additive Gaussian noise a t  SNR=lOdB. Our simulation of 
the designed COR.DIC-DXT-ME shows that it estimates the 
correct motion shown in Fig. 10 

IV. CONCLUSION 
111 this paper, we propose a novel fully-pipelined paral- 
lel CORDIC architecture (CORDIC-DXT-ME) employing 
DCT Pseudo-Phase Techniques for Motion Estimation. The 
CORDIC-DXT-ME architecture require:; only 30N - 12 
CORDIC processors. In addition to its :low computational 
complexity, the DCT-based nature enables us to replace all 
multipliers by CORDIC with simple shift-and-add operations 
and to incorporate its implementation with the DCT codecs 
design to gain further savings in hardware complexity. 

The CORDIC-DXT-ME architecture e;Fficiently combines 
both the DCT and motion estimation into the Fully DCT- 
Based Video Coder. Thus the performance-critical feedback 
loop contains only transform-domain motion estimation unit 
instead of three major components as in the conventional 
hybrid DCT motion-compensated video coder design thus 
it achieves higher throughput and lower system complex- 
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Figure 9: A movement (6,-4) with additive with Gaussian 
noise at SNR=10 dB 
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(f) G(m,n) and F(m,n) 

Figure 10: CORDIC-DXT-ME architecture estimates the 
correct motion (6,-4) 

ity. The CORDIC-DXT-ME architecture has inherently mas- 
sively parallel local operations and fully-pipelined global ma- 
nipulations. Its regular and modular structure along with 
only local interconnection makes it feasible for MPEGZ corn- 
patible video codec design on a dedicated single chip. 
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