
APSIPA Transactions on Signal and Information Processing
http://journals.cambridge.org/SIP

Additional services for APSIPA Transactions on Signal and Information
Processing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Incentive compatible demand response games for distributed load
prediction in smart grids

Yan Chen, W. Sabrina Lin, Feng Han, Yu-Han Yang, Zoltan Safar and K. J. Ray Liu

APSIPA Transactions on Signal and Information Processing / Volume 3 / January 2014 / e9
DOI: 10.1017/ATSIP.2014.8, Published online: 16 September 2014

Link to this article: http://journals.cambridge.org/abstract_S2048770314000080

How to cite this article:
Yan Chen, W. Sabrina Lin, Feng Han, Yu-Han Yang, Zoltan Safar and K. J. Ray Liu (2014). Incentive compatible demand
response games for distributed load prediction in smart grids. APSIPA Transactions on Signal and Information Processing,
3, e9 doi:10.1017/ATSIP.2014.8

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/SIP, IP address: 128.8.245.52 on 26 Nov 2014



SIP (2014), vol. 3, e9, page 1 of 13 © The Authors, 2014.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unre-
stricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/ATSIP.2014.8

original article

Incentive compatible demand response games
for distributed load prediction in smart grids
yan chen, w. sabrina lin, feng han, yu-han yang, zoltan safar and k. j. ray liu

While demand response has achieved promising results on making the power grid more efficient and reliable, the additional
dynamics and flexibility brought by demand response also increase the uncertainty and complexity of the centralized load
forecast. In this paper, we propose a game-theoretic demand response scheme that can transform the traditional centralized
load prediction structure into a distributed load prediction system by the participation of customers. Moreover, since customers
are generally rational and thus naturally selfish, they may cheat if cheating can improve their payoff. Therefore, enforcing truth-
telling is crucial. We prove analytically and demonstrate with simulations that the proposed game-theoretic scheme is incentive
compatible, i.e., all customers are motivated to report and consume their true optimal demands and any deviation will lead to
a utility loss. We also prove theoretically that the proposed demand response scheme can lead to the solution that maximizes
social welfare and is proportionally fair in terms of utility function. Moreover, we propose a simple dynamic pricing algorithm
for the power substation to control the total demand of all customers to meet the target demand curve. Finally, simulations are
shown to demonstrate the efficiency and effectiveness of the proposed game-theoretic algorithm.
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I . I NTRODUCT ION

Nowadays, traditional power grids are facing many
challenges, including load schedule uncertainties, low load
factor, power transfers across different regions, and the
incorporation of renewable energy systems. On the other
hand, consumers are demanding better power quality and
reliability, and the demand is arising due to the increase
of new types of appliances such as plug-in hybrid electric
vehicles. In such a case, efficient use and maintenance of
current available resource to reduce environmental impacts
becomes more and more important and has drawn great
attention recently. It is evidently needed to transform tra-
ditional electric network using various smart devices, algo-
rithms, and designs into a highly efficient and reliable
power grid. A “Smart Grid” [1–4] is a future electricity
delivery system based on new technologies, such as digi-
tal communication, computational algorithm, and market
design. Such a power grid is expected to overlay the tra-
ditional electrical network with a smart metering system,
which is capable of sensing andmeasuring power consump-
tion from customers and applying two-way communica-
tions to improve the performance of power production,
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transmission, distribution, and consumption. The goals of
smart grid are to enhance the reliability and quality of power
supply, reduce the peak demand, improve the efficiency of
the power grid, and lower the total energy consumption.
Demand response, one important feature of smart grid,

is a mechanism that can motivate end-use customers to
change their electricity usage from normal consumption
patterns in response to the changes in the price of electricity
over time [5–9]. Bymotivating end-use customers to reduce
their electricity usage during critical peak periods or when
system reliability is jeopardized, demand response has been
shown to be able to make the power grid more efficient and
reliable [10–14]. In the summer of 2003, the New York Inde-
pendent System Operator (NYISO) paid out $7.2 million in
incentive payments to over 1400 program participants for
reducing peak load by 700MW [15]. Such a load curtail-
ment program brought reliability benefits of more than $50
million on August 15, 2003, which means that the benefits
created by the load curtailment program exceeded the costs
by a factor of 7:1. From customers’ perspective, they expect
savings in electricity bills by participating in the demand
response program and reducing their electricity usages dur-
ing peak periods. As reported in [16], a small reduction of
demand (5) could have resulted in a 50 price reduction
during the California electricity crisis in 2000–2001.
Generally, there are mainly two different categories

of demand response algorithms [5, 11]: incentive-based
demand response and pricing-based demand response. In
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the incentive-based demand response, customers are given
the incentive payments to reduce their consumptions in
case of emergencies or when system reliability is jeopar-
dized. For example, Chen et al. [17] proposed to match
the supply when the electricity supply is deficit based on
supply function bidding. By shedding the load, customers
can receive some revenue that is determined by the cus-
tomers’ supply functions. The authors then suggested an
iterative and distributed supply function bidding scheme to
achieve the market equilibrium that maximizes the social
welfare. However, since customers’ revenue is determined
by all customers’ supply functions, the bidding scheme is
not incentive compatible, i.e., customers have the incentive
to report false supply function to increase their revenue. In
[18], the authors proposed a distributed interruptible load
shedding program to ensure the correct electrical system
operation by increasing the number of participants. The
optimal load reduction request is found by minimizing the
expected value of an appropriate cost function which takes
into account the uncertainty about the power absorbed by
each customer. In [19], Fahrioglu and Alvarado designed
an incentive compatible contract to encourage customers to
reveal their true value of power interruptibility to achieve
effective demand management. Since customers’ values of
power interruptibility keep changing over time and some
customersmay not be willing to disclose their private power
interruptibility value, the contract-based approach in [19]
cannot be directly applied to the real-time pricing demand
response system.
In pricing-based demand response, due to the use of

dynamic pricing, customers will dynamically adjust their
consumption according to the time-varying price to max-
imize their payoffs. In [20], the authors proposed a real-
time pricing algorithm by maximizing the aggregate util-
ity of all customers. Based on the dual decomposition,
the authors then proposed a distributed implementation to
automatically manage the interactions among the energy
consumption controller units at the smart meters and the
energy provider. With the presence of a real-time pric-
ing tariff, Mohsenian–Rad and Leon–Garcia [21] proposed
a residential energy consumption scheduling algorithm by
considering the trade-off between the electricity payment
and the waiting time for the operation of each appli-
ance. Another type of pricing algorithm is the time-of-
use pricing algorithm, where different unit prices are set
for usage during different blocks of time, e.g., peak-load
period, flat-load period, and valley-load period. In [22],
the authors conducted a survey on the research of time-of-
use electricity pricing models. To understand the effects of
price responsive demand on whole sale and retail markets,
Chao proposed an economic framework on pricing and
investment [23].
The importance of demand response can go far beyond

reducing the electricity bills of customers. It facilitates
the demand management from the operational perspec-
tive through real-time pricing to balance the demand and
supply in the electric power market [24, 25]. However,
the additional dynamics and flexibility brought by demand

response also increase the uncertainty and complexity of the
centralized load forecast, which are critical issues of utiliz-
ing real-time pricing to regulate the total demand from cus-
tomers. This uncertainty will pose new challenges andmake
the difficult centralized load forecast problem even harder,
given the scale of today’s power grid. In such a case, the fore-
cast total demand fromcustomersmaynot accurately reflect
the future load. As a consequence, the power plant either
overgenerates or undergenerates the power, which leads to
low system efficiency and high risk of outage, respectively.
To overcome these challenges, we propose to use game

theory to formulate the demand response problem. In this
demand response game, the players are the power substa-
tion (or power plant) and the customers, where the objective
of the power substation is to use real-time pricing to dynam-
ically adjust the total demand to meet a target demand
curve and the objective of the customers is to dynamically
choose their optimal demands to maximize their own util-
ities. Recently, there have been some works using game
theory for demand response. In [26], Maharjan et al. pro-
posed to use Stackelberg game formulation to maximize
the revenue of utility company and customers, whereas in
[27] the authors proposed to use congestion game to control
the power demand to achieve energy savings and utiliza-
tion efficiency. However, neither the problem of enforcing
truth-telling nor the problem of controlling the demand
are investigated. In [28], Mohsenian-Rad et al. proposed an
autonomous and distributed demand-side energy manage-
ment system by taking advantage of a two-way communi-
cation infrastructure among users. Different from [28] that
focused on the interactions among customers, in this paper,
we focus on the interactions between power substation and
customers.
The main contributions of this paper are summarized as

follows.

(i) We propose a game-theoretic demand response scheme
that can transform the traditional centralized load
prediction structure into a distributed load prediction
system by the participation of customers. Such a trans-
formation would revolutionize the difficult and com-
plex centralized forecasting into easy demand report
collection.

(ii) Since the proposed scheme is distributed and cus-
tomers are naturally selfish, enforcing truth-telling is
crucial. We prove analytically and demonstrate with
simulations that the proposed game-theoretic scheme
is incentive compatible, i.e., all customers aremotivated
to report and consume their true optimal demands and
any deviation will lead to a utility loss. Owing to the
incentive compatible property of the proposed scheme,
the aggregate demand report from the customers is
an accurate estimate of the total consumption of cus-
tomers. In such a case, the power substation can obtain
an accurate estimate of the total consumption ahead of
time and generate the corresponding amount of power,
which can greatly improve the system efficiency and
reduce the risk of outage.
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Fig. 1. System model.

(iii) We prove theoretically that the proposed demand
response scheme can lead to the solution that is social
welfare maximizing and proportionally fair in terms of
the utility function.

(iv) To encourage participation, the demand response
scheme should be simple since customers may not be
willing to join the response scheme if the mechanism is
complicated. The proposed demand response scheme
is very simple. What customers need to do is to com-
pute their own optimal demand for any given price and
report the optimal demand to the power substation.

The rest of this paper is organized as follows. Section II
introduces the game-theoretic formulation. In Section III,
we describe in details the proposed incentive compatible
mechanism and the dynamic pricing of the power substa-
tion. Then we show the simulation results to verify the pro-
posed algorithm in Section IV. Finally, we draw conclusions
in Section V.

I I . GAME -THEORET IC
FORMULAT ION

We consider a smart grid with N customers that are served
by one power substation as shown in Fig. 1. Customers are
assumed to be intelligent and can make optimal decision
based on the price of the power. Such customers can be resi-
dential customers who are equipped with smart meters that
can automatically predict and adjust the electricity usage, or
“big” customers such as commercial buildings and indus-
trial participants who have dedicated facility personnel to
manage electricity usage. On the other hand, the power
substation is assumed to have a target total demand curve.
The objective of the power substation is to control the total
demand of all customers to meet the target demand curve
by dynamically adjusting the unit price of the power. The
problem is to determine how the power substation should
use dynamic pricing to control the total demand.
One possible approach for the power substation to

achieve this task is the centralized approach where the
power substation predicts the total demand of all customers

by estimating the behavior of the customers using power
consumption history. For example, the power substation
can first find the time slot with the most similar conditions
by searching over the power consumption history, and then
predict the total demand using the actual total power con-
sumption at that time slot. However, this kind of centralized
approach has several drawbacks. First, the computational
complexity at the power substation is very high since the
power substation needs to estimate the behaviors of all cus-
tomers and predict their power consumption. Second, the
prediction accuracy of the total demand consumption may
not be high due to the complex behavior of customers.
Third, due to the inaccurate prediction, the power substa-
tion may overgenerate or undergenerate power which leads
to power inefficiency or power outage.
To overcome these drawbacks, we propose a game-

theoretic demand response scheme to transform the
traditional centralized load prediction structure into a
distributed load prediction system by the participation
of customers, i.e., we ask the customers to report their
demands to the power substation. Since customers, espe-
cially the “big” customers such as commercial buildings
and industrial participants, are rational and thus naturally
selfish, they tend to overclaim what they may need and
will not truly report their optimal demand if cheating can
improve their payoffs. Tomotivate customers to report their
true optimal demands, we propose an incentive compati-
ble mechanism by carefully designing the penalty function
for deviation. Formally, the demand response game can be
defined as follows:

• Players: The players are the N rational customers and the
power substation.

• Strategies: The strategies of customer i is (d̂i , di ), where d̂i

is the demand that customer i reports to the power substa-
tion and di is the real demand that customer i consumes.
The strategies of the power station is (pi , Ci (pr , di , d̂i )),
where pi is the real-time price announced to customer i
and Ci (pi , di , d̂i ) is the cost function that the power sta-
tion will use to charge customer i who takes strategies
(d̂i , di ).
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• Utility function: By taking strategies (d̂i , di ), the utility
function of customer i can be formally written as

Ui (di , d̂i ) = λGi (di ) − Ci (pi , di , d̂i ), (1)

where Gi (di ) is the gain function customer i receives by
consuming di , Ci (pi , di , d̂i ) is the cost customer i needs
to pay to the power substation, and λ is a parameter bal-
ancing the gain and the cost, which is assumed to be the
same for all customers. The details of the gain and cost
function will be introduced in the next section. On the
other hand, the objective of the power substation is to use
real-time pricing, i.e., p′

i s , to dynamically adjust the total
demand tomeet a certain target demand. Instead of speci-
fying the utility function of power substation here, we will
discuss how the power substation determines p′

i s in the
next section.

I I I . ANALYS IS OF THE DEMAND
RESPONSE GAME

A) Gain function of the customer
Generally, by consuming a certain amount of power, a cus-
tomer experiences a certain gain which reflects the level of
satisfaction. For example, when reading under a bad light-
ing condition, a customer will feel happy by turning on a
light, and such a happiness can be characterized by a cer-
tain gain. We assume that each customer i has a minimal
power demand dmin

i to operate some essential appliances
such as refrigerator and air conditioner. If the demand is
smaller than dmin

i , the customer will feel very uncomfort-
able, so the gain is zero. Once the power demand reaches
dmin

i , the customer experiences a gain gi . After satisfying
the minimal demand constraint, the gain will increase by
a certain value if an additional appliance is turned on. Since
customers are intelligent and rational, they will always first
turn on the appliance that can bring the largest increase
of their level of satisfaction. For example, a customer in
a dark room will turn on the light first, whereas the cus-
tomer who feels hot will turn on the fan first. With such
an intuition, the gain function should be an increasing step
function with the step size decreasing over the demand for
all demand that is larger than the minimal demand con-
straint, e.g., the red dot curve in Fig. 2. Since the gain
function characterizes the level of satisfaction of the cus-
tomer, it can be different under different climate conditions
and different moods of the customer. For example, the pink
dash curve and blue dot-dash curve in Fig. 2 can be the
gain functions under two different conditions. To better
understand the behavior of the customers, we assume that
the gain function measures the average level of satisfac-
tion under different conditions such as climate and mood
conditions.
From the above discussion, we can see that the gain

should be zero for any demand smaller than the mini-
mal demand constraint. For the demand larger than the

Fig. 2. An illustration of the gain function. The red, blue, and pink dot-dash
curves stand for the gain functions under different climate conditions and dif-
ferent moods of the customer, whereas the cyan curve is the gain function that
measures the average level of satisfaction under different conditions.

minimal demand constraint, the gain function should be a
monotonically increasing concave function with the level of
satisfaction gradually saturating. After the demand reach-
ing the maximal demand constraint which can be the total
power demand for operating all appliances, the gain func-
tion should remain constant. There are many possible gain
functions. In this paper, we use a modified quadratic
gain function Gi (d) defined in (2) and illustrated as the
cyan solid curve in Fig. 2. A similar gain function was used
in [20].Note that our scheme can be easily extended to other
gain functions.

Gi (d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ d < dmin
i ;

−αi
2 (d − dmin

i )2

+wi (d − dmin
i ) + gi , if dmin

i ≤ d ≤ wi
αi

+dmin
i ;

w2
i

2αi
+ gi , if d > wi

αi
+ dmin

i ,

(2)

where dmin
i is the minimal power demand, gi is the gain of

the minimal power demand, αi is the parameter controlling
the speed of increase of the quadratic function which can
be time-varying, and wi is the declivity of the parabola at
d = dmin

i which is fixed over time.

B) The proposed mechanism for power
substation
Tomotivate customers to report their true optimal demands
to power substation, we propose an incentive compatible
mechanism as follows. At the beginning of time slot t,
the power substation announces a reference price pr

to all customers. How to determine the reference price
pr will be discuss in Section III-F. After receiving the
reference price, each customer computes the optimal
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demand d�
i bymaximizing the intermediate utility function

as follows:

d�
i = arg max

d
λGi (d) − pr d

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wi −pr /λ

αi
+ dmin

i , if (λwi −pr )2

2λαi

+λgi ≥ pr dmin
i

and wi ≥ pr /λ,

dmin
i , if wi < pr /λ and λgi ≥ pr dmin

i ,

0, else,
(3)

Nevertheless, we should notice that customers may not
report their true optimal demand d�

i to the power substation
due to their selfish nature. Let us assume that customer
i reports d̂i to the power substation. After receiving
all the demands from the customers, the power substa-
tion announces to each customer i the cost function
Ci (pi , di , d̂i ) as follows

Ci (pi , di , d̂i ) =
{

pi d̂i , if di ≤ d̂i ;

pi d̂i + λ�(di − d̂i ) + λρ, if di > d̂i .
(4)

where pi is defined as

pi = pr + m

d̂i

, (5)

andm is a constant which can be treated as themaintenance
fee, � ≥ max{w1, . . . , wN} and ρ ≥ max{g1, . . . , g N} are
two fixed parameters. From (4), we can see that customers
are punished for both overreporting and underreporting.
For overreporting, customers will be charged for what they
reported, which can be treated as a pre-paid rule. For under-
reporting, customers will receive a penalty that is linear in
the deviation di − d̂i .
Finally, according to the price pi , each customer con-

sumes power di and pays Ci (pi , di , d̂i ), and the utility func-
tion of customer i can be computed as in (1).
The detailed interactions between the power substa-

tion and customers are summarized in Algorithm 1 In the
next three subsections, we will prove that the proposed
demand response mechanism is incentive compatible and
the outcome of the proposed demand response mechanism
maximizes the social welfare, which is the sum of the cus-
tomers’ utilities and the revenue of the substation, and is
proportionally fair in terms of the utility function.

C) Incentive compatible property
In this subsection, we prove that the proposed mechanism
is incentive compatible, which means that all customers are
motivated to report and consume the optimal demands,
i.e., their utility is maximized when di = d̂i = d�

i , and any
deviation will lead to a utility loss.

Lemma 1. After reporting d̂i , the best strategy of customer i
at the consumption stage is to consume d̂i , i.e., Ui (di , d̂i ) ≤
Ui (d̂i , d̂i ), ∀di , with equality if and only if di = d̂i .

Proof : To prove Lemma 1, we need to show that
Ui (di , d̂i ) − Ui (d̂i , d̂i ) ≤ 0, ∀di , with equality if and only if
di = d̂i . Since the payment function Ci (pi , di , d̂i ) in (4) is
a piecewise function of di , we will compute the difference
between Ui (di , d̂i ) andUi (d̂i , d̂i ) for each region.

• If di ≤ d̂i , according to (2), (4), and (1), we have

Ui (di , d̂i ) − Ui (d̂i , d̂i )

= λGi (di ) − Ci (pi , di , d̂i )

−
[
λGi (d̂i ) − Ci (pi , d̂i , d̂i )

]
= λ

[
Gi (di ) − Gi (d̂i )

]
≤ 0, (6)

where the last inequality comes from the monotonically
increasing property of Gi (.) function, and the equality
holds if and only if di = d̂i .

• Similarly, if di > d̂i , from (2), (4), and (1), we have

Ui (di , d̂i ) − Ui (d̂i , d̂i )

= λGi (di ) − Ci (pi , di , d̂i )

−
[
λGi (d̂i ) − Ci (pi , d̂i , d̂i )

]
= λGi (di ) − λGi (d̂i ) − λ�(di − d̂i ) − λρ

≤ λ
[
Gi (di ) − Gi (d̂i ) − wi (di − d̂i ) − gi

]

= λ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−wi (di − d̂i ) − gi < 0,

if 0 ≤ d̂i < di < dmin
i ;

−αi
2 (di − dmin

i )2 + wi (d̂i − dmin
i ) < 0,

if 0 ≤ d̂i < dmin
i ≤ di ≤ wi

αi
+ dmin

i ;

−wi

(
di − d̂i − wi

2αi

)
< 0,

if 0 ≤ d̂i < dmin
i ≤ wi

αi
+ dmin

i < di ;

−αi
2 (di − d̂i )(di + d̂i − 2dmin

i ) − gi < 0,

if dmin
i ≤ d̂i < di ≤ wi

αi
+ dmin

i ;

−wi (di − dmin
i ) + w2

i
2αi

+ αi
2 (d̂i − dmin

i )2

−gi < 0,

if dmin
i ≤ d̂i ≤ wi

αi
+ dmin

i < di ;

−wi (di − d̂i ) − gi < 0,

if wi
αi

+ dmin
i < d̂i < di .

< 0, (7)

where the first inequality comes from the definitions
of � and ρ that � ≥ max{w1, . . . , wN} and ρ ≥ max
{g1, . . . , g N}.
In all, according to (6) and (7), we can show thatUi (di , d̂i ) ≤
Ui (d̂i , d̂i ), ∀di , with equality if and only if di = d̂i . There-
fore, after reporting d̂i , the best strategy of customer i at the
consumption stage is to consume d̂i . �
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Algorithm 1 : Incentive compatible mechanism design for demand response
1. At time slot t, the power substation announces a unit reference price pr to all customers.
2. Each customer i computes the optimal demand based on the reference price pr using

d�
i = arg max

d
λGi (d) − pr d

and submits his/her demand d̂i to the power substation.
3. Based on the demands from the customers, the power substation announces the payment function Ci (pi , di , d̂i ) to each customer
i as follows:

Ci (pi , di , d̂i ) =
{

pi d̂i , if di ≤ d̂i ;
pi d̂i + λ�(di − d̂i ) + λρ, if di > d̂i ,

with pi being defined as

pi = pr + m

d̂i
.

4. Finally, customer i consumes the amount of power di and pays Ci (pi , di , d̂i ). The utility of customer i is

Ui = λGi (di ) − Ci (pi , di , d̂i ).

Theorem 1. The proposed mechanism is incentive
compatible.

Proof : To prove Theorem 1, we need to show that the
utility of the customer is maximized when he/she reports
and consumes the optimal demand, i.e., Ui (di , d̂i ) is maxi-
mized at di = d̂i = d�

i .
According to (3), (5), (4), (1), and Lemma 1, we have

Ui (di , d̂i ) ≤ Ui (d̂i , d̂i )

= λGi (d̂i ) − Ci (pi , d̂i , d̂i )

= λGi (d̂i ) − pi d̂i

= λGi (d̂i ) − pr d̂i − m

≤ λGi (d
�
i ) − pr d�

i − m, (8)

where the first inequality is the consequence of Lemma 1;
The three equalities come from the definition of utility func-
tion shown in (1), the definition of payment function shown
in (4), and the definition of price function shown in (5),
respectively. The last inequality comes from the definition
of d�

i shown in (3).
Note that equality in (8) holds if and only if di = d̂i = d�

i .
Therefore, all customers will try to report and consume the
optimal demand to achieve maximal utility, and any devia-
tion will lead to a utility loss, i.e., the proposed mechanism
is incentive compatible. �

D) Maximizing social welfare
In this subsection, we prove that the proposed mechanism
leads to an equilibrium that maximizes the social welfare,
which is the sum of the customers’ utilities and the revenue
of the substation.

Theorem 2. The proposed mechanism maximizes the social
welfare, i.e. (d�

1 , d�
2 , . . . , d�

N) is the solution to the following

optimization problem:

max
di ,∀i

N∑
i=1

Gi (di )

s .t.
N∑

i=1

di ≤ dtotal (9)

with dtotal = ∑N
i=1 d�

i .

Proof : We will prove the theorem using contradiction.
Suppose there exists a solution (d̂1, d̂2, . . . , d̂N) that satis-
fies the constraint

∑N
i=1 d̂i ≤ dtotal and can lead to a larger

social welfare than (d�
1 , d�

2 , . . . , d�
N), i.e.,

N∑
i=1

Gi (d̂i ) >

N∑
i=1

Gi (d
�
i ). (10)

Then, since
∑N

i=1 d̂i ≤ dtotal = ∑N
i=1 d�

i , we have

N∑
i=1

(
Gi (d̂i ) − pr d̂i

)
=

N∑
i=1

Gi (d̂i ) − pr
N∑

i=1

d̂i ,

>

N∑
i=1

Gi (d
�
i ) − pr

N∑
i=1

d̂i ,

≥
N∑

i=1

Gi (d
�
i ) − pr

N∑
i=1

d�
i ,

=
N∑

i=1

(
Gi (d

�
i ) − pr d�

i

)
. (11)

According to (11), there is at least one d̂i such that Gi (d̂i ) −
pr d̂i > Gi (d�

i ) − pr d�
i . This contradicts with the definition

of d�
i in (3). Therefore, (d

�
1 , d�

2 , . . . , d�
N) is the solution to

the optimization problem in (9) that maximizes the social
welfare. �
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E) Proportionally fair solution
In this subsection, we prove that the proposed mechanism
leads to the solution that is proportionally fair in terms
of utility. Proportional fairness is the generalization of the
Nash bargaining solution for multiple users [29, 30]. Under
the Nash bargaining, a transfer of resources between two
users is favorable and fair if the percentage increase in the
utility of one player is larger than the percentage decrease in
utility of the other user. Under proportional fairness, the fair
allocation should be such that, if compared to any other
feasible allocation of utilities, the aggregate proportional
change is less than or equal to zero. A formal definition of
proportional fairness is given as follows.

Definition 1. A utility distribution is said to be proportion-
ally fair when any change in the distribution of utilities results
in the sum of the proportional changes being non-positive, i.e.,

∑
i

Ui − Ũi

Ũi

≤ 0, ∀Ui ∈ S, (12)

where Ũi and Ui are the proportionally fair utility and any
other feasible utility for the i th user, respectively, and S is a
closed and convex subset of �N to represent the set of feasible
utility functions that the users can achieve.

Remark 1. The definition of proportional fairness comes
from the fact that, if (Ũ1, Ũ2, . . . , ŨN) satisfied (12), any devi-
ation from (Ũ1, Ũ2, . . . , ŨN) will lead to a non-increasing
sum of the proportional changes. Moreover, from [29, 30],
we can see that (Ũ1, Ũ2, . . . , ŨN) is a proportionally fair
utility if and only if

∏N
i=1 Ũi ≥ ∏N

i=1 Ui for any feasible
(U1, U2, . . . , UN).

Theorem 3. The proposed mechanism leads to the solu-
tion that is proportionally fair in terms of utility, i.e.
(d�

1 , d�
2 , . . . , d�

N) is the solution to the following optimization
problem:

max
di ,∀i

N∏
i=1

(
Gi (di ) − pr di

)
. (13)

Proof : We will prove the theorem using contradiction.
Suppose there exists a solution (d̂1, d̂2, . . . , d̂N) that can lead
to a larger product of utility than (d�

1 , d�
2 , . . . , d�

N), i.e.,

N∏
i=1

(
Gi (d̂i ) − pr d̂i

)
>

N∏
i=1

(
Gi (d

�
i ) − pr d�

i

)
. (14)

In such a case, there is at least one d̂i such that Gi (d̂i ) −
pr d̂i > Gi (d�

i ) − pr d�
i . This contradicts with the definition

of d�
i in (3). Therefore, (d

�
1 , d�

2 , . . . , d�
N) is proportionally fair

in terms of utility. �

F) Dynamic pricing of the power substation
From the above discussion, we can see that the proposed
mechanism is incentive compatible and can lead to the
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Fig. 3. The gain, cost, and intermediate utility versus the power demand with
the optimal demand d�

i = 80 when the reference price pr = 30.

solution that is proportionally fair and social welfare max-
imizing, due to which all rational customers are motivated
to report and consume the optimal demand. In such a case,
according to (3), the average power consumption of the
customers at time slot t can be computed as follows:

Daverage(t) = 1

N

N∑
i=1

d�
i (t)

= 1

N

N∑
i=1

(
wi − pr (t)/λ

αi (t)
+ dmin

i

)
. (15)

Here, we exclude the inactive customers whose optimal
demand is zero and simply assume N is the total number
of active customers. Moreover, we assume that the parame-
terswi and dmin

i are time-invariant parameters, whereas the
parameter αi (t) is a time-variant parameter.
As discussed in Section III-A, αi (t) is the parameter con-

trolling the speed of increase of the quadratic gain function.
According to (15), if 1

αi (t)
is modeled as a Gaussian distribu-

tion with mean μα(t) and constant variance σ 2
α , then, with

the law of large numbers, the average power consumption
of all customers can be approximated as

Daverage(t) ≈ μα(t)

(
1

N

N∑
i=1

wi − pr (t)/λ

)

+ 1

N

N∑
i=1

dmin
i ,

= μα(t)
(
W − pr (t)/λ

)+ Q, (16)

whereW = 1
N

∑N
i=1 wi and Q = 1

N

∑N
i=1 dmin

i .
From (16), we can see that, given W, Q, and μα(t),

there is a direct relationship between pr (t) and Daverage(t).
Therefore, by dynamically adjusting the reference price
pr (t), we can control the average demand Daverage(t) to
meet the target average demand Dtarget(t) as follows

pr (t) = λ

[
W − Dtarget(t) − Q

μα(t)

]
. (17)
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(a) (b)

(c) (d)

Fig. 4. The incentive compatible performance of the proposed scheme when the optimal demand d�
i = 80 and the reference price pr = 30: (a) the utility versus

the real-power consumption di when the reported demand d̂i = di ; (b) the utility versus the real-power consumption di when the reported demand d̂i = d�
i = 80;

(c) the utility versus the reported demand d̂i when the real-power consumption d̂i = d�
i = 80; (d) the utility versus the reported demand d̂i and real-power

consumption di .

Since W and Q are two constants, we assume that they
are known or can be well estimated by the power substa-
tion using the demand history. The μα(t) is the mean of
the parameter 1

αi (t)
controlling the increasing speed of the

gain function, which means that μα(t) should be reason-
ably smooth over the time index t. Therefore, we propose
to use Auto-Regressive (AR) process to model μα(t), i.e.,
μα(t) can be represented as a linear combination of μα(t −
1), . . . , μα(t − l) plus an additive white Gaussian noise,

μα(t) = γ1μα(t − 1) + · · · + γlμα(t − l) + nμα
(t), (18)

where γ1, γ2, . . . , γl are the AR coefficients, and nμα
(t) is

the additive white Gaussian noise with mean zero and
variance σ 2

μα
.

According to the discussions above, the dynamic pric-
ing algorithm of the power substation can be summarized
as follows. At time slot t, the power substation announces
a reference price pr (t). Based on the reference price, all
customers report their optimal demand to the power sub-
station. After receiving all demands from customers, the
power substation computes μα(t) using

μα(t) = Daverage(t) − Q

W − pr (t)/λ
. (19)

Then, according to the ARmodeling ofμα(t), the power
substation estimates μα(t + 1) using

μ̂α(t + 1) = γ1μα(t) + · · · + γlμα(t − l + 1). (20)

Finally, based on the estimated μ̂α(t + 1), the power sub-
station computes the reference price at time t + 1 using the
following equation:

pr (t + 1) = λ

[
W − Dtarget(t + 1) − Q

μ̂α(t + 1)

]
. (21)

I V . S IMULAT ION RESULTS

In this section, we show with simulations that our pro-
posed game-theoretic scheme is incentive compatible and
can effectively control the power consumption. We con-
sider the system that there is one power substation and
N = 10 000 customers. The variables in the gain func-
tion (2), 1/αi , wi , and dmin

i , are assumed to be Gaussian,
i.e., 1/αi (t) ∼ N(μα(t), σμ), wi ∼ N(μw , σw), and dmin

i ∼
N(μd , σd). In all the following simulations, we set the
parameters used in ourmodel as:μw = 150,σw = 25,μd =
5, σd = 1, σμ = 0.2, σμα

= 0.01, λ = 0.35, gi = 1000, and
m = 5. We assume that the power demand of adjacent time
frames are correlated and the power demand of each time
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(a) (b)

(c) (d)

Fig. 5. The non-incentive-compatible performance of the scheme without punishment in the utility function: (a) the utility versus the real-power consumption
di when the reported demand d̂i = di ; (b) the utility versus the real-power consumption di when the reported demand d̂i = d�

i = 85; (c) the utility versus the
reported demand d̂i when the real-power consumption d̂i = d�

i = 85; (d) the utility versus the reported demand d̂i and real-power consumption di .

(a) (b)

Fig. 6. The demand controlling performance of the proposed scheme: (a) constant target demand; (b) time-varying target demand.

frame is slowly changing and follows the same trend over
several time frames.With such an intuition, wemodelμα(t)
as anAR process as shown in (18). Specifically, we use AR(2)
process to model μα(t) and the AR coefficients are set as
γ1 = 1.9984 and γ2 = −0.9984. As will be shown in the
last simulation, with such AR coefficients, the total demand
of the constant pricing scheme matches well with the real
total demand of California Independent System Operator

(CAISO) on October 31, 2011 [31], which in some senses
validates the utility function and the AR modeling.
In the first simulation, we verify the incentive compati-

bility of the proposed scheme. Fig. 3 shows the gain, cost,
and intermediate utility of a randomly chosen customer
versus the power demand when the reference price pr =
30. The intermediate utility is maximized when the power
demand is 80, i.e., d�

i = 80, which is marked as cyan “x”.
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(a) (b)

Fig. 7. (a) The robustness performance against real consumption deviation; (b) zoom-in figure of (a).
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Fig. 8. The performance comparison with constant pricing algorithm.

Fig. 4(a) shows the utility versus the real-power consump-
tion di by assuming the reported demand is equal to the
real consumption, i.e., di = d̂i . We can see that themaximal
utility is achieved when di = d̂i = d�

i = 80, which means
that if the customer will consume the same amount of
power as what he reported, the best strategy for the cus-
tomer is to report the optimal demand d̂i = d�

i . In Fig. 4(b),
we show the utility versus the real-power consumption di

by assuming the reported demand is equal to the optimal
demand, i.e., d̂i = d�

i . We can see that the utility is maxi-
mized when di = d̂i = d�

i = 80. Therefore, after reporting
d̂i , customer has no incentive to consume di 
= d̂i due to the
punishment for both consumingmore and less power in (4).
Then, in Fig. 4 (c), we show the utility versus the reported
demand d̂i by assuming the customer will consume the
optimal demand, i.e., di = d�

i . We can again see that only
when d̂i = di = d�

i , the utility is maximized, which means
that customers will report the true optimal demand to
achieve maximal utility. The customer’s utility versus the
reported demand and real-power consumption (d̂i , di ) is
shown in Fig. 4(d). We can see that any (d̂i , di ) combina-
tion other than the optimal value (d�

i , d�
i ) leads to a loss of

utility. Hence, customers have no incentive report or con-
sume other than the optimal demand d�

i , and our proposed
game-theoretic scheme is incentive compatible.
From the above discussions, we can see that, with the

proposed incentive compatible scheme, customers aremoti-
vated to report and consume the optimal demand to achieve
the maximal utility. Such an incentive compatible property
is mainly because of the use of the punishment term in (4).
Without the punishment, customers may not report and
consume the optimal demand. In Fig. 5, we show the cus-
tomer’s utility versus the reported demand and real-power
consumption (d̂i , di ) by assuming that there is no punish-
ment term in the utility function, i.e., the cost function is
defined as pr di . As shown in Fig. 5, we can see that for any
given d̂i , the utility is maximized when di = d�

i . However,
the utility function is independent from d̂i , i.e., the utility
function is constant in terms of d̂i . In such a case, customers
have no incentive to report true optimal demand since their
utility functions will not be affected nomatter what demand
they report to the power substation. Therefore, it is very
important for us to involve the punishment term in the cost
function as in (4).
We then evaluate the performance of the proposed

dynamic pricing algorithm in Fig. 6. Fig. 6(a) shows the
total demand from customers versus time when the tar-
get total demand remains constant over time. We can see
that with the proposed dynamic pricing algorithm, the total
demand from customers quickly converges to the target
total demand with the difference between the total demand
and the target demand<1% of the target demand. Fig. 6(b)
illustrates the response time of the dynamic pricing sub-
ject to sudden change of target demand. We can see from
Fig. 6(b) that the proposed algorithm can quickly respond
to the change of target demand through adjusting the price
accordingly, which fully demonstrate the efficiency and
effectiveness of the proposed dynamic pricing algorithm.
Since the proposed game-theoretic scheme is incentive

compatible, customers aremotivated to report and consume
their optimal demands to achieve best utilities. In such a
case, the real consumption of the customer should be the
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same as the reported demand. Nevertheless, in some sce-
narios, customers’ consumptions may be different from the
reported demands. In Fig. 7, we evaluate the effect of cus-
tomers’ deviation on the total demand. We assume that
there is a portion of customers deviating from their reported
demands. The customer who deviates will consume (1 + ε)

times of the reported demand, i.e., di = (1 + ε)d̂i , where
ε satisfies Gaussian distribution with zero mean and 0.2
variance. From Fig. 7, we can see that even with 25 of
customers deviating from the reported demands, the actual
total consumption is still close to the aggregate reported
demand. Therefore, the proposed scheme is very robust to
the customers’ deviation.
In the last simulation, we compare our dynamic pricing

algorithm with the constant pricing algorithm. We obtain
the hourly total consumption of CAISO on October 31, 2011
from [31] and generate the 5-min-based total consumption
by interpolating the hourly data. Since the day-ahead price
of CAISO onOctober 31, 2011 is around $30, we assume that
the real total consumption is the outcome of the constant
pricing scheme and use the interpolated data to train the
parametersW and Q in (16) and the AR coefficient in (18).
As shown in Fig. 8, the total demand using constant pric-
ing scheme (blue dot curve) matches well with the real total
consumption of CAISO (pink dash-dot curve), which in
some senses validates the utility function and the AR mod-
eling. Nevertheless, the constant pricing algorithm cannot
adapt well to the change of the target demand (red dash
curve), which may lead to power outage or power ineffi-
ciency. On the other hand, with our proposed algorithm,
the aggregate demand closely follows the target demand.
Moreover, since the aggregate reported demand is an accu-
rate estimate of the real consumption and is known ahead
of time, the power substation can generate the correspond-
ing amount of power and thus greatly improve the system
efficiency and reduce the risk of outage.

V . CONCLUS IONS

In this paper, we have proposed a game-theoretic demand
response scheme that can transform the difficult and
complex centralized demand forecasting problem into an
easy demand reporting mechanism. Such a game-theoretic
scheme is shown to be incentive compatible which can
enforce the selfish customers to report and consume their
true optimal demands. Moreover, the proposed scheme
leads to the desired solution from both system designer’s
and customers’ perspective since the solution is not only
social welfare maximizing but also proportionally fair in
terms of utility function. Furthermore, we have proposed a
simple dynamic pricing algorithm for the power substation
to effectively control the total demand from customers to
meet a target demand curve. With the proposed algorithm,
the power substation can obtain an accurate estimate of the
real consumption ahead of time and generate the corre-
sponding amount of power, and thus greatly improve the
system efficiency and reduce the risk of outage.
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