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C
ontent sharing  and distribution over social net-
works is more popular now than ever before—we 
download music from Napster [1], share our images 
on Flickr [2], view user-created video on YouTube 
[3], and watch peer-to-peer (P2P) television using 

Coolstreaming [4], PPLive [5] and PPStream [6]. Within these 
social networks, users share, exchange, and compete for scarce 
resources, and thus influence each other’s decision and perfor-
mance. Therefore, to provide fundamental guidelines for better 
system design, it is important to analyze the users’ behaviors 
and interactions in a social network, i.e., how users interact 
with and respond to each other. 

In a social network, users are intelligent and have the abili-
ty to observe, learn, and make intelligent decisions. Since 
users usually belong to different authorities and pursue differ-
ent goals, they will choose the strategies that can maximize 
their own payoffs. In such a case, traditional centralized opti-
mization-based approaches are no longer suited since they 
only consider the efficiency of the whole system while they 
totally ignore the notion of fairness among users, which is an 
even more important issue in a social network. To better 
design the system, not only the efficiency issue from the per-
spective of a system designer but also the fairness issue from 
the perspective of a user should be taken into account. 
Moreover, since users in a social network are rational and thus 
naturally selfish [7], they tend to overclaim what they may 
need and will not truly report their private information if 
cheating can improve their payoffs. Therefore, enforcing 
truth-telling is crucial in a social network. 

From the above discussions, we can see that the behavior 
dynamics among users in a social network are very complex. To 
understand the users’ complex behavior dynamics and thus lead 
to a better system design, game theory is a powerful mathemati-
cal tool that analyzes the strategic interactions among multiple 
decision makers [8]–[12]. It has been developed for understand-
ing cooperation and conflict between individuals in many fields 
such as economics, politics, business, social sciences, and 
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 biology. Thus, game theory is ideal and essential for studying, 
analyzing, and modeling the users’ behaviors and interactions 
in social networking. Recently, it has drawn great attention in 
cognitive networking [13]–[16] and multimedia signal process-
ing [17]. In this article, we will illustrate how game theory can 
be used to model users’ behaviors in various social networks 
and analyze the corresponding equilibria. 

RELATED WORKS ON SOCIAL NETWORKS
A social network is a social structure made of individuals and/or 
organizations called “nodes,” which are connected with each 
other by certain types of interdependency, such as friendship, 
kinship, financial exchange, conflict, and trade. Many methodol-
ogies have been studied to formulate the relationships among 
members at all scales, from interpersonal to international, and 
social network analysis becomes a popular topic in sociology, 
economics, information science, and many other disciplines. 

Most of the existing works on social networks fall into the 
following three categories [18]: 1) social network properties, 
2) social network models, and 3) social network dynamics and 
evolution. In [19] and [20], the authors showed that the vertex 
connectivities in many large networks follow a scale-free pow-
er-law distribution. Such a property is found to be a conse-
quence of two generic mechanisms: 1) networks expand 
continuously by the addition of new vertices and 2) new verti-
ces attach preferentially to sites that are already well connect-
ed. Another important property of social networks is the 
“small-world” phenomenon. As pointed out in [21] and [22], 
most real-world networks exhibit relatively small diameter, 
i.e., the networks are highly clustered. 

Besides the study of the social network properties, there are 
quite a lot of work on building models for social networks. The 
simplest model is the random graph model introduced in [23], 
where given a number of nodes, each pair of nodes has an identical 
and independent probability of being joined by an edge. However, 
since it fails to match the real-world social network properties, e.g., 
it does not produce power law degree distributions for the vertex 
connectivities, this model is not realistic. A better model that can 
produce power law degree distributions is the preferential attach-
ment [24]–[26], where when a new node u arrives to the network, 
the probability of connecting to a node v is proportional to the 
degree of v. Another model that can also produce power law degree 
distributions is the copying model [27], where a new node joins 
the networks by uniformly creating random edges or first random 
choosing a node u and then linking to u’ s neighbors. 

Another important research topic in the field of social net-
work is the study of social network dynamics and evolution, 
where the researchers study how the social network evolve and 
how information spread over the networks. Many studies have 
investigated the dynamics and evolution of different networks, 
e.g., trendsetters selecting in viral marketing [28], inoculation 
targets identification in epidemiology [29], and studying trends 
in blogosphere [30]. 

All aforementioned works study and analyze the social net-
works at the macroeconomic level, i.e., from a system designer’s 

perspective. However, since users may only care about their own 
objectives and their decisions greatly affect the evolution and per-
formance of the social networks, social network analysis at the 
microeconomic level, i.e., from the users’ perspective, is also very 
important and has drawn great attention recently. In [31], Braun 
and Gautschi proposed to use the generalized Nash bargaining 
solution (NBS) to analyze how users in the exchange networks 
split some fixed amount of money, and their resulting predictions 
for profit splits match closely with the experimental results 
obtained by Cook and Yamagishi [32]. Later in [33], Kleinberg 
and Tardos extended the NBS to the general graph and proposed 
an efficient way to find the equilibrium. To verify these theoreti-
cal predictions, a large-scale behavioral experiment is conducted 
by Chakraborty et al. in [34]. To discover the most influential 
nodes in a social network, Narayanam and Narahari proposed to 
use the Shapley value of the underlying cooperative game [35]. 

In this article, we will study and analyze the social networks 
from the users’ perspective by modeling users’ behaviors and 
interactions using game theory. Since users in different social 
networks may have different types of interdependency, to effec-
tively model the users’ behaviors and interactions, different 
game models for different social networks should be employed. 
The two most common types of users’ interdependency in social 
networks are competition and cooperation, which leads to non-
cooperative social networks and cooperative social networks, 
respectively. In cooperative social networks, since users are 
rational thus naturally selfish, they will not cooperate with oth-
ers unless cooperation can improve their own performance. 
Therefore, one important issue in cooperative social networks is 
cooperation stimulation. Without loss of generality, in this arti-
cle, we will illustrate how to use game theory to analyze and 
model users’ behaviors in social networks by discussing the fol-
lowing three general scenarios: 

 ■ In the first scenario, we consider a noncooperative social 
network where users in the social network compete for the 
same resource. We use multiuser rate allocation game [36] as 
an example for this scenario; details will be described in the 
section “A Noncooperative Social Network: Multiuser Rate 
Allocation.” 

 ■ In the second scenario, we consider a cooperative social 
network where users in the social network cooperate with 
each other to achieve better performance. As discussed in the 
section “A Cooperative Social Network: Peer-To-Peer 
Streaming,” we will use cooperative P2P streaming game [37] 
as an example. 

 ■ In the third scenario, we consider how to use the indirect 
reciprocity game to stimulate cooperation among users. In 
the section “Cooperation Stimulation: Indirect Reciprocity 
Games,” we will use the packet forwarding game [38] to illus-
trate this scenario.

A NONCOOPERATIVE SOCIAL NETWORK: 
MULTIUSER RATE ALLOCATION
In a noncooperative social network, users compete with each 
other for the same resource. Due to selfish nature, users tend to 
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claim as much resource as possible to maximize their own objec-
tive. Therefore, one important issue in a noncooperative social 
network is how to allocate the resource among different users. 
In this section, we use the multiuser rate allocation game as an 
example and discuss how to use game theory to model a nonco-
operative social network. As shown in Figure 1, in the multiuser 
rate allocation problem, there is a controller, N transmitters, u1, 
u2, c, uN, and N receivers, r1, r2, c, rN. Transmitter ui trans-
mits the video sequence vi to the corresponding receiver ri 
through a channel/link that is shared by other transmitters 
u1, c, ui21, ui11, c, uN. Since the channel has a limited 
bandwidth, it may not be able to satisfy the bandwidth require-
ments for all transmitters. The role of the controller is to allo-
cate the channel bandwidth to u1, u2, c, uN. So, the question 
of how the controller allocates the bandwidth to the transmitters 
in an efficient and fair way is asked. In essence, the transmitters 
form a noncooperative social network since they compete intelli-
gently for the same channel bandwidth. 

The simplest multiuser rate allocation is the constant bit-rate 
allocation (CBR), where the available network bandwidth is 
equally assigned to each user. A major problem of CBR is that it 
does not consider the variable bit-rate characteristics of the 
video sequences. One way to overcome this disadvantage is to 
optimize a global objective function that involves the character-
istics of all the video sequences using conventional optimization 
methods [39], e.g., to maximize the weighted sum of the peak 
signal-to-noise ratios (PSNRs) of the transmitters. However, the 
solution to the optimization-based methods is highly related to 
the selection of the weights. In the literature, the weights are 
usually heuristically determined, e.g., the weights are set to be 
uniform [40]. Moreover, such a formulation can only address the 
efficiency issue, e.g., how to maximize the weighted sum of the 
PSNRs. As such, the fairness issue, which is an important prob-
lem for multiuser rate allocation, has been generally ignored. 

To efficiently and fairly allocate the bandwidth, we can 
resort to game theory to analyze this multiuser rate allocation 
social network. In this game, players/users are the transmit-
ters who compete with each other for the available network 
bandwidth. By successfully transmitting the video sequences, 
users can receive a certain gain that is determined by the qual-
ity of the transmitted video. According to the human visual 
system (HVS) model, the quality difference in the low PSNR 
region is easier to be distinguished than that in the high PSNR 
region. With such an intuition, the gain function can be 
defined as the logarithm function of PSNR. Note that the rea-
son of using ln 1 . 2  function is that ln 1 . 2  is a monotonically 
increasing function in its argument and its second order 
derivative is negative, due to which a certain increase in the 
low PSNR region will lead to a more significant gain than that 
in the high PSNR region. Other functions that have similar 
properties can also be used. While receiving a gain for trans-
mitting video sequence, users, on the other hand, need to pay 
a certain cost for using the bandwidth for transmission. In the 
literature, due to the simplicity and efficiency, linear pricing is 
widely used [41]–[43]. Moreover, since the transmitter does 

not differentiate among all the bandwidth, it is reasonable to 
assume that the price of the bandwidth is constant, i.e., the 
cost function is linear. In such a case, the utility function of 
user ui can be written as 

 Ui 1Ri 2 5 ln 1PSNRi 2 2 aRi5 ln 1gi1 bi 
Ri 2 2 aRi,  (1)

where Ri is the bit rate of the video sequence transmitted by 
user ui, a is a parameter controlling the balance between the 
gain and cost, which can be treated as the unit price of the 
bandwidth, and gi and bi are two parameters of the distortion-
rate model PSNRi5gi1 bi Ri. 

Since users are rational thus naturally selfish [7], they try to 
maximize their utilities subject to the individual constraint that 
the rate should be bounded and the global constraint that the 
sum of the users’ bit rate does not exceed the available band-
width. Therefore, the game can be formulated as 

 max
Ri    

Ui 1Ri 2 5 ln 1gi1 bi Ri 2 2 aRi , 

 s.t.   Ri  
min # Ri # Ri

max,   4i5 1, 2, c, N, a
N

i51
Ri # R,  (2)

where Ri
min and Ri

max are the minimal and maximal rate con-
straints respectively, and R is the total available network 
bandwidth. 

Through some analysis [36], one can find that the rate allo-
cation game in (2) has a unique efficient Nash equilibrium (NE) 
when the unit price a is carefully chosen such that the total opti-
mal rate from all users meets the available bandwidth con-
straint. Moreover, such an efficient NE is proved to be 
proportionally fair in terms of both utility and PSNR [36]. 

RELATION TO THE TRADITIONAL 
INFORMATION-THEORY-BASED APPROACH
While the task of rate allocation for a single user is to find the 
best tradeoff point on the rate-distortion curve, the traditional 
information-theory (IT)-based multiuser rate allocation 
approach can be seen as first constructing an overall rate-distor-
tion curve by combining rate-distortion curves of all users, and 
then finding the best tradeoff point on the joint rate-distortion 
curve. However, it is difficult to construct the overall rate-dis-
tortion curve from all users’ rate-distortion curve. The approach 
to maximize the weighted sum of PSNRs is one possible way, 
but there is no notion of fairness. Furthermore, the weights are 
hard to determine and are usually defined heuristically. 
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[FIG1] System model for multiuser rate allocation.
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Instead of focusing on finding a good way of constructing 
the overall rate-distortion curve, the discussed game-theoretic 
framework considers each user’s rate-distortion tradeoff in the 
utility function. Then, the notion of proportional fairness is 
introduced to balance the rate allocation among different users 
and to make sure that the total rate constraint is satisfied. 
Moreover, it can be theoretically proved that the traditional 
approach that maximizes the weighted sum of PSNRs is actually 
a special case of the game-theoretic framework by choosing the 
utility function as an exponential function of PSNR [36] 

 Ui 1Ri 2 5 e wi PSNRi. (3)

Note that there are mainly three drawbacks of this kind of 
utility function. First, the parameters wi are usually heuristical-
ly determined, i.e., the IT-based approach is inherently heuristic 
from the beginning of the problem formulation. Second, since 
no cost in video transmission is considered, selfish users may 
become too greedy and want to claim as much bit rate as possi-
ble, which is not good to the system [44]. Third, since the gain 
is defined as an exponential function of the PSNR, a certain 
increase of the bit rate in the low PSNR region will lead to a less 
significant gain than that in the high PSNR region. This contra-
dicts with the HVS model since the quality difference in the low 
PSNR region is easier to be distinguished than that in the high 
PSNR region. All these drawbacks are not obvious from the 
information theory point of view, if not considered from a social 
networking perspective. 

DISTRIBUTED CHEAT-PROOF OPTIMAL 
RATE ALLOCATION USING CLOCK AUCTION
To obtain the NE of the game in (2), there are two possible 
approaches: the centralized approach and the distributed 
approach. For the centralized approach, the controller knows 
exactly all of the private information of each user, i.e., gi, bi, 
Ri

min, and Ri
max. Then, the controller can find the NE in a col-

lective way. However, in general, the users can be geographi-
cally distributed in many places, it is therefore not feasible for 
the controller to collect all of the private information of each 
user. Moreover, since the users are selfish, they tend to over-
claim what they may need, which means that they will not 
truly report their private information if cheating can improve 
their utilities [45]. To overcome this problem, we can develop 
a distributed cheat-proof rate allocation scheme using alterna-
tive ascending clock auction [46]. In the following, we briefly 
describe the scheme, while interested readers can find the 
detailed proof of the cheat-proof property shown in [36]. 

The rate allocation scheme is described as follows. Before the 
auction, the controller sets up a step size d . 0, clock index 
t5 0, and initializes a with a small value a0. At the beginning of 
clock t, the controller first announces at to all the users. Then, 
each user submits his/her optimal demand to the controller. 
After collecting all the demands, the controller compares the 
total demand Rtotal with the available bandwidth R. If Rtotal . R, 
i.e., the total demand exceeds the supply, the auction is not con-
cluded. The controller continues the auction and goes to next 

clock t1 1 with an increased a computed by at115 at1d. 
Moreover, the controller computes the cumulative clinch, 
which is the amount of bit rate that a user is guaranteed to win 
at current clock given by Ci

t5max 10, R2 g j2 i Rj
t 2 . 

On the other hand, if Rtotal # R, then the supply can meet 
all users’ demands and the auction is concluded. Let the final 
clock index be L. As a increases discretely, we may have 
Rtotal , R and do not fully utilize the bandwidth. To make sure 
that Rtotal5 R, we introduce the proportional rationing [46], 
and the final cumulative clinch of ui  is given by 
Ci

L5 Ri
L1 1Ri

L212 Ri
L2/ 1g i Ri

L212 g i Ri
L2 3R2 g iRi

L 4. 
Finally, the rate allocated to ui is Ri

w5 Ci
L. The utility of ui 

is obtained as 

 Ui
w5 ln 1gi1 bi Ri

w 2 2 Pi
w,  (4)

where Pi
w5 Ci

0a01 gL
t51 a

t 1Ci
t2 Ci

t21 2  is the payment from 
user ui. 

From the above discussion, we can see that the amount of 
bit rate allocated to a user is determined by what other users 
report rather than what the user reports. Therefore, users has 
no incentive to cheat, i.e., the rate allocation scheme discussed 
above is cheat proof. 

EXPERIMENTAL RESULTS
To evaluate the proposed multiuser rate allocation game, we 
conduct experiments on real video data. We compare the pro-
posed method with three approaches: the absolute fairness in 
rate (AFR), which equally divides the available bandwidth to all 
the users, the absolute fairness in distortion (AFD), which 
minimizes the maximal distortion of all the users, and the 
approach maximizing the sum of the PSNRs (MSPSNR), i.e., 
the traditional optimization-based approach with uniform 
weights. Notice that for AFR, AFD, and MSPSNR, the allocated 
rate should be within 3Ri

min, Ri
max 4. Otherwise, we set it to be 

Ri
min or Ri

max and reallocate the rest of the rate for other users. 
The allocated bit rate for each video sequence using different 

methods are shown in Figure 2. From this figure, we can see that 
AFR equally allocates the bandwidth to each users if the allocated 
bit rate is within 3Ri

min, R i
max 4. AFD tries to allocate more bit rate 

to the video sequence that has more complex motion and/or 
scene (a smaller bw) to preserve constant quality among different 
users. On the contrary, MSPSNR favors the video sequence that 
has a larger bw since allocating more bit rate to the sequence 
with a larger bw leads to a greater increase in the sum of the 
PSNRs. However, with MSPSNR, the sequence with bi

w will not 
be allocated more bit rate than Ri

min if there is a sequence with 
bj
w . bi

w who has not been allocated its maximal rate require-
ment Rj

max yet. Specifically, the rate controller will first allocate 
each user with Ri

min. Then, the remaining rates will be first allo-
cated to Akiyo until the bit rate of Akiyo achieves its maximal 
requirement. If there are still some unused rates, then car phone 
will be satisfied first. The bit rate of football with the smallest bw 
stays at its minimal requirement until all other sequences with 
higher bw have achieved their maximal rate requirements. 
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Obviously, this is not fair to the users who  transmit the sequences 
with smaller bw. By taking the proportional fairness into account, 
the proposed method can avoid this disadvantage and balance the 
rate allocation between the sequences with a larger bw and a 
smaller bw. For example, as shown in Figure 2, when the total 
available network bandwidth R increases from 3,000 kb/s to 4,000 
kb/s, both the bit rate of mobile and football increase. This is 
because the proposed method with the proportional fairness crite-
rion aims at maximizing the product of the utility function Ui, 
and keeping a certain balance between the sequences with a larg-
er bw and a smaller bw leads to an increase in the product. 

Then, we evaluate the cheat-proof property of different 
methods. We assume that u6 who transmits mobile sequence 
will cheat while other users are honest. In AFD, AFR, and 
MSPSNR, u6 reports a false b| to the controller by scaling the 
original b with a factor k, i.e., b|5 kb. In the proposed meth-
od, at each clock t of the auction, u6 uses b| to generate the 
“optimal” demand R6

| t and reports R6
| t to the controller. As 

shown in Figure 3(a), the PSNR performance of AFR is inde-
pendent of the scale factor k. This is because AFR does not 
care about b and just equally allocates the bandwidth to each 

user if the allocated bit rate is within 3Ri
min, Ri

max 4. The PSNR 
performance of AFD decreases as k increases. This is because 
AFD tries to allocate more bit rate to the video sequence with 
a smaller b to preserve constant quality among different 
users. Therefore, with AFD, all users tend to report a smaller 
b to the controller to obtain a better PSNR performance. On 
the contrary, the PSNR performance of MSPSNR is an increas-
ing piecewise constant function in terms of k. This is because, 
with MSPSNR, the sequence with bi will not be allocated more 
bit rate than Ri

min if there is a sequence with bj . bi who has 
not been allocated its maximal rate requirement Rj

max yet. To 
be allocated more rate and obtain a higher PSNR, u6 should 
increase k until at least kb6 . bj, where bj5minl 1 bl . b6 2 . 
Therefore, with MSPSNR, all users tend to report a larger b to 
the controller to obtain a better PSNR performance. However, 
with the proposed method, as shown in Figure 3(b), reporting 
the optimal demand generated by the true b (k5 1) will lead 
to the best utility. Any deviation will lead to a loss in terms of 
utility, which means that the proposed method is cheat proof. 
Therefore, the proposed method ensures all users will be hon-
est about their private information. 
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[FIG2] Allocated rates for Akiyo, car phone, Coast Guard, foreman, table, football, and mobile using different methods.
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A COOPERATIVE SOCIAL NETWORK: 
PEER-TO-PEER STREAMING
In a cooperative social network, users cooperate with each other 
to achieve better performance through contributing their own 
resource. However, due to the selfish nature, users tend to be 
free-riders and enjoy other users’ resource. Therefore, one key 
issue in a cooperative social network is how to cooperate, i.e., 
who should contribute the resource and how much should they 
contribute? In this section, we use the cooperative P2P stream-
ing game as an example and discuss how to use game theory to 
model a cooperative social network. As shown in Figure 4, in 
the cooperative P2P streaming problem, there is a set of group 
peers (three in this example) who want to view a real-time video 
streaming simultaneously. Within a group, every peer can 
choose either to be an agent or a normal peer. If the peer serves 
as an agent, he/she not only needs to act as a client to download 
video data from the agents in other groups, but also has to act 

as a server to upload video streams for both the agents in other 
groups and the peers in the same group. However, if the peer 
chooses not to be an agent, he/she only needs to download/
upload data from/to the peers in the same group. Without loss 
of generality, we assume that the upload and download band-
width within the group is larger than those cross groups. In 
such a case, peers tend to be a normal peer due to the selfish 
nature. Nevertheless, the normal peers, on the other hand, take 
a risk of receiving degraded streaming performance since there 
may not be sufficient agents to download data from other 
groups. To achieve good streaming performance, a question 
need to be addressed: Given a group of peers, which peers 
should serve as agents? Obviously, group peers form a coopera-
tive social network since they cooperate with each other to 
achieve better streaming performance. 

Since peers’ behaviors are highly dynamic, they may join 
in or leave the P2P network at any time. In such a case, a 
centralized approach may not be practical to determine the 
agents. Moreover, since all peers are selfish, they will cheat if 
cheating can improve their payoffs, which means that all 
peers are uncertain of other peers’ actions and utilities. In 
such a case, to improve their utilities, peers will try different 
strategies in every play and learn from the strategic interac-
tions using the methodology of understanding-by-building, 
which leads to the concept of “evolutionary game” [37], [47]. 
During the process, the percentage of peers using a certain 
pure strategy may change. Such a population evolution can 
be modeled by replicator dynamics [47]. Specifically, let xi, ai

 
stand for the probability of peer ui using pure strategy 
ai [ A, where A5 5A, N6 is the set of pure strategies includ-
ing being an agent (A) and not being an agent (N). By repli-
cator dynamics, the evolution dynamics of xi, ai

 are given by 
the following differential equation 

 x
#
i, ai
5h 3Ui 1ai, x2i 2 2 Ui 1xi, ai

24  xi, ai
,  (5)
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where Ui 1ai, x2i 2  is the average payoff of peer ui using pure 
strategy ai, Ui 1xi, ai

2  is the average payoff of peer ui using mixed 
strategy xi, ai

, and h is a positive scale factor. 
From (5), we can see that if adopting pure strategy ai 

can lead to a higher payoff than the average level, the prob-
ability of a peer using strategy ai will grow and the growth 
rate x

#
i, ai /xi, ai

 is proportional to the difference between the 
average payoff of using pure strategy ai and the average pay-
off of using mixed strategy xi, ai

. The stable solution to the 
replicator dynamics equation is the evolutionarily stable 
strategy (ESS), which is “a strategy such that, if all mem-
bers of the population adopt it, then no mutant strategy 
could invade the population under the influence of natural 
selection” [47]. 

ANALYSIS OF THE GAME FOR 
A HOMOGENEOUS GROUP
In a homogeneous group, let the cost of a peer serving as an 
agent be C. If the total download rate yk (k is the number of 
agents) is not smaller than the source rate r, then the group 
peers can have a real-time streaming, and all the group peers 
can obtain a certain gain G. Otherwise, there will be some 
delay, where we assume the gain is zero. Therefore, the aver-
age payoff of a peer if he/she chooses to be an agent can be 
computed by 

 U 1A, x 2 5 a
N21

i50
aN2 1

i
b xi 112 x 2N212i 3Pr 1 yi11 $ r 2G2 C 4,

 (6)

where x is the probability of a peer being an agent, and 
QN2 1

i
R x i 112 x 2 N212i is the probability that there are i 

agents out of N2 1 other peers. 
If a peer chooses not to be an agent, then there is no cost. 

Therefore, the average payoff of a normal peer can be com-
puted by 

 U 1N, x 2 5 a
N21

i51
aN2 1

i
b xi 112 x 2N212i Pr 1 yi $ r 2G. (7)

At equilibrium xw, no player will deviate from the optimal 
strategy. According to (5)–(7), there are three possible equi-
libria xw5 0, 1, or the solutions to UA 1x 2 5 UN 1x 2 . By exam-
ining the sufficient condition for each ESS candidate, we 
reach the following three conclusions with the detailed 
proofs given in [37]. First, when Pr 1y1 $ r 2G # C, that is, 
when the cost to serve as an agent is larger than the gain 
of one agent system, the equilibrium is xw5 0 and 
no one will volunteer to be an agent. Second, when 
Pr 1 yN $ r 2G2 Pr 1 yN21 $ r 2G $ C, that is, when the cost to 
serve as an agent is smaller than the additional gain receiv-
ing from the 1N2 1 2 -agent system to the N-agent system, 
then xw5 1 and all users become agents to ensure they can 
receive the realtime video streaming. Third, if xw satisfies 
U 1A, x 2 5 U 1N, x 2 , that is, with xw, the average payoff keeps 
the same no matter peers choose to be an agent or a normal 
peer, then xw is an ESS. 

ANALYSIS OF THE GAME FOR 
A HETEROGENEOUS GROUP
In a heterogeneous group, the costs of the peers acting as agents 
are different, which lead to different utility functions for different 
peers. In such a case, it is generally very difficult to represent 
average payoff in a compact form. Therefore, in the following, we 
first analyze a two-player game to gain some insight, and then 
generalize the observations to the multiplayer game. 

Let x1 and x2 be the probability of users u1 and u2 being an 
agent, respectively. Let B15 Pr 1 y1 $ r 2G be the gain of one 
agent system and B25 Pr 1 y2 $ r 2G be the gain of two agents 
system. Then, the payoff matrix of u1 and u2 can be written as in 
Table 1. Following the same analysis as in the homogeneous 
case, this game has five possible equlibria, which are 10, 0 2 , 
10, 1 2 , 11, 0 2 , 11, 1 2 , and the mixed strategy equilibrium 
1 1B12 C2 /2B12 B2 2 , 1B12 C1/2B12 B2 2 2 . Then, by examining 
the sufficient condition for each ESS candidate, we reach the 
following four conclusions with the detailed proofs shown in 
[37]. First, if B22 B1 . C1 and B22 B1 . C2, i.e., the addition-
al gain from a one-agent system to a two-agent system is larger 
than both users’ cost of serving as an agent, then there is a 
unique ESS 11, 1 2 , where both u1 and u2 converge to be agents. 
Second, if B22 B1 . C1 and B22 B1 , C2, i.e, the additional 
gain from a one-agent system to a two-agent system is larger 
than u1’s cost but smaller than u2’s cost, then there is a unique 
ESS 11, 0 2 , where u1 converges to be an agent and u2 converges 
to be a free-rider. Third, if B22 B1 , C1 and B22 B1 . C2, i.e, 
the additional gain from one agent system to two-agent system 
is smaller than u1’s cost but larger than u2’s cost, then there is a 
unique ESS 10, 1 2 , where u2 converges to be an agent and u1 
converges to be a free-rider. Finally, if B22 B1 , C1 and 
B22 B1 , C2, i.e., the additional gain from a one-agent system 
to a two-agent system is smaller than both users’ costs, then 
there are two possible ESSs 10, 1 2  and 11, 0 2 , where the con-
verged strategy profiles depends on the initial strategy profiles. 

From the above analysis, we can see that the user with a 
lower cost tends to be an agent while the user with a higher cost 
tends to be a free-rider, which means that the user with a higher 
cost tends to take advantage of the user with a lower cost. Such 
an observation can be extended to a multiplayer game. If there 
are more than two users in the game, the strategy of the users 
with higher costs will converge to normal peers with a greater 
probability. The users with lower costs tend to be agents since 
they suffer relatively heavier losses if no one serves as an agent. 

SIMULATION RESULTS
We compare the discussed the ESS-based approach, denoted 
as ESS-D, with the traditional P2P noncooperation method, 

[TABLE 1] UTILITY TABLE OF A TWO-PLAYER GAME.

“A“ “N“ 

“A” 1B22 C1, B22 C2 2  1B12 C1, B1 2
“N” 1B1, B12 C2 2  10, 0 2   
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denoted as Non-Coop, where each peer acts as an individual 
and randomly selects some peers for downloading video 
streams. We first evaluate the convergence property of the 
ESS-D. In Figure 5(a), we show the replicator dynamic of the 
cooperative streaming game with homogeneous peers, where 
C5 0.1 and r5 500. We can see that starting from a high ini-
tial value, all peers gradually reduce their probabilities of 
being an agent since being a free-rider more often can bring a 
higher payoff. However, since too low a probability of being an 
agent increases the chance of having no peer be an agent, the 
probability of being an agent will finally converge to a certain 
value that is determined by the number of peers. 

In Figure 5(b), we show the replicator dynamic of the 
cooperative streaming game with 20 heterogeneous peers, 
where r5 500 and the cost Ci is randomly chosen from 
30.1, 0.3 4. We further assume that Ci is monotonically increas-
ing in i, that is, u1 has the lowest cost and u20 has the highest 
cost. From Figure 5(b), we can see that the peers with lower 
costs ( u1, u2, and u3 in this simulation) converge to be agents 
while the peers with higher costs (u42 u20 in this simulation) 
converge to be free-riders. This observation coincides with our 
analysis, which is “the peers with lower costs tend to be 
agents since they suffer relatively higher losses if no one 
serves as an agent.” 

Then, we compare the performance of Non-Coop and 
ESS-D in terms of the probability of real-time streaming, 
which is defined as the probability that the total download rate 
is greater than the source rate. The simulation results are 
shown in Figure 5(c). We can see that with cooperation, the 
probability of real-time streaming can be significantly 
improved especially at the high source rate region. We also 
find that at the high source rate region, the probability of real-
time streaming increases as N  increases. 

COOPERATION STIMULATION: 
INDIRECT RECIPROCITY GAMES
In the previous section, we have discussed how users in a coop-
erative social network should cooperate with each other to 
achieve better performance. Another important issue in a coop-
erative social network is cooperation stimulation, since users 
will not cooperate with others unless cooperation can improve 
their own performance. In this section, we will discuss how to 
use indirect reciprocity games to stimulate cooperation in a 
cooperative social network. As shown in Figure 6, let us consid-
er a cognitive network with a sufficiently large population of 
nodes. Due to mobility and/or changes of environment, short 
interactions rather than long-lasting associations between 
anonymous partners are dominant. At each time slot, a fraction 
of players is chosen from the population to form pairs to for-
ward packets. Within each pair, one player acts as a transmitter 
and the other player as a receiver. The receiver can obtain a gain 
g at a cost c to the transmitter. If both players cooperate with 
each other and forward one packet to the other player, both 
players receive g2 c, which is better than what they would 
obtain by both defecting, particularly 0. However, a unilateral 
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defector would earn g, which is the highest payoff, and the 
exploited cooperator would pay the cost c without receiving any 
benefit. The payoff structure yields an instance of the well-
known prisoner’s dilemma game and the unique Nash equilibri-
um (NE) is defecting, i.e., both players will not forward packet 
to the other player. Moreover, with backward deduction [48], 
the NE remains the same even the game is played a finite num-
ber of times. Thus, the question now is how to stimulate coop-
eration under such a scenario. 

The noncooperative optimal strategy in such a scenario is 
mainly due to the use of direct reciprocity, where the action of a 
transmitter taking toward a receiver is purely determined by the 
history of how the receiver treats him/her. Obviously, under 
such a scenario, all transmitters have no incentive to forward 
packets since their behaviors will not be evaluated by other 
players except their corresponding receivers. To stimulate the 
cooperation under such a scenario, we use the indirect reciproc-
ity game modeling, where the essential concept is “I help you 
not because you have helped me, but because you have helped 
others.” The origin of the concept of indirect reciprocity is 
Alexander’s book in 1987 [49]. Recently, the concept of indirect 
reciprocity has drawn a lot of attention in the area of social sci-
ence and evolutionary biology [50], [51]. Here, we discuss how 
to use indirect reciprocity games to stimulate cooperation in a 
cooperative social network. A key concept in indirect reciprocity 
game is the establishment of the notion of reputation, which is 
the evaluation of the history of the players’ action. Here, to sim-
plify the analysis, we assume that the reputation is quantized to 
L1 1 levels with “0” being the worst reputation and “L” being 
the best reputation, i.e., the reputation set can be represented as 
T5 50, 1, c, L6. During each interaction, the transmitter 
determines his action, i.e., how many packets to forward to the 
receiver, based on the receiver’s and his/her own reputations. 
After each interaction, the reputation of the receiver remains 
the same, while the reputation of the transmitter is first updat-
ed by the receiver and the observers according to the social 
norm, and then propagated to the whole population through a 
noisy gossip channel. 

An action rule, a, is an action table of the transmitter, 
where the ith row and jth column element ai, j stands for the 
number of packets the transmitter will forward based on his/
her own reputation i and the corresponding receiver’s reputa-
tion j. The optimal action rule, aw, should be the one that 
maximizes the payoff function as discussed later. 

A social norm, Q, is a matrix used for updating the imme-
diate reputation of players, where the immediate reputation is 
the reputation that a transmitter can immediately obtain by 
taking an action. Each element Qi, j in the social norm stands 
for the immediate reputation assigned to a transmitter who 
has taken the action i toward a receiver whose reputation is j. 
Without loss of generality, we assume that all players in the 
population share the same norm. Although the immediate 
reputation is only determined by the action of the transmitter 
and the reputation of the receiver, we can see from the later 
discussion, the final reputation updating rule also involves the 

reputation of the transmitter. Based on the intuition that for-
warding packets to the receiver with good reputation or deny-
ing forwarding packets to the receiver with bad reputation 
should receive good reputation, the immediate reputation Qi, j 
is defined as Qi, j5 L2 |i2 j|. 

REPUTATION UPDATING POLICY
Since players monitor the social interactions within their 
group and help others establish the reputation of being a 
helpful player, one important step in indirect reciprocity 
game modeling is how to update reputation based on players’ 
actions. In this subsection, we present a reputation updating 
policy based on the action of the transmitter, the reputation 
of the transmitter and the reputation of the receiver. To cap-
ture not only the mean behavior of the transmitter’s reputa-
tion but also all likelihoods of the transmitter’s reputation 
that may be, we assign a reputation distribution for each 
player. Let d5 3d0, d1, c, dL 4T be a reputation distribution 
for a specific player. Then di stands for the likelihood of the 
player being assigned with reputation i. 

The reputation updating policy is shown in Figure 7. 
Suppose, at time index n, a transmitter with a reputation distri-
bution di

n is matched with a receiver with a reputation distribu-
tion d j

n. By taking a certain action, the transmitter is assigned 
with an immediate reputation d̂ i

n based on the social norm. 
Then, the receiver and the observers will update the transmit-
ter’s reputation distribution using a linear combination of the 
transmitter’s original and immediate reputations, where the 
weight l can be treated as a discounting factor of the past repu-
tation. Finally, the transmitter’s reputation is propagated 
among the population by the receiver and observers through a 
noisy gossip channel. 

In a simple example, we assume that the transmitter’s rep-
utation distribution is d i

n5 e i and the receiver’s reputation 
distribution is d j

n5 ej, where ei and ej are the standard basis 
vectors. Let ai, j be the action the transmitter takes toward the 
receiver. Then, the immediate reputation of the transmitter is 
eQai, j , j

. According to the reputation updating policy in Figure 7, 
after the transmission, the transmitter’s reputation distribu-
tion becomes 

 d|iS j5 PN 
alei1 112l 2eQai, j , j

b. (8)

Population

Observers

Transmitter Receiver

[FIG6] System model for cooperation stimulation.
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STATIONARY REPUTATION DISTRIBUTION
Let x5 3x0, x1, c, xL 4T stand for the reputation distribution of 
the entire population, where xi is the portion of the population 
that have the reputation i. Since every pair of transmitter and 
receiver is chosen from the population, given the transmitter 
with reputation i, the probability of matching with the receiver 
with reputation k is xk. After the transmission, the reputation of 
the transmitter is updated using the policy shown in Figure 7, 
which leads to a new reputation distribution of the entire popu-
lation. At the stationary state, the reputation distribution of the 
entire population remains constant during the updating pro-
cess, which means that the stationary reputation distribution 
xw is the solution to the following equation 

 PN 1lI1 112l 2PT 2xw5 xw,  (9)

with the ith row and jth column element of the matrix PT 
being defined as PT 1 j, i 2 5 g k : Qai, k

w , k5j xk. 

PAYOFF FUNCTION
Suppose that the cost of forwarding a packet is a constant, c, the 
total cost of the transmitter with reputation i taking action ai, j 
toward a receiver with reputation j is given by ai, j c. Similarly, if 
the gain of receiving a packet is a constant, g, the total gain of 
the receiver with reputation i can be computed by aj, i g. 

Let Wi, j denote the maximum payoff that a player, current-
ly having reputation i and being matched with a player with 
reputation j, can gain from this interaction to future. 
Obviously, if the player with reputation i serves as a transmit-
ter, by taking action ai, j, he will incur an immediate cost ai, j c 
and his reputation distribution will change from ei to d|iS j 
according to (8). Since his opponent in the next round is ran-
domly sampled from the population with a stationary reputa-
tion distribution xw, with probability d|iS j 1k 2xw 1 l 2 , the 
transmitter’s reputation becomes k and his opponent’s reputa-
tion is l. In such a case, the benefit the play can gain in the 
future with a discounting factor d is dg kg l d

|
iS j 1k 2xw 1 l 2Wk, l. 

On the other hand, if the player with reputation i serves as 
a receiver, he can obtain an immediate gain aj, i

w g when the 
corresponding transmitter takes the optimal action aj, i

w . As a 
receiver, the reputation will not change after the transmission. 
Since his opponent in the next round is randomly sampled 

from the population with a stationary reputation distribution 
xw, with probability xw 1 l 2 , the receiver’s reputation is i and his 
opponent’s reputation is l. In such a case, the benefit the play 
can gain in the future with a discounting factor d is 
dg l xl

wWi, l. 
Since the play acts either as a transmitter or as a receiver 

with equal probability 1/2 with each interaction, the Bellman 
equation which characterizes the optimality condition of Wi, j 
can be written as 

 Wi, j5max
ai, j  
c 1
2
a2ai,j

 
c1da

k
a

l
d|iS j 1k 2xw 1 l 2Wk, lb

 1
1
2
aaj, i

w
  g1da

l
xw 1 l 2Wi, lb d ,  (10)

and the optimal action ai, j
w  is the one that maximizes Wi, j 

 ai, j
w 5 arg max

ai, j

Wi, j5 arg max
ai, j

c 1
2
a2ai, j c

 1da
k
a

l
d
|

iS j 1k 2xw 1 l 2Wk, lb d . (11)

From (10) and (11), we can see that the problem of finding 
the optimal action rule is a Markov decision process (MDP), 
where the state is the reputation pair (i, j), the action is ai, j, 
the transition probability is determined by d|iS j and xw, and 
the reward is determined by c and g. Therefore, given the sta-
tionary reputation distribution, the optimal action can be 
found by solving (11) using dynamic programming. 

SIMULATION RESULTS
To verify the proposed algorithm, we simulate the packet for-
warding game. We study a fixed-size population, N5 1,000. 
Each new player receives a uniform initial reputation. Before 
any one elementary step of action updating, each individual 
has exactly 20 interactions with other randomly chosen indi-
viduals. Individuals act as transmitter and receiver on average 
ten times each. After each interaction, the reputation of the 
transmitter is updated according to the reputation updating 
policy shown in Figure 7. Then, the players choose their new 
action rules according to previous payoff history of the whole 
population. There are two possible action updating 
 algorithms: one is the Wright Fisher model [52], which is 

Social Norm Noisy Gossip
Channel

di  = [di 0, di 1, . . . , di L ]Tn n n n

dj  = [dj 0, dj 1, . . . , dj L ]Tn n n n

Q
n
di  

" n + 1
di  

(1 – λ)I

λI

PN

[FIG7] Reputation updating policy.
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denoted as “WFM,” and the other one is the replicator dynam-
ic equation [47], which is denoted as “RDE.” After updating 
the action rule, the payoffs of all players are reset to zero. The 
parameters l, d, and m are set to be 0.5, 0.9, and 0.95 respec-
tively. The parameter h that controls the speed of the evolu-
tion in RDE is set to be 0.1. 

By solving (11), we find that one possible optimal action 
rule aw is to forward i packets to the receiver with reputation i. 
We then evaluate the evolutionary stability of aw. In the simu-
lation, the initial frequency of the optimal action rule aw is set 
to be 0.6. The initial frequencies of the other action rules are 
uniformly distributed. The results for the binary case L5 1 
and multilevel case L5 4 are shown in Figures 8 and 9, 
respectively. We can see that for both WFM and RDE, the rep-
utation distribution converges to the stationary reputation 
distribution. Compared with WFM, the convergence speed of 
RDE is a bit slower since a small speed controlling parameter 
h5 0.1 is used in RDE. We can also see that the optimal 
action rule will spread over the whole population, and once 
the whole population adopt it, no one will deviate. Therefore, 

the optimal action rule that forwards i packets to the receiver 
with reputation i is an ESS [47]. 

CONCLUSIONS
Social networks have pervaded our daily life. Understanding the 
human behaviors and dynamics in a social network is essential 
for its continued progress. In this article, we use game theory 
to analyze and model human behaviors in a social network to 
achieve better system design. Such analysis and modeling is 
very general and can be applied to many social networks. From 
the discussion in this article, we can see that different game 
models should be used for different social networks with differ-
ent types of interdependency. When designing a system, not 
only the system efficiency but also the fairness among users 
should be taken into account. Moreover, since users are ratio-
nal and thus naturally selfish, they tend to overclaim what they 
may need and will not truly report their private information if 
cheating can improve their payoffs. Therefore, one should con-
sider users’ selfish nature and develop cheat-proof strategies to 
guarantee satisfactory system performance. 
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c5 0.1: (a) the percentage of the population with reputation 
L 5 1 and (b) the percentage of the population using optimal 
action.
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