HIGH ACCURACY INDOOR LOCALIZATION: A WIFI-BASED APPROACH

Chen Chen*!, Yan Chen*t, Hung-Quoc Lai', Yi Han*', and K.J. Ray Liu*

* University of Maryland, College Park, MD 20742, USA
f Origin Wireless, 223 Newbury Street Boston, MA 02116, USA
* School of Electronic Engineering, University of Electronic Science and Technology of China

ABSTRACT

Indoor positioning systems (IPS) based on Wi-Fi signals are
gaining popularity recently. IPS based on Received Signal
Strength Indicator (RSSI) could only achieve a precision of
several meters due to the strong temporal and spatial varia-
tion of indoor environment. On the other hand, IPS based on
Channel State Information (CSI) drive the precision into the
sub-meter regime with several access points (AP). However,
the performance degrades with fewer APs mainly due to the
limit of bandwidth. In this paper, we propose a Wi-Fi-based
time-reversal indoor positioning system (WiFi-TRIPS) using
the location-specific fingerprints generated by CSIs with a to-
tal bandwidth of 1 GHz. WiFi-TRIPS consists of an offline
phase and an online phase. In the offline phase, CSIs are
collected in different 10 MHz bands from each location-of-
interest and the timing and frequency synchronization errors
are compensated. We perform a bandwidth concatenation to
combine CSIs in different bands into a single fingerprint of 1
GHz. In the online phase, we evaluate the time-reversal res-
onating strength using the fingerprint from an unknown loca-
tion and those in the database for location estimation. Exten-
sive experiment results demonstrate a perfect 5cm precision
in an 20cm x 70cm area in a non-line-of-sight office environ-
ment with one link measurement.

Index Terms— WiFi, Localization, Channel State Infor-
mation, Time-reversal Resonating Strength

1. INTRODUCTION

Wireless indoor positioning systems (IPS) have become pop-
ular recently. It spawns a lot of location-based applications,
such as personalized advertisement in a grocery store, tourist
guidance in a museum, and goods localization in a warehouse,
to name a few.

Speaking of outdoor localization systems, Global Po-
sitioning System (GPS) has provided routes to millions of
drivers for years. However, the GPS signal could be too weak
when it comes to indoor localization: the blocking of con-
crete walls and floors severely attenuates the signal. On the
other hand, the precision in the order of tens of meters is far
from satisfactory for indoor applications.
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Realizing these drawbacks, many researchers and com-
panies harness the ubiquitous wireless local area networks
(WLAN) powered by WiFi technology. Received Signal
Strength Indicator (RSSI) is a MAC layer, coarse-grained in-
formation available in mainstream wireless network interface
controllers (NIC) [1]. Thus, RSSI-based IPS have been well
studied. In [2], the authors presented Horus which utilized
the RSSIs reported by access points (AP) to build a radio
map in the offline phase. In the online phase, the RSSIs from
nearby APs are measured and matched to the radio map, re-
sulting in a probabilistic location estimation. It achieved an
average accuracy of 2m. Other RSSI-based systems such as
RADAR [3] and MultiLoc [4] could achieve 3 ~ 5m and
2.7m in mean accuracy. However, RSSI-based schemes suf-
fer in an environment with strong non-line-of-sight (NLOS)
condition.

The precision could be further driven into sub-meter
regime using channel state information (CSI), a physical
layer, fine-grained information at the receiver. Orthogonal-
Frequency-Division-Multiplexing (OFDM) is one of the
baseband technique in WLANs, where CSIs are estimated
from the long training preambles (LTP) on subcarrier level in
frequency domain. In [5], the authors proposed the PinLoc
system. They performed a wardriving to obtain CSIs from
APs in an area of 1m X 1m in the offline phase. In the online
phase, the similarity of the CSIs from multiple nearby APs
and those in the offline phase was calculated for localiza-
tion, resulting in 89% mean accuracy and 6% false positives.
In [6], the authors proposed FIFS using the summation of
power across subcarriers in CSI to achieve 0.60m median
accuracy.

However, most IPS systems cannot achieve a centime-
ter accuracy, particularly in an environment with scarce APs
and/or strong NLOS condition. It is mainly due to the limited
bandwidth of 10 or 20 MHz in 802.11a/g/p WLANSs, which is
not sufficient to resolve enough independent multipaths and
consequently, introduces ambiguity into the CSIs. In light of
this, Wu et al. proposed Time-reversal (TR) indoor position-
ing system (TRIPS) in [7] using a much larger bandwidth of
125 MHz on the 5.4 GHz band. It utilized the super-resolution
spatial-temporal focusing effect of TR [8] in a rich-scattering
environment. It achieved a perfect 10cm localization accu-
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racy within a 0.9m x 1m area-of-interest in a NLOS environ-
ment.

Inspired by TRIPS, we implement the WiFi-based TRIPS
(WiFi-TRIPS). We extend from the 802.11a/g/p baseband
processor developed in [9] on Universal Software Radio Pe-
ripheral (USRP) [10] in the framework of GNU Radio [11].
Instead of the pilot-assisted channel estimator in [9], we use
the two LTPs defined in 802.11a/g/p for channel estimation.
To obtain CSIs from a much wider bandwidth, we perform a
frequency sweeping of 1 GHz from 4.9 GHz to 5.9 GHz on a
single link.

Similar to TRIPS, WiFi-TRIPS consists of two phases. In
the offline phase, WiFi-TRIPS collect CSIs from location-of-
interest which are stored into the database. Three synchro-
nization errors might exist in the CSIs: (i) Symbol Timing
Offset (STO) caused by the misalignment between the cor-
rect starting point of the frame and the estimated starting point
(i1) Carrier Frequency Offset (CFO) caused by the difference
between the two oscillators at the transmitter (TX) for up-
conversion and the receiver (RX) for down-conversion (iii)
Sampling Frequency Offset (SFO) caused by the difference
in the sampling frequency between TX and RX. In order to
combat the residual timing and frequency synchronization er-
ror, we propose an algorihm for compensation. With band-
width concatenation, we combine the sanitized CSIs from dif-
ferent bands into one fingerprint. In the online phase, the TR
resonating strength is calculated for location estimation. We
perform extensive experiments with a unit distance of 5cm
to demonstrate the centimeter-level accuracy of WiFi-TRIPS
in a typical office environment during day time. We achieve
a perfect localization accuracy in an area of 20cm x 70cm
using only one link measurement of CSI.

2. SYSTEM ARCHITECTURE

The system architecture of the WiFi-TRIPS is shown in Fig. 1.
The transmitter USRP (TX-USRP) upsamples the baseband
signal, followed by low-pass filtering and digital-to-analog
conversion. Then, the upsampled signal is up converted to
the center frequency and transmitted over the air. The re-
ceiver USRP (RX-USRP) down converts the signal to zero
center frequency, performs low-pass filtering and analog-to-
digital conversion, followed by downsampling. The channel
estimation block at the receiver could obtain the CSI for each
frame. To enhance the quality of CSIs, we only keep those
with correctly decoded data frames. The two USRPs jump to
the next center frequency after enough CSIs are collected at
the present center frequency.

3. PROPOSED ALGORITHM

We label each geographical location with a coordinate p,. For
convenience, we refer to this location as logical location £.
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Fig. 1. Architecture of the measurement platform

Since the mapping from the geographical location to the logi-
cal location is one-to-one, we transform the estimation of ge-
ographical locations into estimation of logical locations.

Assume that for logical location ¢ and frequency band f,
Ny, 5, CSIs are measured from the first and second LTPs, writ-
ten as

HlC, ] = [H My, [0 fd]

(D

where m is the realization index, i € {1, 2} as the LTP index,
and Hi 6, fu] = [H2 [0 ]+ B0 fa) - A TE fd]}
where uj, denotes the subcarrier 1ndex of the k-th usable sub-

carrier, and K the total number of usable subcarriers. The
channel estimation H"* [¢, f4] can be written as

i,m
Xi,uk ’

Dl fal---HEE fa] -

H' (£, fa] =
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where Y;"¥ [(, fa] is the m-th received symbol in frequency
domain on the k-th subcarrier, and X; ,, is the transmitted
symbol of the i-th LTP on the k-th subcarrier.

3.1. Effect of CFO, SFO, and STO on CSI

In presence of CFO ¢, SFO 7, and STO Any, H by
Equ. (2) can be written as [12, 13]

H (6 fa) = HIG [ fae*mome s

eITPu 2T TN u gine (Tdu,) +nim [l fal,  (3)
where ¢, = € + nuy, NN the size of Fast Fourier Transform
(FFT), N the length of cyclic prefix, Ny, = N + N, and
%, [¢, fa] the estimation noise.

In the following, we introduce the two phases in the pro-
posed algorithm.

fnwv fd} in

3.2. Offline Phase
3.2.1. Residual CFO/SFO Estimation and Compensation

To estimate the residual CFO and SFO from the channel esti-
mation, we could use [14]

el fal = [Fsle. fa)] < A1, 16 g

— 2T buy, |H{% 10, fallPsine® (mou, ) + ik (€, fal, (4)
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where sinc? (m¢y,) ~ 1 since w¢,, is small, and ¢ [£, f,] is
the cross terms. Therefore, ¢,,, can be estimated by

where £[X] is the angle of X. Compensating ¢, gives

Ng+(i—1)Ng
N

HU, 10, fal = Y% [6 fale ™ ™02 P (6)

Substituting Equ. (6) into Equ. (1) and writing the updated
H; [€, f4] in Equ. (1) as H [¢, f4], we take the average of
1 (¢, fa) and By [6, fa) as BL[C, f) = Bolealfelbda]

3.2.2. STO Estimation and Compensation

After removing the residual CFO and SFO, the STO still re-
mains to be compensated. Write

~ ~ T
L CHOWAERTS s FO (A
)

H[evfd] = {I:I{[evfd]

where H, [0, f4] = [H [0 fa) - HF[E, fal -
is the CSI vector for the m-th realization on usable sub-
carriers after CFO/SFO correction. Denote AYF[(, fq] =
£ {f[ﬁf [4, fd]} as the angle of H“[(, f,], we take a phase

unwrapping on all AUs[¢, f,], which gives A'“*[(, f;]. The
slope of A “k[¢, f4] is linear with STO if we disregard the
noise and interference. To estimate the slope, we use a linear
square fitting on A “*[(, f,], leading to

NS (=] (AR ) - ]

Ang = )
’ 2m Yy [k —
where & = @ and A = w. Therefore,
HUs[0, f4] is corrected as
S fa) = FLSEIE, falem 7o Ao ©)
3.2.3. Formulating the Localization Fingerprint
Write the CSI matrix after STO compensation as
. . 5 . T
CAONAISS]  TATAERES ¢ CHTAY BENS < SO (7]
(10)

we could formulate a localization fingerprint at location ¢ and
frequency band f; as

N[fd

St fa] =

m an

f m=1

where - stands for the dot product between two vectors. W,
is a K-dimension vector given by

W, = [wn[l, fa]  wmll, fd] wn [l f4]], (12)

H L

where w, [¢, fq] = e—d<[H 1]
After bandwidth concatenation, the localization finger-
print G[¢] can be written as
Gl = [S[t, f1]

S, f2] Sl fol],  (13)

where D is the total number of frequency bands. The fin-
gerprints for all locations ¢ = 1,2,--- | L are calculated and
stored into the database.

3.3. Online Phase
3.3.1. Processing the CSIs

In this step, we repeat the procedures in the offline phase on
the CSIs collected from a location-of-interest to correct the
synchronization issues and combine the CSIs into the location
fingerprint.

3.3.2. Localization by Calculating Resonating Strength

For the location fingerprint G[¢'] from a location-of-interest
', the resonating strength is calculated as Equ. (14),

2

, (G
DL, 0] 14
‘|G (1

[A]12[1GLETll2

where 1 stands for transpose and conjugate, and || X||2 the £2
norm of vector X. When ¢ = ¢/, we have ®[(,¢'] = 1. The
estimated location ¢’ is given as

, if maxg« ®[*, 0] > T

* /
o _ ) Argmax,. o0+, '] (15)
o[e*, 0 <T

0 , aXy«

where /* = 1,2,---, L and I is the threshold. When =0,
we cannot achieve localization given G[¢]. It can be proved
that Equ. (14) is the frequency domain expression of the time-
reversal resonating strength defined in [7]. In this sense, we
are calculating the resonating strength virtually.

4. EXPERIMENT RESULTS

The experiments are performed in an office environment dur-
ing day time. The two USRPs are placed on the wooden ar-
chitecture as shown in Fig. 2, with a unit distance of 5cm
horizontally and vertically.

We use 30 dB gain at TX-USRP and 15 dB gain at the
RX-USRP. RX-USRP locates on the wooden structure. The
total number of subcarriers is 64, with 52 usable subcarriers
of index {—26,—25,---,—1,1,---,25,26}. The length of
cyclic prefix is 16 with FFT size 64. The distance between
the transmitter and receiver is 10 feet with a concrete wall in
the middle.
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Fig. 2. The wooden architecture for measurements
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Fig. 3. 1 GHz fingerprints at two locations

The bandwidth is 10 MHz. To fill the missing null sub-
carriers in WiFi, we overlap the band between two consecu-
tive frequency measurement: both USRPs increment the cen-
ter frequency by 8.28125 MHz. We measure 124 frequency
bands from 4.8909 GHz to 5.9091 GHz. The band 4.9 ~ 5.9
GHz is chosen to formulate the localization fingerprint.

We measure a total of 75 locations in an area of 20cm x
70cm located on a rectangular grid. The unit distance is
5cm. For each location, we generate two fingerprints: the fin-
gerprint associated with the first measurement is stored into
database in the offline phase, while the second fingerprint
is regarded as generated from the location-of-interest in the
online phase for location estimation.

In Fig. 3, we show the amplitudes and phases of the fin-
gerprints at location 1 and location 2 separated by 5¢cm. Ob-
viously, the similarity between two fingerprints at the same
location are much higher than that between two different lo-
cations.

In Fig. 4, we show the confusion matrix ® under band-
widths 20, 120, 250, 500, 1000 MHz using Equ. (14). Also,
we demonstrate the mean of the diagonal elements (fiqiag),
mean of the off-diagonal elements (pofrdiag), the difference
between fidiag and UUofidiag, and value of I' such that we could
achieve 100% detection rate with 0% false alarm rate, under
bandwidths from 10 MHz to 1000 MHz. For convenience of
demonstration, if we fail to find such a I', we set I' = 0.

We conclude that (i) The resonating strength at the same

20 MHz 120 MHz

250 MHz
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1 : h
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Fig. 4. Confusion matrix ® under different bandwidths, and
the statistics for bandwidths from 10 MHz to 1000 MHz with
step size 10 MHz

location is much higher than that from different locations
(i) Larger bandwidth in general improves the performance.
However, the fingerprint could be impaired by the imperfect
corrections of residual STO/CFO/SFO. It is possible that
with a large bandwidth, we cannot find T" to get 100% de-
tection rate with 0% false alarm rate (iii) I' = 0.9380 when
we only use 20 MHz bandwidth, predicting a poor perfor-
mance when dynamics exist in the environment (iv) When
bandwidth increases, both of figiag and piofrdiag decreases.
The gap between them is maximized when bandwidth equals
390 MHz. The performance improvement with larger band-
width is more distinct when bandwidth falls in the range of
90 ~ 150 MHz. Also, we achieve perfect localization perfor-
mance in the range of 90 ~ 150 MHz. (v) Based on our more
recent results, the results can be generalized to a larger indoor
space. Because of the rich scattering characteristic inherent
in the indoor environment, it is highly unlikely to pinpoint
a spatial position with high correlation with the fingerprint
formulated across a wide range of frequency bands.

5. CONCLUSION

In this paper, we propose WiFi-TRIPS and implement on
USRPs to obtain CSIs from 802.11a/g/p transmission. To
extend beyond the limitation of 10/20 MHz bandwidth in
802.11a/g/p, we measure a total of 1 GHz bandwidth, from
4.9 GHz to 5.9 GHz. In the offline phase, the collected CSIs
in 10 MHz bands are processed and concatenated into a 1
GHz fingerprints and stored into the database. In the on-
line phase, the TR resonating strength is calculated using the
stored fingerprints and the fingerprint from the unknown lo-
cation, leading to the location estimation. Experiment results
demonstrate the 5em precision in an area of 20cm x 70cm
in a NLOS office environment with only one-link. The pro-
posed method could be employed in commodity WiFi devices
where multiple frequency bands are supported.
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