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Abstract—Stride length estimation has various applications,
ranging from pedestrian tracking to individual healthcare. It is
usually achieved by inertial sensing, which, however, suffers from
large errors due to the noisy readings on the low-cost commod-
ity sensors and unconstrained human walking. Different from
prior methods that explore inertial sensors only, in this paper,
we present a fused radio and inertial sensing design that es-
timates fine-grained stride length. Our approach incorporates
recent advances in WiFi sensing that underpins walking distance
estimation at centimeter accuracy from radio signals. We then
present a novel step detection algorithm using inertial sensor
readings, which not only counts steps but also reports the time
information of every detected step. The proposed algorithm then
fuses the time-annotated distance estimates and steps to derive
the stride length. The evaluation on a large public dataset shows
that our step counting algorithm yields an error of 3%. Fur-
thermore, experiments on commodity hardware with eight users
demonstrate an error of about 2 cm in stride length estimation.

Index Terms—Stride length estimation, inertial sensing, WiFi
sensing

I. INTRODUCTION

Inertial sensing has been an inexpensive and convenient so-

lution to many mobile applications, such as pedestrian dead-

reckoning (PDR) and gait analysis, among many others. It

has been employed to support clinical diagnostics to quantify

and treat gait impairments, a symptom of may neurological or

musculoskeletal diseases that may result in shuffling steps or

reduced step length. On the other hand, PDR using low-cost

inertial measurement units (IMUs) has been widely studied to

offer alternative positioning when GPS is not available. It inte-

grates the moving distance, typically estimated as the number

of steps multiplying the step length, and heading information

to provide continuous locations.

Despite extensive research, one of the most crucial com-

ponents that are still open to inertial sensing is accurate esti-

mation of stride length, a critical stride-by-stride parameter to

both gait analysis and PDR. Many algorithms have been pro-

posed for step detection, such as zero-crossing, peak detection,

and autocorrelation [4]. Stride length estimation, however, is

more complicated due to the noisy readings on cheap sensors,

varying walking patterns among individuals and over time.

Early solutions adopt over-simplified linear/non-linear models

that suffer from errors [4]. The majority of prior algorithms

perform double integration of acceleration over time, which

requires zero-velocity update points for reinitialization and is

vulnerable to the noisy sensor data and motion interference

[6]. Recent works build neural networks to learn stride length,

which, however, requires a large amount of data for training

[5]. Other modalities are also employed for stride length es-

timation, including camera systems [2], pressure sensors [1],

etc. These systems, however, are less convenient and usually

much more expensive than inertial sensors.

Nowadays, most mobile devices are equipped with inertial

sensors as well as multi-antenna WiFi radios. In this paper, we

leverage this opportunity and propose to integrate the emerg-

ing radio sensing with traditional inertial sensing to achieve

precise stride length estimation. The idea is to estimate the

walking distance from radio signals while the corresponding

steps taken from the IMU data. The proposed approach is

built upon a recent work [15], which enables precise mov-

ing distance estimation at centimeter accuracy by using only

the antenna array on commodity WiFi radios. We employ the

virtual antenna alignment approach introduced in [15] and im-

plement it for mobile environments using a commodity WiFi

card with two or three antennas. A user simply needs to walk

freely with the radio in hand, and the walking distance will

be estimated from the measured series of Channel State Infor-

mation (CSI) of the received WiFi signals. We first introduce

a novel time-domain algorithm for step detection based on a

finite state machine, which not only counts steps but also re-

ports accurate starting and ending time of each detected step.

Many existing approaches fail to obtain such time-annotated

steps. Then the stride length can be estimated by dividing the

moving distance by the corresponding number of walking cy-

cles during the same period.

Our experiments to validate the effectiveness of the pro-

posed algorithm include two parts. First, we examine the step

detection on a large public dataset [4] of 27 people, 130 walks,

and 6 different smartphone placements. The dataset contains

the time series of IMU data measured on smartphones in

typical, unconstrained use while walking. The evaluation on

this dataset shows that the proposed step counting algorithm

achieves remarkable performance with error rates less than 5%

for 90% of all the traces, outperforming 9 different approaches

evaluated in [3]. In addition to the accurate step counting, the

proposed algorithm also outputs time information of every sin-

gle step.

Then to evaluate the performance of stride estimation, we
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Fig. 1: Different step patterns resulted from different subjects, speeds, and sensor placements. Each figure shows the

acceleration series of 4 steps (i.e., two stride cycles) and is named in the format as Gender (M: Male, F: Female), Height (T:

180cm-189cm, M: 170cm-179cm, S: 150cm - 169cm), Speed (N: Normal, F: Fast, S: Slow), Placement. The data have been

detrended and smoothed.

implement and experiment with the proposed algorithm on

commodity hardware. We collect data using an embedded

iMX7 board, which is equipped with an off-the-shelf IMU

and a commodity WiFi chip that reports CSI. We recruit eight

users who are asked to walk normally while holding the de-

vice in hand. Both CSI and sensor data are collected during

their walking. Notably, the stride length is estimated with a

median error of around 2 cm.

In summary, our core contributions are as follows:

• As far as we are aware, this is the first fused radio-inertial

sensing approach for accurate stride length estimation.

Attributed by radio sensing, the approach is robust to

noisy sensor data and free of accumulative errors that

conventional methods undergo in distance estimation.

• We propose a novel time-domain step detection algorithm

based on FSM, which reports not only step number but

also the timing information of each step.

• We extensively evaluate the proposed algorithm on a large

public dataset as well as an experimental prototype. The

results show high accuracy for both step detection and

stride length estimation.

The rest of the paper is organized as follows. We present

the algorithm in §II, followed by experimental evaluation in

§III. We discuss future work in §IV, review the literature in

§V and conclude in §VI.

II. STRIDE LENGTH ESTIMATION

A. Precise Step Detection and Counting

There are many algorithms developed for step detection us-

ing inertial sensors [7], [16]. Conventional methods usually

focus on counting how many steps have been taken given a

sequence of accelerometer readings. To obtain precise stride

length, however, we need not only the step number but also

the exact starting and ending time of each step so that we can

later calculate the precise moving distance during the specific

stride period via radio signals (as detailed in the next section).

To achieve step detection with accurate timing information,

we propose a time-domain approach based on a Finite State

Machine (FSM). The key insight is that a normal human walk-

ing cycle, albeit varying over individuals and speeds, submits

to a typical template viewed from the inertial data. A stride

cycle consists of two phases: the stance and swing phases,

which can be further decomposed into seven stages [9]. The

stance phase starts with the initial heel contact of one foot

and ends when the same foot’s toe leaves off the ground. The

swing phase follows immediately with the action of the leg

swinging forward and lasts until next heel contact. Intuitively,

a stride cycle consists of two steps, and the stride length is

accordingly defined. In this work, however, we do not differ-

entiate two consecutive steps and thus calculate the step length

as stride length, which is, on average, half of the commonly

defined stride length. Ideally, during a step, the acceleration

induced by walking motion will first increase to a large value,

then decrease down to negative values, and finally returns to

approximately zero. A typical and ideal acceleration change

during a step is shown by the first figure in Fig. 1, while the

other figures show how the patterns vary over different indi-

viduals, walking speeds, and sensor placements.

FSM design Based on an in-depth understanding of the walk-

ing cycle, we elaborate on an advanced FSM to characterize

the acceleration transitions for step detection. As shown in

Fig. 2, the proposed FSM contains five different states:

• S_ZC: The initial and default state when a zero-crossing

is detected;

• S_PK: The state when the acceleration tops a peak;

• S_P2V: The state that a zero-crossing occurs when the
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acceleration decreases from the peak to a potential valley;

• S_VL: The state at an acceleration valley;

• S_DT: The state that a step is claimed.

To determine the state transition, we define six basic events,

which are all identifiable from the inertial sensor data.

• E_PK: A peak is detected;

• E_VL: A valley is detected;

• E_ZC: A zero-crossing is observed;

• E_FPK: A “far” peak is detected after a previous E_PK

event without any intermediate events, but with a large

time difference exceeding a threshold;

• E_FVL: A valley similarly defined as E_FPK;

• E_TIMEOUT: A timeout event will trigger if the FSM

stays on one state for too long.

The first three events characterize the key properties of ac-

celeration patterns during walking, while the latter three are

derived from the first three coupling with time information to

combat noises and non-walking motion interference.

By default, the algorithm stays on its current state until

an event occurs, depending on which it will either transit to

another state or remains unchanged. Each state only transits

upon the specific events as marked in Fig. 2. All the states

except for the default S_ZC is associated with a timeout event.

State S_DT will return to S_ZC with any new data arriving.

E_FPK and E_FVL are introduced to handle the cases of two

consecutive peaks or valleys caused by noisy sensor readings

and user motion interference. For example, if a subsequent

peak is too close to a former one, the algorithm will treat it as

distortion during walking and keep the same state; otherwise,

it is more like random motion, and the state is reset to S_ZC.

The design of the proposed algorithm achieves many strong

sides. For each detected step, the algorithm outputs the tim-

ing information of the detected step: The time point of the

corresponding S_ZC is the starting time, while the time it en-

ters S_DT implies the ending time. The algorithm is efficient,

with only a few states. It decomposes the relatively noisy sen-

sor readings as several essential events, which can be identified

without relying on many subject-dependent parameters, such

that it does not heavily rely on the absolute accelerations.

Sensor data processing The raw sensor data are processed

into a series of events-of-interests as inputs for the above FSM.

A key challenge here, however, is that the ideal acceleration

pattern of a step will greatly vary over different walking pat-

terns and device locations (e.g., hand-held, in the pocket, or

the backpack, etc.). Moreover, the sensor data is noisy and

could drift over time. Fig. 1 illustrates several different pat-

terns of the walking cycles, including normal, distorted, or

biased ones.

To handle various sensor patterns, we perform a series of

preprocessing steps. The accelerometer reports 3D sensor val-

ues along its x-axis, y-axis, and z-axis for every sample, de-

noted as a = (ax, ay, az). The reported accelerations are in

the device frame (rather than the earth’s frame) and contain

both motion-induced and gravity-forced components. We need

to compensate for gravity and transform the accelerations into

S_ZC

S_PK

S_P2V

S_VLS_DT
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/E_TIMEOUT

E_PK / E_TIMEOUT

E_PK/E_FVL
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EVENTS: 

E_PK: Peak detected

E_VL: Valley detected

E_ZC: Zero crossing

E_FPK/E_FVL: Far peak/valley 

E_TIMEOUT: State timeout

Fig. 2: A Finite State Machine (FSM) for step detection.

the earth’s reference frame. Fortunately, modern IMUs have

done an excellent job in extracting the gravity component as a

fusion sensor (usually named as gravity sensor) based on the

accelerometer and gyroscope or magnetometer, which reports

a gravity vector g = (gx, gy, gz). Thus, we can easily ob-

tain the magnitude of the projected acceleration free of sensor

orientation as:

a =
a · g

||g||
. (1)

Given a time series of the acceleration magnitude, denoted

as A = [a(t1), a(t2), · · · , a(tM )] where a(ti) is the reading

at time ti, we further detrend the gravity and potential sensor

drifting by removing the moving average trend. Since we do

not need to process the data online for stride length estimation,

we employ a relatively long window of 2 s to calculate the

moving average. Afterward, we further smooth the detrended

data with a window of 0.25 s.

Then we perform zero-crossing and peak detection to iden-

tify all the events-of-interests from the data series (valley de-

tection is done in the same way as peak detection by mul-

tiplying the data by -1). The processing results in a time

series of events, denoted as E = [e(t1), e(t2), · · · , e(tQ)]
where e(ti) ∈ {E PK, E VL, E ZC} is the event occurs at

time ti. Note that the events are sparse over the time se-

ries A since typically there are three E_ZC, one E_PK, and

one E_VL within a standard step. This event series is then

fed into the FSM for step detection. The other three events,

i.e., E_FPK, E_FVL, E_TIMEOUT, are detected inside the

FSM by examining timestamps of two consecutive E_PK,

E_VL and the duration of the state itself, respectively. For

example, an E_FPK occurs if e(ti−1) = e(ti) = E PK and

|ti − ti−1| > thmax gap, where thmax gap indicates a thresh-

old that can be determined by human walking behavior.

By involving events (that is, specific relative patterns in the

acceleration series) rather than absolute acceleration thresh-

olds, the proposed FSM is more generalized and robust to dif-

ferent walking patterns and sensor locations. Fig. 3(a) shows

an example of the step detection results, which counts every

step precisely with timing information.

B. Walking Distance Estimation with WiFi

To accurately estimate the walking distance at the centimeter

level, we borrow the idea of the virtual antenna alignment
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approach [15] with a focus on hand-held mobile scenarios.

Virtual antenna alignment is recently introduced in [15] for

precise measurements of moving distance, heading direction,

and rotating angle. The core idea is to track the moving speed

by utilizing rich indoor multipath as virtual antennas. In this

work, we need merely the moving distance estimation and

implement it with two or three antennas on one WiFi card.

Take a two-antenna line array as an example. When the

array moves along the line joining them, there will be one

antenna following the trajectory of the other. The particular

moving speed determines the time delay for the following an-

tenna to hit the same location the other has traveled (i.e., the

two antennas are virtually aligned) and thus observe the same

(similar) multipath profiles. As in [15], the time delay can be

estimated by

∆t(t) = | arg max
k∈{−l,··· ,l}

η(Hi(t), Hj(t+ k))|, (2)

where Hi(t) is the CSI measurement at time t, l specifies

the search window [t − l, t + l], and η is the Time-Reversal

Resonating Strength (TRRS) calculated as

η(Hi, Hj) =
|HH

i Hj |
2

〈Hi, Hi〉〈Hj , Hj〉
, (3)

where (·)H denotes the conjugate transpose.

With ∆t, the array’s moving speed can be immediately de-

rived as

v(t) =
∆d

∆t(t)
, (4)

where ∆d is the corresponding antenna separation known in

advance. And the moving distance is thus calculated:

d =

∫ T

0

v(t)dt, (5)

where T is the time duration of moving.

Considering our scenario of stride length estimation, the

user needs to hold the device in hand to increase the chance

of virtual antenna alignment while walking. As demonstrated

in [15], the virtual antenna alignment can tolerate a deviation

angle of 15◦ gracefully during moving. This is a critical prop-

erty that makes it applicable to hand-held mobile scenarios:

Even during walking, a cooperative user can hold the device

relatively stably with little chance of producing significant de-

viation beyond 15◦. As shown in Fig. 3(b) and (c), the walk-

ing speeds can be accurately tracked when a user is normally

walking while holding the WiFi device in hand.

C. Estimating Stride Length

Fig. 3 shows an example of the steps detected by inertial

sensing and walking distance (speed) estimated by WiFi-based

sensing. More generally, given a walking trace, suppose we

have detected a series of N steps S = [s1, s2, · · · , sN ], each

step si starting at time ti−1 and ending at time ti, and have

estimated the corresponding instantaneous speed series V =
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Fig. 3: An illustration of inertial-based step counting (a)

and radio-based distance estimation (b) and (c). (a) Green

squares denote the detected steps, triangles denote peaks and

valleys, and circles indicate zero-crossing points. (b) The

TRRS matrix with identified antenna alignment delays (red

line). (c) The estimated speeds.

[v(t), t = 1, 2, · · · , T ]. It is then straightforward to derive the

average stride length L as

L =

∫ T

0
v(t)dt

N
. (6)

The estimation can be improved to be more robust to differ-

ent lengths of the walking traces and/or varying stride lengths

during a walking instance. Particularly, we can additionally

calculate the stride length by using only the first k steps with

k ranging from 1 to N :

Lk =

∫ tk

0
v(t)dt

k
, k = 1, 2, · · · , N. (7)

Then we can take the median value as the estimate, i.e., L =
Medk(L

k).
With the instantaneous speed estimation and the fine-grained

step detection, we can even calculate the step-by-step stride

lengths, rather than merely the average value. Specifically, the

stride length for the ith step can be obtained as the mov-

ing distance within that step: Li =
∫ ti

ti−1

v(t)dt. Such fine-

grained data would be useful for analyzing the variations of

one’s walking.

The fused radio and inertial sensing method contributes a

distinct novel solution to the stride length estimation problem.

It is immune to the noisy sensor readings, and the accumu-

lative errors clung to the double integration approach. It is

insensitive to sensor orientation and placement locations. And

most importantly, it achieves high accuracy attributed by the

precise step detection mechanism and the fine-grained distance

estimation.

III. EXPERIMENTAL EVALUATION

A. Methodology

Our evaluation consists of two part: performance validation

on a large public dataset of walking data and prototype eval-
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Fig. 4: Accuracy of step detection on a large public dataset.

uation on commodity hardware.

We use the dataset released in [4] for a comprehensive eval-

uation of the proposed step detection algorithm. The dataset

was developed for a fair, quantitative benchmark of standard

algorithms for walk detection and step counting. It provides

time-annotated sensor traces collected from smartphones in

typical, unconstrained use while walking. For each trace, the

participant changed the walking speed from normal to fast

and then slow paces. The smartphones were placed at differ-

ent positions (in a front or back trouser pocket, in a back-

pack/handbag, or in a hand with or without simultaneous typ-

ing). More details about the dataset can be found in [4]. The

dataset has 130 traces in total, with 27 participants involved

and 6 different smartphone placements considered. The ground

truths of three persons are missing in the released version, re-

sulting in 117 effective traces for our evaluation.

To further evaluate the end-to-end stride length estima-

tion accuracy, we implemented a prototype with an embedded

iMX7 board equipped with a commodity WiFi chip and IMU

sensors. We built a data collection tool in C++ to obtain CSI

measurements and sensor readings on the device. We recruit

eight users (three females and five males) for testing. During

experiments, the participants are asked to walk naturally for

about 10 meters while holding the device in hand horizontally

so that the antenna alignment will take effect. An observer will

count how many steps the participant has taken and record as

the ground truths. In order to obtain CSI, we set up an Access

Point (AP) as the transmitter that sends out packets at a rate

of 200 Hz. As noted in [15], the transmitter can be installed

anywhere for good coverage, be it Line-Of-Slight (LOS) or

Non-LOS (NLOS), and an AP can cover a big area. The re-

ceiver, i.e., the iMX7 board, keeps listening for the packets

and extracts CSI. The CSI and sensor data are saved locally

on the board and then processed on a laptop using Matlab.

B. Performance

We first present the performance of step detection and then

evaluate stride estimation.

Step detection: The performance of step detection on the open

dataset is shown in Fig. 4. The accuracy over all the traces
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Fig. 5: Accuracy of stride length estimation.

is plotted in Fig. 4(b), and Fig. 4(c) further illustrates the ac-

curacy regarding different IMU placements. For clarity of vi-

sualization, we only show a random half of the 117 traces

in Fig. 4(a). Since the traces are of different lengths (from

60 to 90 steps), we calculate the relative error, i.e., the errors

of steps divided by the actual number of steps. Overall, the

proposed algorithm achieves consistently high accuracy over

different traces, regardless of different subjects, speeds, and

smartphone placements. Specifically, the step counting errors

for most of the traces are within 3%, while the 90%tile error

is less than 5%. The performance is better than those of all

the 9 different approaches evaluated on the same dataset, as

reported in [4].

Stride estimation: Now we examine the performance of stride

length estimation using our prototype hardware. The distance

estimation performance has been thoroughly evaluated in [15].

We directly examine step counting and stride length estima-

tion. Since the participants hold the device stably during the

experiments (to allow antenna alignment for distance estima-

tion), the step detection performs perfectly on these data traces.

The algorithm achieves 1.5 steps of counting errors. Note that

these step errors barely affect stride length estimation since

they mostly occur at the beginning or end of the walking and

can be trimmed out by finding a stable, continuous period.

Thanks to the high accuracy in both distance estimation and

step detection, our algorithm yields a great performance in
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stride length estimation, with a median error of 2.02 cm for

eight different users. Fig. 5 illustrates a detailed view of the

errors for different users and the overall CDF.

IV. DISCUSSIONS AND FUTURE WORK

Here we discuss several limitations and future directions.

First, the proposed step detection algorithm achieves excellent

performance on walking data. In practice, if unknown mo-

tion data (not necessarily walking) are offered, potential false

alarms may increase. Thus we need to further improve the ro-

bustness in practical scenarios with various sensory data. A

promising idea would be to introduce a post-validation step

using autocorrelation to reject false alarms. Second, we cur-

rently implement the proposed step detection algorithm in an

offline form. The next step is to make it online to report steps

for real-time streaming data, which may extend the applica-

bility scope of the proposed approach. Third, a further step of

our interests is to apply the stride length estimation to PDR

for indoor tracking problems. By opportunistically calibrating

a user’s stride length when WiFi CSI is available, the accu-

racy of traditional PDR would be greatly improved while the

ubiquity remains unimpaired, underpinning a more accurate

solution for lightweight, ubiquitous indoor tracking.

V. RELATED WORKS

Inertial Sensing Inertial sensing has been widely employed

on mobile and wearable devices for many applications. PDR

(a.k.a.inertial odometry), one of its major applications, utilizes

inertial sensors to infer the positions over time. Generally, PDR

derives orientation from the gyroscope and/or magnetometer,

while inferring moving distance from the accelerometer. Intu-

itively, the distance could be obtained by double integration

of acceleration over time, which, however, results in drastic

accumulative errors. To avoid large errors, researchers alter-

natively estimate steps taken and the step-by-step or averaged

stride length. Effective approaches have been proposed for step

counting, including peak detection, zero-crossing, autocorre-

lation, etc., and good performance can be achieved [4]. Stride

length estimation, however, remains as a challenge problem

for PDR. Existing methods either suffer from errors due to the

noisy sensory data [4], [6], [10] or resort to numerous data for

training [5]. Differently, we circumvent the noisy sensors and

leverage the orthogonal RF sensing for distance estimation,

which stands apart from prior works.

RF Sensing Radio signals, initially proposed for communica-

tion, have been recently utilized for ubiquitous sensing [11],

[13], including activity and gesture recognition [14], vital sign

monitoring [19], and indoor tracking [12], [17], etc. Particu-

larly, WiGait [8] achieves accurate stride length estimation but

relies on a specialized FMCW radio. WiSpeed [18] passively

monitors a pedestrian’s speed and so infers the stride length,

but assumes only one single moving target. Recent advances

have enabled centimeter-accuracy tracking of moving distance

using commodity off-the-shelf WiFi devices [15]. This work

is built upon the accurate distance estimation introduced in

[15] and combines it with inertial sensing to achieve precise

stride length estimation. As such, it utilizes the complementary

advantages of radio sensing and inertial sensing while over-

coming the respective shortcomings, opening up a promising

direction of integrated radio-inertial sensing.

VI. CONCLUSION

In this paper, we present a novel approach fusing radio and

inertial sensing for precise stride length estimation. The pro-

posed approach incorporates WiFi-based sensing for walking

distance estimation at centimeter accuracy and presents a novel

step detection algorithm using inertial data. Combining the

two orthogonal dimensions of information, we achieve stride

length estimation with a median error about 2 cm. To the best

of our knowledge, this is the first work that integrates radio

sensing with inertial sensing for stride estimation. Future work

continues exploring this promising direction of radio-inertial

sensing for PDR, gait analysis as well as other applications.
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