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ABSTRACT
Due to the ease with which digital images can be forged, a great

deal of work has been done in the field of digital image forensics.
A particularly important problem is to forensically determine an
image’s acquisition and storage history. Recent research has shown
that a new acquisition technique known as compressive sensing
can be used to capture a digital image. Images acquired by
compressive sensing can not be easily forensically distinguished
from the images captured using standard digital cameras, nor from
those which have undergone Discrete Wavelet Transform (DWT)
based compressions. In this paper, we propose a two step detection
scheme to identify the images acquired by compressive sensing.
The first step identifies unaltered images captured using standard
digital cameras and the second step separates compressively sensed
images from ones compressed using DWT-based techniques. Our
simulations show the first step of detection can achieve a probability
of detection (Pd) of 100% for probability of false alarm (Pf ) less
than 4%, and the second step gets Pd nearly 90% with Pf of 10%.

Index Terms— Compressive Sensing, Digital Forensics, Image
Compression.

I. INTRODUCTION
Digital images are widely used in our daily life for a variety

of personal collection and official purposes. However, highly de-
veloped image editing software, such as Photoshop and Picasa,
makes it easy to alter an image. As a result, the authenticity of the
image is often doubted. To combat this, researchers have developed
a number of digital forensic techniques. Researchers have already
developed techniques to perform compression history investigation,
camera model identification, identify image editing, and so on [1].

In many scenarios, an image’s datapath integrity is critically
important [2]. As a result, a number of forensic techniques have
been designed to determine how an image was acquired and stored.
Prior work has shown that the camera model used to take a picture
can be identified by linking it to an estimate of the color filter array
pattern and interpolation coefficients used during the image capture
process [3]. The specific camera used to capture an image can be
identified using its sensor pattern noise [4]. Because compression
is usually performed when storing a digital image, techniques
exist to detect the use of JPEG compression [5], along with other
compression techniques such as SPIHT and JPEG2000 [2], [6].
Additionally, given the fact that most image editing is followed
by re-compression, prior work have been done to detect double
compression in both the Discrete Cosine Transform (DCT) and
DWT domains [7], [8].

Recently, a new data acquisition and storage technique known as
compressive sensing has been developed [9]. Compressive sensing
is a technique capable of acquiring sparse data at a rate below the
Nyquist rate. Its efficiency is based on the fact that a small group of
non-adaptive linear projections of a compressible signal can contain
enough information for reconstruction. Compressive sensing has
demonstrated its success in many fields such as wireless commu-
nications, multimedia acquisition, and circuit failure analysis. The
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single-pixel camera is a typical application of compressive sensing
in image acquisition [10]. Compared with conventional digital
cameras, the single-pixel camera directly captures compressed
image data rather than first sensing each pixel value, then applying
compression to the resulting image. This and similar techniques
will likely become increasingly important in applications where
data must be acquired at high rates.

Presently, no techniques exist to identify images captured using
compressive sensing. This is especially important because compres-
sive sensing of images is often operates in the DWT domain, similar
to several existing image compression techniques. Existing forensic
techniques identify traditional DWT-based compression techniques
by measuring the distance of an image’s DWT coefficient histogram
from a generalized Gaussian distribution [2] or by measuring
the ratio of the number of DWT coefficients whose values fall
into different intervals [6]. Experimentally, we have found that
compressively sensed images exhibit properties that fool these
techniques into thinking that they have been compressed using a
traditional DWT-based method. Nevertheless, compressive sensing
still leaves its own traces, i.e., fingerprints, which can be detected
using the scheme proposed in this paper.

In this paper, we propose a new forensic technique to determine
if an image was captured using compressive sensing. To do this, we
first model the DWT coefficients of a compressively sensed image
as the mixture of two Laplace distributions. We then show how
this model differs from existing models of the DWT coefficient
distributions for unaltered images and images compressed using
DWT-based techniques such as SPIHT or JPEG2000. Our forensic
technique is separated into two steps. The first identifies unaltered
images captured using standard digital cameras. The second step
separates compressively sensed images from images compressed
using DWT-based techniques. We present experimental results to
show the effectiveness of our proposed forensic technique.

II. FINGERPRINT OF COMPRESSIVE SENSING
In this section we show that the fingerprint of compressive

sensing appears in the image’s coefficient histograms. We begin
by briefly reviewing the forensically significant characteristics of
unaltered images captured using standard digital cameras and those
that have undergone traditional DWT-based compressions.

It has been shown that the coefficient histograms in the transform
domain (either DCT or DWT) are zero-mean and smooth if the
image is a natural image and has not been altered in this transform
domain [11]. In the past, the distribution of DWT coefficients in
each sub-band has been modeled using the Laplace distribution.
Fig. 1 shows an example of a typical DWT coefficient histogram
from an unaltered image captured by a standard digital camera.

DWT-based compression techniques, such as SPIHT and
JPEG2000, begin by decomposing an image using a multi-level
wavelet transform. For each sub-band, the coefficients are quantized
using bit-plane encoder so that the later transmitted data stream
keeps significant bits while dropping others. When reconstructing
from the receiver side, the sub-band coefficients are obtained by
replacing the lost bits with zeros which causes the reconstructed
coefficients to be clustered around certain integer values. This effect
can also be seen in the center plot of Fig. 1, which shows the DWT
coefficient histogram of an image compressed using JPEG2000.
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Fig. 1. Histogram of DWT coefficients taken from uncompressed Lena (left), the same image after JPEG2000 compression (center), and
the reconstructed compressively sensed Lena (right).

Compressive sensing, on the other hand, is a completely dif-
ferent technique for image acquisition and storage. This technique
measures a signal by projecting it on to random basis functions.
An example of this is the single pixel camera which acquires each
measurement by employing a digital micro-mirror array to optically
calculate linear projections of the scene onto a specific random
pattern [10]. Thus, each compressed measurement is a combination
of weighted pixel values in the original image. Reconstruction can
be done effectively using non-linear algorithm when the original
signal has a sparse representation. Because the DWT coefficients
of natural images tend to be sparse, compressive sensing on images
is often performed in the wavelet domain.

The right figure in Fig. 1 shows the coefficient histogram of an
image captured using compressive sensing. Unlike traditional DWT-
based compression techniques which concentrate transform coeffi-
cient values into multiple peaks, this DWT coefficient distribution
has one strong peak at zero. Experimentally, we have observed
such distribution has significantly more kurtosis than the Laplace
distribution. This happens because the reconstruction of compres-
sive sensing retains the most significant values while throwing those
small values away (set to zero). Furthermore, since this coefficient
histogram is too peaked for the Laplace or generalized Gaussian
distribution and also has coefficient numbers drop dramatically
from duration (0, 1) to [1, 2), almost the same as the quantized
case. Thus, [2] and [6] may fail to distinguish compressively sensed
images from traditional DWT-based compressed ones.

III. DETECTION SCHEME
As we discussed in the previous section, the coefficient his-

togram of unaltered images taken from standard digital cameras,
DWT-based compressed images and compressively sensed images
have different fingerprints in transform domain. We exploit this dis-
parity to propose our forensic detection scheme. We first introduce
our model for each case, next use statistic tools to estimate the
parameters of each model, then classify the test image according
to the distribution that is most closely fits.

III-A. Models
We model the distribution of DWT sub-band coefficients in an

unaltered image captured by a standard camera using the Laplace
distribution [12]. Let random variable X denote the value of a
DWT coefficient in a specific sub-band after DWT transform. The
distribution of X is

P[X = x] =
1

2λs
e
− |x|

λs with λs > 0. (1)

For images compressed using traditional DWT-based techniques,
such as SPIHT or JPEG2000, we model their DWT coefficient his-
togram using the discrete Laplace distribution. This is because both
bit plane truncation and quantization cause the DWT coefficients
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Fig. 2. Fitting the coefficient histogram of compressively sensed
Lena with both Laplace model and Laplace mixture model.

to cluster into peaks separated by the width of each quantization
interval.

We model the DWT domain coefficients distribution of the
compressively sensed image based on experimental observations,
we propose modeling the DWT using a Laplace mixture model.
Use the same notation of coefficient variable X with (1), we have

P[X = x] = w1
1

2λd1
e
− |x|

λd1 + w2
1

2λd2
e
− |x|

λd2 (2)

with w1 + w2 = 1, 0 < λd1 < 1, λd2 > 1.

The first term approximates the central peak of the coefficient
histogram, while the second one is made to fit the tails on both
side. We use Laplace mixture model for it inherits the Laplace
characteristic from the original image. So does the discrete Laplace
model for traditional DWT-based compressed images. Fig. 2 gives
an example on a particular compressively sensed image to show the
effectiveness of our proposed model, where the coefficients of sub-
band 3 is studied after 6-level DWT decomposition with wavelet
basis bior4.4.

III-B. Detection and Classification
Based on the three models in the previous subsection, we propose

a two step detection scheme, which is sketched out in Fig. 3. In
particular, we use the Laplace model in (1) to first try to fit the
coefficient histogram of the test image. If it fits, this image is
identified as unaltered image captured by standard digital camera. If
not, we proceed to the second step - fitting it into Laplace mixture
model, in which fitting will identify it as an image captured by
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Fig. 3. Two step detection scheme to distinguish the compressively
sensed image by studying the coefficient histogram in DWT do-
main.

compressive sensing, and otherwise it is traditional DWT-based
compressed. We use two step scheme instead of only fitting the
testing image into Laplace mixture model is due to the fact that
Laplace distribution can certainly be presented as a combination of
two Laplace distribution, while the opposite statement is not true.

First Step - Identify Unaltered Images Captured using
Standard Digital Cameras

Our first detection step is to detect whether the image is unaltered
and captured by a standard digital camera. The test image is first
transformed into a specific DWT domain. We assume the DWT
basis is known. If not, it can be found using techniques similar
to those described in [2], [6]. We then estimate the parameter λs

in the Laplace model (1) from the given data of the test image.
Let xi, i = 1, . . . , n denote the coefficients in a single sub-band,
with n be the total number of coefficients in this sub-band. The
estimated parameter λ̂s in our Laplace model is obtained by the
maximum likelihood estimate

λ̂s =

∑n
i=1 |xi|
n

.

Having this estimated parameter in hand, we calculate the mean
square error (MSE) between the normalized observed histogram
ho(k), and the histogram of estimated distribution he(k) according
to the equation

MSEs =

∑
k

(
ho(k)− he(k)

)2
N

, (3)

, where N denotes the total number of bins in the histogram. The
estimated histogram can be obtained by integrating the distribution
function within each bin range. Next we determine if the image is
unaltered by performing the following threshold test

H0 : The image is altered if MSEs > τs
H1 : The image is unaltered if MSEs ≤ τs

, where τs is an appropriately chosen decision threshold.

Second Step - Identify Images Acquired by Compressive
Sensing

Whenever the detection result in the previous step is hypothesis
H0, we come to the second step: identify whether the test image
has been captured by compressive sensing. We do this by testing
to see if the coefficient histogram can be modeled as Laplace
mixture distribution. We still use the coefficient data obtained
at the beginning of our first detection step and estimate the
parameters in (2), w1, w2, λd1 and λd2. Expectation-maximization
(EM) algorithm is used in this step [13]. This algorithm is to find the
maximum likelihood estimations of parameters in statistical models,
where the model depends on unobserved latent variables. In our
case, given an observation, there is certain probability w1 that it
obeys the Laplace distribution with parameter λd1, yet it also may

lie in the other Laplace distribution field, with parameter λd2, of
probability w2. EM is an iterative method which alternates between
performing an expectation (E) step, which computes the expectation
of the log-likelihood evaluated using the current estimations for
the parameters, and a maximization (M) step, which computes
parameters maximizing the expected log-likelihood found on the
E step. These parameter-estimates are then used to determine the
distribution of the latent variables in the next E step. Such E-M
iteration goes on until convergence.

In our specific case, the coefficients xi, i = 1, . . . , n are consid-
ered as the samples of n independent observations Xi, i = 1, . . . , n
from a mixture of two Laplace distributions. And let Zi, i =
1, . . . , n be the latent variables that determine the component from
which the observation originates. Then for each i, i = 1, . . . , n

Pλd1 [Xi = xi|Zi = 1] =
1

2λd1
e
− |xi|

λd1

Pλd2 [Xi = xi|Zi = 2] =
1

2λd2
e
− |xi|

λd2

with P[Zi = 1] = w1 and P[Zi = 2] = w2.

The estimated parameters θ = {w1, w2, λd1, λd2} in (t + 1)th

iteration given the result of tth iteration are obtained by⎧⎪⎪⎨
⎪⎪⎩

w
(t+1)
j = 1

n

∑n
i=1 T

(t)
j,i j = 1, 2

λ
(t+1)
dj =

∑n
i=1 T

(t)
j,i |xi|

∑n
i=1 T

(t)
j,i

j = 1, 2

With T
(t)
j,i , i = 1, . . . , n, j = 1, 2 defined as

T
(t)
j,i =

w
(t)
j

1

2λ
(t)
dj

e
− |xi|

λ
(t)
dj

w
(t)
1

1

2λ
(t)
d1

e
− |xi|

λ
(t)
d1 + w

(t)
2

1

2λ
(t)
d2

e
− |xi|

λ
(t)
d2

.

And the maximized log-likelihood expectation Q(θ|θ(t)) accord-
ing to these estimates is

max
θ

Q(θ|θ(t)) =
n∑

i=1

2∑
j=1

T
(t)
j,i

[
ln

w
(t+1)
j

2λ
(t+1)
dj

− |xi|
λ
(t+1)
dj

]
.

The iteration stops whenever the maximum log-likelihood ex-
pectation converges or the limit of iteration number is reached.

Having these estimated parameters, we again calculate the MSE
- MSEd - between the normalized observed histogram and the
estimated distribution using the similar equation (3). We finally
determine if the image is compressively sensed by performing the
following threshold test

H0 : The image is DWT-based compressed if MSEd > τd
H1 : The image is compressively sensed if MSEd ≤ τd

, where τd is an appropriately chosen decision threshold.

We summarize our scheme as follows:

1) Estimate the parameter of Laplace model using the co-
efficients data taken from an appropriate DWT domain.
Determine whether this image is unaltered and captured by
a standard digital camera by calculating the MSE between
observed histogram and estimated Laplace model, and see if
it is below the threshold.

2) If the image is identified as altered in Step 1), use the
coefficient data to estimate the parameters in Laplace mixture
model. And further decide whether this image has been
traditional DWT-based compressed or been captured using
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Fig. 4. ROC curve showing the performance of the first step of our
detection technique. This step identifies unaltered images captured
by standard digital camera and separates them from images that
acquired by compressive sensing or compressed using a DWT-based
technique.

compressive sensing technique by calculating the MSE be-
tween the observed histogram and the estimated Laplace
mixture model, and compare it with the threshold.

IV. SIMULATIONS AND RESULTS
To evaluate the performance of our compressive sensing detec-

tion scheme for image acquisition, we compiled a testing database
of 597 images. This database contained 299 unaltered images
captured using standard digital cameras, 299 images compressed
using JPEG2000, and 299 compressively sensed images (i.e., mea-
surements are random projections of the unaltered images). When
compressive sensing was performed, we used the same DWT basis
that was used during JPEG 2000 compression as the sparse domain
for reconstruction, where spectral projected gradient pursuit algo-
rithm was used. We then used our proposed compressive sensing
detection scheme to classify each image as unaltered, compressed
using a DWT based technique, or compressively sensed.

Fig. 4 plots the Receiver Operating Characteristic (ROC) curve
of our first detection step to identify the unaltered images. Sub-band
2 through sub-band 6 are all the AC sub-bands in the transform
domain, from lowest frequency to highest frequency. Among them,
sub-band 3, 4 and 5 perform the best. When these sub-bands are
used to detect unaltered images, our detector achieves a Pd of 100%
for Pf less than 4%. In addition, the coefficients of the lowest
frequency, sub-band 2, have more obvious noise than the others
which makes it not ideal for the detection. On the other hand, the
coefficients from the highest frequency have too much kurtosis that
makes it harder to detect as well.

Fig. 5 shows the ROC curve to display the performance of
the second detection step of our compressive sensing detection
technique. Concerning the best performance sub-bands, sub-band 2
and 3, we can obtain Pd nearly 90% with Pf of 10%. This figure
also shows that for the coefficients taken from higher frequencies,
since the quantization step of JPEG2000 compression becoming
much larger, the peaks are too small to detect, and hence it is
harder to distinguish itself with the compressively sensed images.

V. CONCLUSIONS
In this paper, we proposed a technique to identify images

acquired by compressive sensing and separate them from unaltered
images captured using standard digital cameras and also images
compressed using traditional DWT-based techniques. We proposed
a model for the DWT coefficients of compressively sensed images.
Our two step detection first identifies the unaltered images using
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Fig. 5. ROC curve showing the performance of the second step
of our detection technique. This step detects the images acquired
by compressive sensing and separate them from those compressed
using a DWT-based technique.

maximum likelihood estimate and threshold test, then further iden-
tifies the compressively sensed image by expectation-maximization
estimate and threshold test. Our simulation shows the ROC curve
of each step, where we get Pd of 100% for Pf less than 4% in
the first detection step, and Pd nearly 90% with Pf of 10% for the
second step.

VI. REFERENCES
[1] H. Farid, “Image forgery detection,” IEEE Signal Processing

Magazine, vol. 26, no. 2, pp. 16–25, Mar. 2009.
[2] W.S. Lin, S.K. Tjoa, H.V. Zhao, and K.J.R. Liu, “Digital image source

coder forensics via intrinsic fingerprints,” IEEE Trans. on Information
Forensics and Security, vol. 4, no. 3, pp. 460–475, Sep. 2009.

[3] A. Swaminathan, M. Wu, and K.J.R. Liu, “Nonintrusive component
forensics of visual sensors using output images,” IEEE Trans. on
Information Forensics and Security, vol. 2, no. 1, pp. 91–106, Mar.
2007.

[4] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification
from sensor pattern noise,” IEEE Trans. on Information Forensics and
Security, vol. 1, no. 2, pp. 205–214, Jun. 2006.

[5] Z. Fan and R.L. de Queiroz, “Identification of bitmap compression
history: JPEG detection and quantizer estimation,” IEEE Trans. on
Image Processing, vol. 12, no. 2, pp. 230–235, Feb. 2003.

[6] W. Luo, Y. Wang, and J. Huang, “Detection of quantization artifacts
and its applications to transform encoder identification,” IEEE Trans.
on Information Forensics and Security, vol. 5, no. 4, pp. 810–815,
Dec. 2010.

[7] T. Pevny and J. Fridrich, “Detection of double-compression in
JPEG images for applications in steganography,” IEEE Trans. on
Information Forensics and Security, vol. 3, no. 2, pp. 247–258, Jun.
2008.

[8] J. Zhang, H. Wang, and Y. Su, “Detection of double-compression
in jpeg2000 images,” 2nd International Symposium on Intelligent
Information Technology Application, vol. 5, pp. 418–421, Dec. 2008.

[9] D.L. Donoho, “Compressed sensing,” IEEE Trans. on Information
Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[10] M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F.
Kelly, and R.G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp.
83–91, Mar. 2008.

[11] S.G. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 11, no. 7, pp. 674–693, Jul. 1989.

[12] M.C. Stamm and K.J.R. Liu, “Anti-forensics of digital image
compression,” IEEE Trans. on Information Forensics and Security,
vol. 6, no. 3, pp. 1050–1065, Sep. 2011.

[13] T.K. Moon, “The expectation-maximization algorithm,” IEEE Signal
Processing Magazine, vol. 13, no. 6, pp. 47–60, Nov. 1996.

1840


