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Abstract—Indoor people counting is crucial for many ap-
plications such as crowd control and smart building. Recent
works have shown the potential of using Radio Frequency (RF)
signals to estimate the occupancy level. However, most of the
existing solutions require training, dense links of many devices,
and usually work for only moving human subjects. In this
work, we consider people counting in a quasi-static scenario and
propose a non-intrusive training-free method using the Channel
State Information (CSI) on a single pair of commercial WiFi
devices. Different from crowd counting for moving targets that
alter the environment significantly, static crowd counting is non-
trivial because stationary users only produce minute changes to
the wireless signals. First, we transform the quasi-static crowd
counting into a continuous multi-person breathing rate estimation
problem. Then we propose a novel solution, including an iterative
dynamic programming and a trace concatenating algorithm that
continuously track the breathing rates of multiple users. By
utilizing both spectrum and time diversity of the CSI, our system
can correctly extract the breathing traces even if some of them
merge together for a short time period. Extensive experiments
are conducted in two distinct environments (an on-campus lab
and a car). The results show that our system achieves an average
accuracy of 86% for both cases. For 97.9% out of all the testing
cases, the absolute error of crowd number estimates is within 1.

Index Terms—Multi-people breathing estimation, identity
matching, crowd counting, wireless sensing.

I. INTRODUCTION

Human-centric sensing has attracted increasing interests

for a range of Internet of Things (IoT) applications [1] [2].

Demands of accurately and passively estimating the number

of people (a.k.a crowd counting) in the area of interest surge

for many applications. For instance, a smart home can adjust

the light and ventilation system based on occupant number

to improve energy efficiency [3] [4]. Similarly, being aware

of how many passengers there are in a car, the intelligent

transportation systems would be more efficient and responsive.

Traditional solutions mainly rely on surveillance cameras

for crowd counting [5]. These vision-based approaches, how-

ever, face common limitations. For example, they are vulner-

able to poor environmental lighting conditions, and a number

of cameras are needed to cover an area of interests without

blind spots. And importantly, all vision-based approaches raise

privacy concerns.

To overcome these limitations, the community has recently

made efforts in RF-based crowd counting, either in a device-

based or a device-free manner. Device-based methods [6] [7]

aim to count the number of user-carried wireless devices (e.g.,

smartphones) as the user number, which requires the users

to expose their own devices to a monitor station (e.g., an

Access Point) and performs badly in case a user has multiple

devices. Differently, device-free RF-based approaches [8]–

[14] are more attractive as it does not require the users to

wear or carry any device. Past proposals, however, either rely

on dense wireless links [8] and/or involve extensive training

[9]–[12] to achieve crowd counting. A few works [13] [14]

attempting to circumvent the need of training can only count

walking targets and thus cannot work in many as important

yet static/quasi-static indoor scenarios, such as offices and

conference rooms.

In this paper, we propose a training-free approach for

passive crowd counting using a single pair of commodity WiFi

devices. Different from previous works, we are particularly

interested in estimating the occupancy level in quasi-static

scenarios, such as attendees in a meeting or staffs in an

office. Detecting and counting static users, however, is non-

trivial. First, unlike moving subjects that alter the wireless

links significantly, static users only pose minute changes on the

received signals. In this work, noticing that the major motion

of static/quasi-static users comes from the chest movement due

to respiration, we transform the quasi-static crowd counting

problem into a problem of continuous multi-user breathing
rate estimation.

Most of past proposals of breathing rate estimation [15]–

[22], however, either only work for a single user [15] [16]

or assume the prior knowledge of the number of users [17]

[18], the exact information we aim to extract in this paper.

Thus these systems cannot be directly used to estimate the

occupancy level of quasi-static scenarios. To estimate user

number by continuous breathing rate estimation of multiple

users, we need to overcome several unique challenges.

First, a person’s breathing rate varies over time, rendering it

non-trivial to associate the successive breathing rate estimates

to the corresponding persons. Considering that one’s breathing

rate will not fluctuate within a short time period, we build

a Markov chain model for the natural breathing signals and

further employ an iterative dynamic programming algorithm

to continuously track multiple breathing traces (i.e., sequences

of breathing rates of different users). By leveraging both

the spectrum and time diversity of the CSI, our system can

correctly extract the breathing rate traces even if some of them

are merges together for a short time period.

Second, the number of users may not be fixed for an area of
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interest, since users might come and go. In order to output real-

time estimates of the occupancy level, we propose to maintain

the traces of existing users and concatenate the latest estimates

with the presented traces to determine existing users, newly

arriving users, and leaving users.

We prototype our system using a pair of commodity off-

the-shelf (COTS) WiFi devices. We conduct experiments in

two typical targeted environments (i.e., a lab office and a

car). Extensive results show that our system is independent

of environments, and the average accuracy is more than 86%
for both environments. Furthermore, the system can achieve

97.9% accuracy when the absolute error of estimation is within

1 for all the testing cases. We believe the proposed approach

makes an important step towards passive crowd counting

and could deliver a complete solution when integrated with

previous methods for moving targets.

The rest of the paper is organized as follows. We study the

multi-person breathing rate estimation in Section II, followed

by people counting in Section III. We present experiments in

Section IV and conclude in Section V.

II. MULTI-PERSON BREATHING RATE ESTIMATION

The channel state information (CSI) depicts how radio

signals propagate from a transmitter (Tx) to a receiver (Rx).

With the presence of human beings, one or more paths of

signal propagation will be altered due to human motion. Given

a pair of Tx and Rx with multiple omnidirectional antennas,

the CSI of link m at time t and frequency fk is modeled as

hm(t, fk) =

L∑
l=1

al,m(t)exp(−j2πfk
dl,m(t)

c
) + nm(t, fk),

(1)

where k ∈ V is the subcarrier (SC) index with center frequency

fk in the set of usable SCs V . L is the total number of

multipath components (MPCs), while al,m(t) and dl,m(t)
denote the complex gain and propagation length of MPC l.
nm(t, fk) is the additive white noise, and c is the speed of

light.

In the presence of breathing, (1) can be rewritten as

hm(t, fk) =
∑
i∈I

∑
l∈Ωdi

al,m(t) exp(−j2πfk
dl,m(t)

c
)

+
∑
l∈Ωs

al,m exp(−j2πf
dl,m
c

) + nm(t, fk),

(2)

where I denotes the set of human subjects. Ωdi
denotes

the MPCs scattered by human being i, resulting in time-

variant complex gain and delay, Ωs denotes the MPCs that are

not affected by people’s breathing, whose complex gain and

delay keep time-invariant. The gain of MPCs in Ωdi could be

modeled as [23]

al,m(t) = al,m × (1 +
Δdl,m
dl,m

sinθsin(
2πt

Tbi

+ φ))−Ψ, (3)

where al,m and dl,m are gain and path length in a static

environment, Δdl,m is the difference of propagation length
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Fig. 1: Spectrogram after link combination.

caused by chest movement, θ is the angle between human

scatter and the EM wave, and φ is the initial phase. Ψ is the

path loss exponent. Since the chest movement is much smaller

than the path length, i.e., Δdl,m � dl,m, the amplitude of

MPC in both Ωs and Ωdi
can be assumed to be time-invariant,

e.g., al,m(t) ≈ al,m.

It is noted that for each MPC subset Ωdi , the delay is

periodic due to the periodic chest movement, i.e., dl,m(t +
Tbi) = dl,m(t), ∀l ∈ Ωdi

. Hence we would be able to

see multiple frequency components of the measured CSI in

frequency domain, each corresponding to a distinct breathing

signal.

In order to extract breathing signals, we first apply a sliding

window of length W to the captured CSI time series of each

SC in every link, and then obtain the frequency spectrum

by performing Fast Fourier Transform (FFT) over each time

window. We then employ a band-pass filter on the spectrum to

consider only the normal range human breathing frequencies

[bmin, bmax]. By combining all the SCs over links, we can

get a final spectrogram as shown in Fig. 1. In principle, the

breathing signal is more periodic than noise and other motion

interference. Thus, it is more likely to be observed as peaks

in most of the time, and thus the breathing signal will form a

trace in the given spectrum along the time, with the frequency

changing slightly as shown in Fig. 1.

III. PEOPLE COUNTING

A. From Breathing Rates to People Counting

Previous works estimate the number of people by the

number of candidate breathing rates [21]. However, they have

several limitations. First, the breathing rate estimation may

not be accurate enough for a single time instance. Second,

different users may have close breathing rates that are indistin-

guishable from the frequency spectrum, resulting in potential

underestimation. Third, the number of people could vary over

time as people may come and go. And the accompanying

motion will also corrupt the breathing signals.

To estimate the accurate crowd number, we utilize the diver-

sity in the time series of breathing rate estimates for reliable

estimation. We first model the breathing series as a Markov

Chain Model. Noting that the human breath is a periodic signal

where breathing frequency can smoothly change over time,

the variation of breathing rate between two adjacent time bins

is assumed to follow a normal distribution N (0, σ2), with the

probability density function (PDF) p(f). Since the operation of
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FFT automatically discretizes the continuous frequency in the

range of [bmin, bmax] into |Q| frequency components, where

|Q| means the cardinality of set Q, thus, the natural breath can

be modeled as a Markov chain, and the transition probability

matrix is denoted as P ∈ R|Q| × R|Q|, which is defined as

P(q, q
′
) = P(g(i) = q

′ |g(i− 1) = q)

=

∫ (q
′−q+ 1

2 )∗Δf

(q′−q− 1
2 )∗Δf

p(f)df,
(4)

where ∀q, q′ ∈ Q and g is a mapping indicating the frequency

component of the breathing rate at given time slots.

To estimate the number of people in a given time slot t, the

people counting system leverages the spectrum in [t −W, t],
where W is the window length. An output is produced every

Ws seconds, and the spectrum is updated at the same time.

Thus to estimate the number of people at time t, a spectrum

S ∈ RI
+ × R|Q|

+ is leveraged, where I = W
Ws

. Since breathing

signals can be observed as the visible traces in spectrogram,

estimating the occupancy level is equal to counting the number

of breathing traces during the observation time. In the follow-

ing, we first extract the traces of successive breathing rates,

and then concatenate them over time. Different from Adaptive

Multi-Trace Carving (AMTC) proposed in [24], which tries to

track heartbeat trace from the video signal, our algorithm can

deal with the case when the number of traces changes in the

adjacent time window.

B. Extracting Breathing Traces

1) Theoretical Model: For a given spectrum S, a reasonable

estimate of the breathing trace can be got by
g∗ = argmax

g
E(g), (5)

where g indicates the breathing trace and is denoted as

g = (g(n), n)
I
n=1. (6)

Here g : [1, I] −→ Q is a mapping indicating the frequency

component of the trace at the given time. E(g) is the power

of a trace defined as

E(g) =

I∑
i=i

S(i, g(i)), (7)

where S(i, j) denotes the power at time bin i and frequency

component j.

Considering that one’s breathing rate will not fluctuate a

lot within a short period, a regularization term should be

added to penalize sudden changes in frequencies of interests.

A breathing trace is then a series of breathing rate estimates

that achieve good balance of frequency power and temporal

smoothness. The smoothness of a trace can be evaluated by a

cost function C(g), defined as

C(g) � − logP(g(1))−
I∑

i=2

logP(g(i− 1), g(i)), (8)

where the frequency transition probability P(g(i−1), g(i)) can

be calculated by (4). Without loss of generality, we assume

a uniform prior distribution, i.e., P(g(1)) = 1
|Q| . The cost

function C(g) is the negative of the log-likelihood for a given

trace. The smoother a trace is, the larger its probability is, and

the smaller the cost it takes.

The most probable breathing trace can be found by solving

g∗ = argmax
g

E(g)− λC(g), (9)

where λ is a regularization factor. Here we denote E(g) −
λC(g) as the regularized energy of trace g. By properly

choosing the hyper-parameter λ, the people counting system

can ensure that the regularized energy of a true breathing

trace is positive, while when the observation area is empty,

the regularized energy for any trace candidate in the given

spectrum is negative.

2) Iterative Dynamic Programming: The problem in (9) can

be solved by dynamic programming. However, dynamic pro-

gramming typically can only find the trace with the maximum

regularized energy and cannot deal with multiple breathing

traces. We propose a successive cancellation scheme to find

multiple traces one by one via a novel method of iterative

dynamic programming (IDP).

The principle idea of IDP is intuitive. For a given spectrum

S, the most probable breathing trace is first found by dynamic

programming. To further determine if there are any other

breathing traces, the identified trace will be erased from the

spectrum, and then a new round of dynamic programming

is performed to find another candidate trace. This successive

cancellation procedure will be run iteratively until there is no

more effective traces in the spectrum.

For clarity, (i, q) denotes the bin index with timestamp i
and frequency component q. We want to find the best trace

of frequency peaks from timestamp i to j, which is denoted

as gi � gj . Define the regularized energy of trace gi � gj

that ends at point (j, n) as s(gi � (j, n)). Our approach is

to search all possible traces gi � (j, n) that end at frequency

point n and select the best one among them. This can be

achieved by finding the optimal traces for all the bins along

with the adjacent timestamps. For simplicity, we denote the

regularized energy at each bin as its score given by

s(i, q) = S(i, q) + max
∀q′∈Q

{s(i− 1, q
′
) + λ logP(q

′
, q)},

i = 2, 3.., I, ∀ q, q
′ ∈ Q,

(10)

where s(1, q) = S(1, q) + λ logP(g(1) = q). The score of a

given bin is the maximum achievable regularized energy that

it can obtain. In other words, it determines the optimal paths

that pass through bin (i, q).

The entire optimal breathing trace can be found by back-

tracking the bins that contribute to the maximum score g∗(I)
of the last timestamp. For the rest of the breathing trace in the

observation window, i.e., ∀ i = I − 1, I − 2, ..., 1, we have

g∗(i) = argmax
∀q∈Q

s(i, q) + λ logP(q, g∗(i+ 1)). (11)

The backtracking procedure in (11) gives the optimal trace g∗

for a given spectrum, which is the optimal solution for (9).

To further check if there are any other candidate breathing

3
Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2021 at 17:28:12 UTC from IEEE Xplore.  Restrictions apply. 



50 60 70 80 90 100
(a) Time(Seconds)

8

10

12

14

16

18

20

B
re

at
hi

ng
 r

at
e(

B
P

M
)

50 60 70 80 90 100
(b) Time(Seconds)

50 60 70 80 90 100
(c) Time(Seconds)

-12

-10

-8

-6

-4

-2

0

Fig. 2: Successive cancellation procedure of IDP: (a) The first trace found by IDP, (b) Spectrogram after erasing the energy

stripe of first trace, (c) Spectrogram after erasing all energy stripes found by IDP.

signals in the given spectrum, the trace g∗ should be removed.

For the ideal case, we only need to remove the bins along

g∗. However, since the number of FFT points are limited, the

energy of the breathing signal is diffused around the center

of breathing trace, which forms an energy strip in the given

spectrum as shown in Fig. 1. Thus, if we only remove the

energy along the optimal trace g∗ and consecutively execute

dynamic programming in (10) and (11), we will get a group

of traces inside one energy strip. Therefore, IDP applies a

windowing module on the optimal trace g∗ to emulate the

diffusing effect of FFT to get an energy strip. The updated

spectrum after we erase the optimal energy strip is

S(i) ← S(i)− g∗(i) ∗w, ∀i = 1, 2, ...I, (12)

where S(i) denotes the energy of spectrum at timestamp i,
and w is the frequency response of the windowing module.

Operator ∗ denotes convolution operation, which can emulate

the energy stripe caused by the diffusing effect of FFT.

We recursively perform the above dynamic programming

and spectrum cancellation to find multiple traces. The algo-

rithm terminates when the score of the found trace is negative,

indicating an empty spectrum without any effective traces. The

procedure of iterative dynamic programming is summarized

in Algorithm 1. Fig. 2 illustrates the details of this finding-

then-erasing procedure. In Fig. 2 (a), the trace found by DP

is marked by the line, and the energy stripe of this trace

is removed as shown in Fig. 2 (b). The spectrogram, when

IDP terminates, is shown in Fig. 2 (c), and lines in the figure

indicate the breathing traces. It is clear to see that although

there is still some residual energy not perfectly removed, IDP

terminates properly since there are no traces satisfying the

constraint of non-negative regularized energy.

C. Trace Concatenating

Iterative dynamic programming provides the breathing trace

for each time window and determines the occupancy level

based on the trace number. In practice, a continuous counting

system, however, would monitor for much longer time than a

time window, posing extra information gains to enhance the

trace extraction. In this part, we propose a novel trace concate-

nating algorithm to concatenate trace segments belonging to

the same breathing signal in different time windows, which not

only improves the trace segments, but also enables detection

of the start and end time of each trace (or equivalently, the

entering and leaving time of a specific user).

Algorithm 1 Iterative Dynamic Programming

1: Calculate regularized energy map s(i, j) by (10)

2: Initialize trace number t ← 0, frequency response of

rectangular window w
3: while max

q
s(I, q) > 0 do

4: t ← t+ 1
5: gt(I) ← argmax

q
g(I, q)

6: i ← I − 1
7: while i 	= 0 do
8: g∗t (i) ← argmax

q
s(i, q) + λ P(q, g∗t (i+ 1))

9: i ← i− 1
10: end while
11: update spectrum S(i) = S(i)−g∗(i)∗w, ∀i = 1, 2, ...I
12: Calculate regularized energy map s(i, j) by (10)

13: end while

For clarity, we store all presented traces in a database. The

jth trace found previously is denoted as gpre
j (tst : tend), where

j = 1, · · · , J and tst and tend denote the start and end time

of the trace. The kth traces found in the current time window

[t−W, t] is denoted as gk(t−W : t), where k = 1, · · · ,K.

Furthermore, the similarity between two traces is defined as

the ratio between the overlapped time in the window and the

window length, which is expressed as

f(gpre
j ,gk) =

|1(gpre
j (tst : tend) = gk(t−W : t))|

I − 1
, (13)

where f(gpre
j ,gk) ∈ [0, 1]. A similarity matrix F ∈ RJ ×RK

can be calculated according to (13) to show the similarity

between all the traces in the current window and those in the

database . In order to find the previous part for gk(t−W : t),
we only need to find the maximum item of f(k), which is the

k-th column of F . The row index of the maximum similarity

indicates the index of the previous trace if the maximum

similarity is above a predefined threshold.

If there exists a previous trace with a high enough similarity,

it means that the corresponding breathing trace has been

detected before. Then the endpoint of the corresponding trace

should be updated. We let the endpoint be the current time and

update the corresponding frequency component accordingly. In

case a new user arrives, there will be no existing traces that

have a similarity larger than the threshold and thus a new trace
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Fig. 3: Traces found by IDP in four adjacent time windows
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Fig. 4: Trace concatenating result of windows in Fig. 3

is created with the corresponding timestamps and frequency

components. Similarly, no trace in the current window being

similar to the past traces corresponds to a user that has left,

and thus the trace would be terminated.

Fig. 3 and Fig. 4 show the effect of trace concatenating

algorithm. Four adjacent time windows are shown in Fig. 3,

and traces found by IDP are marked by lines. We can see that

although the breathing trace in the middle of the spectrogram

is not detected in the second and third window (due to

body motion), since the trace found in the fourth window

still achieves high similarity with the trace found in the first

window, it still can be concatenated as shown in Fig. 4.

IV. EXPERIMENTS AND EVALUATION

In this section, we conduct extensive experiments to eval-

uate the performance of the proposed approach. We conduct

experiments using a pair of commodity WiFi devices, one as

Tx and the other as Rx. The channel is set to 5.765 GHz with

a bandwidth of 40MHz. Both Tx and Rx are equipped with

3 omnidirectional antennas. Each link between a Tx antenna

and an Rx antenna has a total of 114 SCs. Considering for

practical long-term monitoring, we use a very low sampling

rate of 10 Hz.

All the data in our experiments are collected in an on-

campus lab and a car over two months. Fig. 5 (a) shows

the layout of the LAB in which two devices (Tx and Rx)

are put on two different sides of a round desk located in the

middle of the room, and the distance between the Tx and Rx

is 3.5 m. Participants are invited to sit in chairs as if they were

attending a meeting. During the experiments, the participants

randomly choose their seats and slight movements are allowed.

To further verify that the proposed system is independent of

the environment, we also conduct experiments in a car, which

is an extreme case for indoor scenario, where there is limited

space as well as strong reflection. For the car scenario, the Tx

TX

RX

(a) LAB

TX RX

(b) Car

Fig. 5: Experiment setup.

and Rx are put at the front door on the driver and passenger

side respectively, as shown in Fig. 5 (b).

A. Overall Performance

Fig. 6 (a) demonstrates that the confusion matrix of our

method in the LAB. The counting error is within 1 for

98.6% of the testing cases. Additionally, the proposed system

can perfectly detect whether the monitoring area is occupied

or not. The accuracy however, decreases with more people

present. This is as expected since the more people there are,

the more likely their breathing traces may merge together and

the more likely occasional motion may happen, both leading

to counting errors. Fig. 6 (b) shows that our testing result in

the car can achieve a comparable performance with that in the

LAB, which demonstrates the independence of our system on

the environment.

To further evaluate our system, we compare it with the

most relevant TR-BREATH [21] which also estimates multi-

person breathing rates. TR-BREATH employs root-MUSIC

for breathing rate estimation and uses the affinity propagation

algorithm to estimate crowd number. The estimation accuracy

of TR-BREATH [21] is shown in Fig. 6 (c)(d). As seen,

TR-BREATH shows a comparable performance in the car

testing scenarios. The performance in the LAB environments

is much worse, with an overall accuracy of 70.68% (mean

of the diagonal elements of confusion matrix). The proposed

approach improves the overall performance by 16.46% and

3.32% for LAB and car testing scenario respectively, attributed

to its three core techniques: adaptive SC combination, iterative

dynamic programming, and trace concatenation.

B. Impact of IDP estimation algorithm

In this section, we discuss how the proposed algorithm

improves our system. Apart from the confusion matrix ,

here we additionally adopt true positive (TP) rate, which is

calculated as:
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(c) TR-BREATH in LAB

97.3%

0.0%

2.7%

0.0%

0.0%

0.0%

0.0%

0.0%

93.1%

6.9%

0.0%

0.0%

0.0%

0.0%

0.0%

4.7%

92.9%

2.4%

0.0%

0.0%

0.0%

0.0%

0.0%

11.6%

69.8%

16.3%

2.3%

0.0%

0.0%

4.3%

0.0%

22.2%

63.2%

6.8%

3.4%

0 1 2 3 4 
True number

0

1 

2

3 

4 

5

6

P
re

di
ct

ed
 n

um
be

r

(d) TR-BREATH in car

Fig. 6: Confusion matrix of people counting
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Fig. 7: TP comparison of different algorithms

TPi =
# of samples that predicted label is i

total # of samples that true label is i
. (14)

In this experiment, we show the benefits of the proposed

trace tracking algorithm. We compare the performance with

a local estimation algorithm that estimates the number of

people based on the spectrum at current timestamp only. The

comparisons of TP for the two algorithms are portrayed in

Fig. 7. The results shows that trace tracking algorithm con-

siderably improves the performance for both datasets, which

demonstrates the gains contributed by leveraging time diversity

in counting.
V. CONCLUSIONS

This paper presents a passive occupancy level estimation

system for quasi-static crowds using WiFi signals. The pro-

posed system enables static crowd counting by multi-person

breathing rate estimation, which is centered by two key com-

ponents: an iterative dynamic programming algorithm to ex-

tract the successive breathing traces from different individuals,

and a trace concatenating algorithm that splices consecutive

breathing trace segments. Experiment results show a respective

average accuracy of 87.14% and 86.58% for office and car

environments. Additionally, the counting error is within 1

person for 97.9% of the time.
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