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Abstract—The success of time-reversal (TR) technique relies
on the design of TR signature from the multi-path profile. In
practice, the signature is of limited precision instead of being
infinite due to the finite resolution in hardware. Such limited
signature precision will degrade the TR focusing effect and
thus the system performance. Although several works have been
proposed to study the performance of TR system with one-bit
signature, a general relation between the resolution of signature
and the system performance has not been established to answer
the question: how many bits are needed for TR systems to
achieve desirable system performance? In the paper, we address
the question by studying the TR system with limited signature
precision. We derive theoretically the relationship between the
received signal-to-interference-plus-noise ratio (SINR) and the
quantization step. Through simulations, we find that for a typical
TR system, 4-bit resolution for the signature is good enough to
achieve good system performance.

Index Terms—time-reversal, N-bit TR, limited signature pre-
cision

I. INTRODUCTION

With the explosive growth of wireless users as well as wire-
less applications and services in recent years, there is a grow-
ing need in calling for future high-speed reliable broadband
wireless communication solutions. On the other hand, due to
the development and progress in the field analog-to-digital-
converter (ADC), wideband communication becomes much
more affordable. Because of the inherent nature to fully harvest
energy from the surrounding environment by exploiting the
multi-path propagation, time-reversal (TR) technique is shown
to be a desired solution to low complexity high throughput
wideband communications [1].

The history of the research on TR transmission can go back
to early 1990s, when it was known and used in optical domain
for decades and later first used in ultrasonic domain by Mathias
Fink [2]. Since TR can make full use of multi-path propagation
and re-collect all the signal energy that could be collected
without complicated channel processing and equalization, it
has been also studied in wireless communication systems [3].
As pointed out in [4], TR system has the potential of over
an order of reduction in power consumption and interference
alleviation.

The success of TR technique relies on the design of TR
signature from the multi-path profile. In practice, the signature
is of limited precision instead of being infinite due to the
finite resolution in hardware, i.e., quantization. Such limited
signature precision will degrade the TR focusing effect and
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thus the system performance. Moreover, deploying the high-
resolution signature is practically difficult especially with a
rate of Gigabits per second [5], which translates into the cost
of the system. Although many works have been proposed in
the literature to theoretical analyze the TR system with the
assumption of full-precision signature [1] [4] [6], few work has
been done on analyzing the TR system with limited signature
precision except those on one-bit TR system [5] [7] [8] [9]
[10].

In [7], it is shown that the received signal-to-noise-ratio
(SNR) is lowered by 1.2 dB with only one-bit signature.
Followed by that work, several works have studied the perfor-
mance of one-bit TR system. For example, the Nguyen derived
the analytical solutions for the temporal and spatial focusing
metrics of one-bit TR system [8], while the Chang et al. in [9]
applied one-bit TR in Ultra-wideband (UWB) communication
systems and examined the system performance. Moreover, the
one-bit TR UWB communication system was further extended
to a single-input-multiple-out (SIMO) architecture [10].

In the academic integrity of TR system, we analyze the
TR system performance with limited signature precision in
this paper. Specifically, we try to address the question that
how many bits are needed for TR system to achieve de-
sirable performance. To do so, we first derive theoretically
the relationship between the received signal-to-interference-
plus-noise ratio (SINR) and the quantization step. Moreover,
the relationship between number of bits and the quantization
step size has been established. Furthermore, we provide a
systematic method to determine the precision of TR signature
deployed given desired system performance. In the end, we
find that for a typical TR system, 4-bit resolution for the
signature is good enough to achieve good system performance.

The rest of this paper is organized as follows. We theoreti-
cally analyze the TR system with limited signature precision in
section II. In section III, we conduct simulations to verify our
theoretical derivation. Then, we answer the question that how
many bits are needed for TR systems in Section IV. Finally,
conclusions are drawn in section V.

II. TIME REVERSAL SYSTEM WITH LIMITED SIGNATURE
PRECISION

A typical time reversal system is shown in Fig. 1. Before
transmitted through the antenna, the symbol X is first up-
sampled by a backoff factor D and then modulated by a

664



GlobalSIP 2014: Advances in Signal Processing for Mixed-Signal and Optical Sensing: Hardware to Algorithms

) (91
{0 e g g R
Fig. 1: Time-Reversal System Model.

signature g. At the receiver, the received signal is amplified
by a parameter a, and then down-sampled according to the
backoff factor D.

Consider a channel impulse response (CIR) with L realized
independent multi-paths as follows

L—-1
n] =Y hidn—1]. (1)
1=0
where h}s are assumed i.i.d. and h; ~ CN(0,0;?).

Similar to [6], we further assume that the o;2 exponentially
decays as follows

1T

of =exp T, @)

where T and o7 are the symbol period and the root mean
square delay spread of channel, respectively.

In a basic time reversal system, the signature g is simply a
normalized version of the time reverse of h, i.e.,

h*[L —1— 1]
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g[n] = 3)

From (3) we can see that g[n ]’s are iid. and g[n] ~

CN(0, UL%) with o2 Zz o OF.
Accordlng to Fig. 1, the received symbols can be written as

[6]
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and the received SINR can be computed as follows
E[Psignal]
E[Pis1] + No’

where Ny is the expect noise power, E[Pgigna1] and E[P1gi]
can be written as [6]

SINR = (5)
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with 6 being the transmit power for one symbol.

A. Analysis of the time reversal system with limited signature
precision

In practice, the signature needs to be quantized, i.e., the
signature is limited with finite precision. In such a case, the
system performance will degrade. In this subsection, we will
analyze theoretically how the system performance degrades
with the resolution of signature.

When the signature is quantized, quantization error will be
introduced. Let g and e = g — g be the quantized signature
and the quantization error, respectively. By replacing the g
with g = g+ e in Fig. 1, the received signal can be re-written
as

L

y[k] =a(h * g)[L — 1]z[k — %} (Signal)
(2L—2)/D
+a > (hxg)[Dlz[k—1] (ISI)
1=0,1#(L—1)/D
+a(hxe)[L — 1]z[k — %] (7

(2L—2)/D

>

1=0,1#(L—1)/D
(quantization error)

+a (hxe)[Dl]z[k — ]

+anlk] (noise)

Comparing (4) with (7), we can see that there are two
additional terms related to the quantization error that degrade
the system performance. In such a case, the received SINR
becomes

E[Psignal]
E[PISI] + E[Pquantization error] + NO ’

SINR = (®)

where E[Pgignal], E[P1s1] and Ny are the same as those in
(5). The E[P guantization error] is due to the quantization error
e, and can be computed according to the following theorem.

THEOREM 1: Given the  quantization step q,
E[P quantization error| can be approximated as follows

L
E[P uantization error] %90‘2 f +6 Z M

2L—2 ©

0L ;
D S

1= Ql;,,gL 1 m=DIl-L+1

Proof: Since e is the quantization error of the signa-
ture g which is a complex Gaussian variable, in order to
derive E[Pguantization error), We first review the statistical
relationship between a Gaussian input and the corresponding
quantization error.

Let v ~ N(0,02) be a Gaussian variable and ¢ be the
corresponding quantization error when the quantization step g
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TABLE I: Statistical Relationship between v and e q=mo, D=1
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is used. According to [11], we have

Ele]=0
E[e’] = i’—; + Z—Z : o, (3 (—lzl)l
Elvd = 2 i é,(2 (_1l)l+1 (10)
E[2€%] = 02:21 (—1)H

P = . 27l
T+ o RelB T
where ®,, is the characteristic function of Gaussian random
variable v.

Moreover, through the numerical results shown in Table I,
we find that, when ¢ < 20, E[¢?], E[ve], and E[v?€?] can
be approximated as -‘11;, 0, and %éﬁ, respectively. Applying
such an approximation to the quantization error term in (7),
we can obtain the approximated closed-form expression for
E[Pquantization error] as in (9)

Note that according to (2) and (3), the approximation is

p)
g
—_— —
202 =2

2
9L-1

5.
sum 2US‘U.TrL

accurate when ¢ < 20,5, = 2min,,

III. SIMULATION RESULTS

In this section, we conduct simulations to validate our
theoretical results derived in the previous section. Specifically,
we will verify the SINR in (8) under different conditions using
simulations.

In the first simulation, we evaluate the SINR performance
under different quantization step ¢, where we assume o =
1287, L = 257, and D = 1. The simulation results are shown
in Fig. 2, where “wo sim” and “wo th” stand for the simulation
results without quantization and theoretical results without
quantization, respectively, while “m = ¢ sim” and “m = i
th” stand for the the simulation results using quantization
step ¢ = i0.,,in, and theoretical results using quantization step
q = 10min, respectively. According to the analysis later in
Section IV, m = 1, m = 2 and m = 4 correspond to 4-bit, 3-
bit and 2-bit signature precision, respectively. Similar to [6], p
stands for a modified received signal-to-noise ratio. From Fig.
2, we can see that when ¢ < 40,,;,, the numerical results
match well with the theoretical results, which validates our
theoretical analysis in section II. We also see that the SINR
performance degrades as the quantization step ¢ increases.
This is because as g increases, the quantization error increases
and thus SINR decreases.

In the second simulation, we evaluate the SINR performance
under different backoff factor D, where we assume o =

SINR(dB)

Fig. 2: The SINR performance with ¢ = Mmoo, L = 257
and D = 1.
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Fig. 3: The SINR performance with ¢ = 20,5, L = 257.

12875, L = 257, and set ¢ = 20.,,s,,. The simulation results
are shown in Fig. 3. We can see that again the numerical
results match well with the theoretical results for different D’s.
Moreover, we find that as D increases, the SINR performance
increases due to the decrease of the inter-symbol-interference
(ISI).

We then evaluate the SINR performance under a different
environment setting, where we assume or = 25675 and
L = 513. The results are illustrated in Fig. 4 and Fig. 5. We
can see that the results are consistent with those in previous
simulations shown in Fig. 2 and Fig. 3, i.e., our theoretical
results are consistently valid under different settings.
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Fig. 4: The SINR performance with ¢ = mo,,, L = 513
and D = 1.
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Fig. 5: The SINR performance SINR with ¢ = 20,,;,, L =
513.

IV. How MANY BITS ARE NEEDED FOR A TIME
REVERSAL SYSTEM?

In the previous sections, we have analyzed and validated the
relationship between the SINR performance and the quantiza-
tion step g. However, we have not yet answered the question:
how many bits are needed for a time reversal system? In this
section, we will answer this question as follows.

From (3) and (2), we know that each tap of the signature is a
complex Gaussian randon% variable \;vith the maximal variance
being 02,,, = max,, T:ﬁ: = ﬁ: Since the probability
that the signature lies outside [—20,40, 20 mas 1S smaller
than 5%, we truncate the Gaussian distribution to the range
[—20 maz, 20maz], 1-€., all the values outside the range will be
truncated to be +20,,42.

. BERvs SNRD =8
10 T T T

=8— No quantization error
q=1 Orin N=4
—k—q=20_, N=3
q=4 Srin N=2
=—@— one bit TR
X a

10°F v ‘ 4
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6
SNR (dB)

Fig. 6: The BER performance with L = 257 and D = 8.

Then, consider a symmetric uniform quantization
with quantization step ¢ = Moy, there will be

2[4e ye—Momin| + 1 quantization levels. Therefore, we

need [log2(2[40m‘”/2ww +1)] bits each to represent the
real and imaginary part of signature, respectively. In other
words, for a quantization step ¢ = mo,;,, the number of

bits needed for each tap of signature, IV, is

40maw /Umin -
2m

N = [logy(2[ Tl an

We then examine the value of N for a typical time reversal
system through investigating the bit error rate (BER) perfor-
mance. Specifically, we consider a time reversal system with
opr = 1287, D = 8 and L = 257. The BER performance
under different NV is shown in Fig. 6. From Fig. 6, we can
see that compared with the one without quantization, the BER
performance of the one-bit time reversal system [7] actually
degrades a lot. The BER performance gradually improves as
N increases. This is because as IV increases, the quantization
step q decreases, due to which the quantization error decreases
and thus the BER performance improves. From Fig. 6, we
can also see that the system with N = 4 achieves similar
BER performance to the system without quantization, i.e., 4-
bit resolution for the signature is enough for a time reversal
system with such settings.

V. CONCLUSION

In the paper, we analyzed the TR system with limited
signature precision and studied the corresponding tradeoff
between the complexity and performance. We derived an
approximated closed-form expression of SINR as a function
of quantization step, according to which we investigate the
resolution of signature needed for TR systems to achieve
reasonable performance. Through simulation results, we con-
cluded that 4-bit resolution for signature is enough for a typical
TR system.
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