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-ABSTRACT

A new algorithm performing recursive least squares (RLS)
estimation is proposed. It is based on selectively rejecting
outliers arising from noise spikes; therefore, this method can

avoid the bias of parameters estimation due to some large:

noise perturbations. Unlike a sliding fixed-window scheme,
this new windowing scheme can be non-continuous. It de-
pends on the estimated level of observed errors (residual).
By monitoring the residuals in a recursive manner, we can ef-
fectively remove those spurious observed data by downdating
them. The proposed scheme is very useful especially when
some short-time large interferences perturb the system oc-
casionally. In this respect, it outperforms existing schemes,
either exponentially growing or sliding window. Computer
simulations will be given to justify this.

1 Introduction

A least-squares (LS) fit method assumes that the occur-
rences of errors or residuals associated with observed data
are equally likely and Gaussian distributed. However, in
nonstationary cases, especially under bursty errors condi-
tions, this assumption becomes invalid. The interest of ro-
bust LS methods hence emerges. Robust estimation is used
by statisticians to describe an estimating process that is in-
sensitive to large perturbations to a fraction of its input data
or a slight deviation of the full input data. A robust LS es-
timation [11] can be cast as finding a fitting vector w, such
that the size of the residual vector r € R™,

_jzlm(ro, 1)

is minimized over all possible w in R?. Here the residual
vector is defined as r = Xw —y, where X € R"*? and
y € R" are known. In (1), we need to define the robust
functions o.(+). If we choose o;(r;) such that it depends on
the time index ¢, then (1) reduces to present nonstationary
LS methods. Examples include o;(r) = X'r?, i = 1,...,n
for an exponentially weighted window, and o;(r) = r*(u(i -
n—14£) —u(i —n — 1)) for a sliding window, where £
represents the fixed-window size, u(-) is an unit step func-
tion, and n > £ is assumed. On the other hand, we can let
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the robust function o;(r;) be identical for all time indices,
namely, oy(r) = o(r), V1 < i < n, and choose o(r) in a
manner such that the influence of outlying residuals can be
deemphasized. One example is to let

r?/2, Ir| < m,
o4 =
r) {nlrl—n’/z Il > .

where 7 is a parameter[7]. While there are many robust
estimation methods, we will choose a simple scheme which
will first find a conventional LS fit and its associated resid-
ual vector, followed by downweighting or removing those
badly contaminated data as revealed from the feedback of
the outliers in the residuals [2,4,12].

In next section, we will first derive a recursive formula
based on up/down-dating QRD to monitor all of the residu-
als without explicitly computing the optimum fitting vector
w, and substituting back to r = Xw —y. This derivation
shares the same spirit and, in the sense of bypassing the
optimum fitting vetor in obtaining the residual vector, is
a generalization of the systolic recursive LS filtering pro-
posed by McWhirter [10]. In Section 3, we will describe the
residual-based selective window for robust RLS estimation..
Comparisons of computer simulations to other existing win-
dows and conclusions will be given in Section 4.

2 QRD-based Residual Monitoring

Consider a time recursive LS problem:

X(n)w(n) = y(n),

where X (n) and y(n) have growing dimensions in the num-
ber of rows (growing window),

"

c Rnxp, y(n) - € R,

Yn

The LS solution w(n) € ®? is computed such that the Eu-
clidean norm of the residual vector r(n) = X (n)w(n)—y(n)
is minimized. We note that ri(n) = xTw(n) —y;, 1<i<n
denotes the residual (error) of the i-th row (observation) at

- 1009 -

CH2977-7/91/0000-1009 $1.00 © 1991 IEEE



time n when we want to make the best fit from the columns
of X(n) to y(r).

Suppose the QR decomposition of the augmented matrix
[ Xtn) y(n}]is known at time n,

[X(n) y(n}] = [Qn) Q*(m)] [ Ut ] L@
where Q(n} € R™? and @*(n) € R**"~?) represent the or-
thogonal range and null spaces of the data matrix X (r}, and
u(n) € R* is the projection of y(r) onto @(n), v(n) € R*?
is its counterpart projected onto @*(n), and R(n) € RP*?
is an upper-triangular matrix and assumned to be full-rank.
R(n} is sometimes called the Cholesky factor of the covari-

ance matrix of X (n} in that the Cholesky factorization of

XT(n)X(n) can be uniquely expressed as RT(n}R(n) su
ject to the signs in each rows of R(n} as long as X (n) has
full column rank.

Because an orthogonal transformation preserves the Eu-
clidean norms: of of a vector, it can be shown that[8]

fle(m)i

1l

il

“

[

(o) Qe TPl u{n)l I @

|- Q*(mv(n)} (5)

il

as long as
E{njw(n}] = ufn} . (6)
(5) means that the residual vector while estimating y(n)
from X (n} must lie in the null space of X(r) which corre-
sponds well with the geometrical interpretation of the or-
thogonal principle of LS problems.
. As the time index n advances by ome, i.e., a new data

tow [XX., Ynsr ], i acquired, we can write the recurrence
formula for QRD as follows:

[X(n+1) y(n+t1)]= [X("I ”“} @
Kbt Yt |
a4 1
{@cm Q*(m) BMQ““ e }L .‘
‘ 0 @nr Ot |
[ R(n+1) u(n+1)]
0 v(n) } ®)
: 6 Un‘-{-],

(@) Q1)) Fin 1} 3&;‘1}” ©

By defining

Gosn=| g Fo | ermen ag

we note that Jn + 1) constitutes an orthogonal transfor-
mation to annihilate the newly appended data row Xpgr,
and Quy1 € RP*® and Quyy € RV represent the opera-
tion of modifying the range space while @%,, € R¥**, and

- [ X (m)w(n) - y{n)H &)

@fﬂ € Rix that of the null space. We use a hat™™ to de-
note the new dimensional growth due to the appended data.
To summ up, we have: the following recurrence formula:

Qn+1) = [ Qﬁ"i?f‘?"** ]v e R (11)
§ nEl 1
Qin41) = [ o Al 1 .02
vint1) = [ v(e) } € R, (13)
' | Ung1 |

[ Rn+1}  u(n+1) R} ufn) )

{ 0 quH—l l Q(” * 1)[ Xigr Ynkr l
anl n: R{n) U{Tl) EAY
[ Quir Q‘nﬂ ] [ D STET. k (1)

The desired optimum weighting vector w(n + 1) and the
residual vector r(n + 1) are thus given by
R{n + ljwin + 1) = u(n + 1), (15)
which can be solved by back substitution, and

retl) = —Qn+1lvnsr  (see(5))  (16)
- E r(n} Q(n)Qw{-luﬁi‘l } € Rn-ﬂ' (17)
[ ‘an%ﬂ
To see the changes of residuals in each previous data
blocks due to a new observation of x¥,; and ya41, we can
write down the following lemma.

Lemma 1 (updating residual}

" ry(n) - Q1@ QuQ s |
} rafn) — QwQa Q@i Vbt
Tru(n}[_ QmQu{-‘Lvh-f*l
71+Iv"+13
Proof.(18) can be derived from (11} and by noting that
Q(ll =@, e,

Q@) = Qé?v}
o = | 9% ];z
[ 01Q2--@Qu |
Q) = Q’ﬁ‘Q’&;“‘Qu a8y
@ |
and substituting Q(n) back into (17). w

- 1010 -



(18) explains that the overall residual vector at time n+1
comprises of two parts: one of them is equal to —Q#Hv,,“,
the new dimensional growth due to xZ,,, while the other
one is equal to the old residual vector at the previous time
n, r(n), offset by Q(n)Qm,,0n41. Therefore, if we are only
interested in R(n+1) and/or r,41, then we can simply main-
tain the information of R(n) and u(n), which is usually the
case for many applications such as beamforming[10]. How-
ever, if we need to monitor all of those previously block
residual vectors r;, i = 1,---,n, then the previously com-
puted range space Q(n) is still required to update those old
residual vectors. This monitoring may aid in the determi-
nation of some spurious observations(rows) such that they
can be deleted (downdated) from the LS estimation problem
and mitigate the possible bias caused by them. For linear
regression [3,8], this diagnosis in monitoring all the residu-
als is especially very important. Our method, following the
approach first proposed by McWhirter [10], provides a one-
pass direct way of keeping track of all of the residuals, with-
out explicitly computing w(n) followed by X (n)w(n) —y(n)
which requires two-passes (involving the use of back substi-
tution twice) and can be objectionable from the throughput
point of view. We will elaborate on this later in next section.

3 Robust RLS estimation based on
Residual-Outliers Rejection

For a robust LS problem we need to examine the resid-
ual associated with the LS problem, from which some data
rows may be discarded or deemphasized. An exponentially
weighted windowing scheme always assumes the old data
should be gradually deemphasized, hence a forgetting fac-
tor is used in this method, while a fixed-window demands
the old data to be discarded completely. Both methods are
commonly used for adaptive signal processing; their perfor-
mances are not satisfactory when the system is perturbed by
occasional noise spikes. Accordingly, the need of residual-
based robust LS estimation arises.

After obtaining the optimum fitting coefficient w(n) and
also the corresponding residual r1(n),...,rn(n), we can de-
termine an index set I based on some criteria, e.g., T =
{i}1 € i< n,rin) < threshold }. This is called the first
pass for the robust LS solution. Next, remove all x7 and
vi, Vi € I, from X(n)w(n) =~ y(n), which now becomes
Xz(n)w = yz(n). Resolve it and this is called the second
pass for the LS solution. To avoid the cumbersome two-
times back substitutions (two-passes), we propose to mon-
itor the residual whenever a new data row is appended to
our system. By doing so, the first pass of back substitution
can be bypassed, and a one-pass robust LS solution is pos-
sible. A recursive formula based on QR decomposition to
update the residual is derived in the previous Lemma. After
the residual is updated, a decision based on the magnitude
of each entry in the residual is made to determine which
data rows are to be discarded (downdated). Similar recur-
sive formulas to the updating operations also exists for the

downdating operations. [1,6,12]. Figure 1 depicts the block
diagrams of the two-passes and one-pass robust LS estima-
tion.

4 Simulations and Conclusions

A second order AR model is used to demonstrate the ad-
vantages of the new window scheme. Let {u(¢)} be an AR
process [5, pp. 204-6] given by u(z)+aiu(i—1)+au(i—2) =
v(t),;¢ = 1,...,250, with a; = —0.9750 and @, = 0.9500.
The excitation noise v(7) is a white Gaussian noise with a
standard deviation of 0.1 except that from ¢ = 55 to 57 and
also from ¢ = 155 to 157 v(z) will be intentionally increased
by a factor of 30 to account for temporary large noisy spikes.
This is equivalent to lowering the SNR by about 30 dB dur-
ing these intervals.

To make a fair comparison between the fixed-window
scheme with a window size £ to the the exponentially weight-
ing scheme with a forgetting factor A in the sense that both
schemes have the same self noise (i.e., fluctuation of the
estimated parameters with respect to the optimum AR pa-
rameters) [9], we choose £ = 50 and A = /(€ —1)/(£+1).
100 simulations with different noise realizations using MAT-
LAB are performed.

Figs. 2 and 3 compare the biases of estimating the AR
parameters a; and a;. Figs. 4 and 5 compare the stan-
dard deviations of estimating the AR parameters a¢; and
ay. Fig. 6 compares the standard deviations of the residu-
als. Four windowing schemes are compared: (1). no win-
dows are imposed (or equivalently, forgetting factor A = 1);
(2). exponentially weighted window with forgetting factor
A = 4/49/51; (3). fixed-size sliding window with window size
¢ = 50; and (4). selective window with residual threshold
=1.0. :

From these figures, we can see that the newly proposed
window by selectively rejecting data rows with large resid-
uals gives the least bias in tracking the AR parameters
and converges most rapidly. This is obviously because this
method discarded those highly perturbed data.
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Figure 1: Two-passes and one-pass block diagrams of robust
LS estimations with outlier removal
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Figure 3: Comparisons of mean bias of estimating AR pa-
rameter a, for various windows under noisy spikes.

Figure 4: Comparisons of standard deviations of estimating
AR parameter a, for various windows under noisy spikes.
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Figure 5: Comparisons of standard deviations of estimating
AR parameter a3 for various windows under noisy spikes.
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Figure 6: Comparisons of standard deviations of residuals of
estimating AR parameters for various windows under noisy
spikes.
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