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ABSTRACT

The QR-decomposition (QRD)-based recursive least-squares
(RLS) methods have been shown to be useful and effective
towards adaptive signal processing in modern communica-
tions, radar, and sonar systems implementable with vari-
ous modern parallel and systolic array architectures. Pla-
nar (Givens) and hyperbolic rotations are the most com-
monly used methods in performing QRD up/downdating.
But the generic formula for these rotations require explicit
square-root (sqrt) computations, which are quite undesir-
able from the practical VLSI circuit design point of view.
Since the sqrt operation takes up much area and its compu-
tational time is long (due to many iterations), the associated
area/time efficiency is poor.

1 Planar and Hyperbolic Rotations

A 2 x 2 planar (Givens) rotation matrix is the most funda-
mental orthogonal matrix in performing QR decomposition.
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A planar (Givens) rotation is given by _cs At and is

used to premultiply a two-row matrix
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Similarly, a hyperbolic rotation matrix is given by _fé és } ,

and the corresponding parameters satisfy:
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2 Prototypes of Generalized Sqrt-
Free Algorithms

In VLSI circuit design, square-root operation is expensive,
because it takes up much area or is slow (due to many iter-
ations). Therefore, it is advantageous to avoid square-root
operations or minimize the required number of such opera-
tions. We will focus on how to meet this goal for the 2 x 2
planar and hyperbolic rotations.

By taking out a scaling factor from each row, the two
rows under consideration before and after the orthogonal
transformations are given by

[al ay - a,,]=[\/E [1} a; Gy ‘- G
By B -+ By 0 VEI|[bh b - b
(11)
and
oy of a, | _ \/E 0 d a - d
kx: ﬂé]_[o ﬁ“w it

. (12)

Now, our task is to find the expressions for ki, k3, as,
{(a}, b)), § = 2,--+,p}, in terms of ki, ks, {(a;,b;), 7 =
1,---,p}, such that NO square-root operation is actually

needed. The square-root expressions of Vi, VEa, \/E ,and
\/E in (11) and (12) are used for representational purposes
only and are not actually performed.

For simplicity, let us focus on planar rotations only, sim-
ilar derivations for the square-root-free hyperbolic rotation
can also be obtained by replacing k; with —k; and kj with

—kb. Replacing a; = \/Eaj, B; = \/k_zbj, d] = \/k—{a;, B; =

VEb, j=1,...,p,in (1) - (5) leads to
\/19_101 [ kil + k8%,
Vhaby /el + kot

c

I

(13)
(14)

S

- 1017 -

CH2977-7/91/0000-1017 $1.00 © 1991 IEEE



kwa + kb | (15)
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After simplifications we have

'klﬂf + k‘g&%

L
I ;
;= : {kra1a; + kabibs] (19)
! \/iéz \fk"}a‘f + kbt ! it} -,
}:"‘:-.,’Jp.‘
VEE ,
% = ———[-bia; + arb], (20)

N N ey

To avoid square-roots, we need to determine kf and k
such that e}, ¢} and b; will not require square-root. opera-
tions. Let us express ki and k} as

kyad + kab?
/"2{ )
kiky )
vi(kra + kpbf) "

where g and » will be determined later to be any square-
root-free functions of ki, ks, a1, and &;. Indeed, with (21} -
(22), (18) - (20) can be computed with no square-roots, and
we have the following updating formulas without square-
roots:
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Notice that square-root operations disappear in our for-
" mulas of (23) - (27) needed in the planar and hyperbolic
rotations. The use of the rotation parameter ¢ in (28) (with
a square-root operation) will be further considered in the
next section when the optimum residual e is desired. Later
work will show that it is possible to obtain e without any
square-root. operation where the explicit computation of the
rotation parameter ¢ can be bypassed. To avoid repetitive

computations and take the advantage of previous computed
results, (24}, (26}, (28) and (29) use the newly updated k;
of (23). As stated earlier, we are still free to choose those
two parameters g and ». Different choices of g and » will
affect. the number of multiplications and divisions, as well
as the numerical stability and parallelism of computations.
It can be shown: that this newly derived approach gener-
alizes all of the previously known: researches on the square-
root-free algorithms via an proper choice of g and ». Among
them are Gentleman [4], Hammarling [6], Bareiss [1], Kalson
and Yao [7], Ling, etc. [8], Barlow and Ispen [2], Chen and
Yao [3], Gotze and Schwiegelshohn [5]. Table I ksts various
square-root-free algorithms and the eorresponding choices of
p and . :

3 Sqrt-Free Triangular Array Up-
dating and Optimum Residual
Acquisition

In this section, we will apply the prototypes of sqrt-free ro-

tations developed above to QRD-based RLS filtering prob-
lems. To be specific, we are interested in: updating from

[ K “] (30)

xt oy |

[t can be shown [9] that the px p upper triangular matrix R’
can be obtained through a sequence of p Givens rotations
and the optimum: residual e for the newly appended data

to

[xT iy} is given by

(32)

with €; representing the cosine value of the i-th rotation
angles.

Factoring out. the scaling constants intothe pre-multiplying
diagonal matrix leads (30) to the form of

(33)
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Unlike the previously developed formula, where we are only
interested in updating k;,a;;, to k,ai; and zeroing out all
the b's, this time we do also need to know the cosine values
explicitly as required in the optimum residual given in (32).

After the first rotation, by will be zeroed-out and we have
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™M = e
bgl) = N [-blal,- + aub]'] 5 J ’ P + (’39)
an [k
= un /1 40
a h k; ’ ( )

with (p;,71) being the parameter pair which are still free
to be chosen later. Note the close analogy of (35) - (40)
to those of (23) - (28). Similarly, after the i-th rotation
(1< 1 < p), we have
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After p rotations are finished, (34) becomes
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which has the form of [ (?71' ‘:) } in (31). The optimum
residual e in (32) now becomes
Foaii [k
c=- (M8 E) i, w
i=1 1 1

To further simplify the expression in (48), we notice that
k‘(f) can be computed recursively as follows,

ko /K,
KR = (_._”(_’) k- (49)
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where (42) is used in the recursion.
With (51) substituted into (48), we have

Foai ki
e=- (iﬂm;&) »\/’“—qb:f«?l- (52)

Because \/E[bl,bg,...,b,,bﬂll = [21,%2,...,Zp Y] is the
appended new data row, we are certainly free to choose
k, = 1 to reduce the arithmetic complexity and simplify
the expression in (52). Therefore, a lemma on obtaining the
sqrt-free optimum residual is given below.

Lemma 1 (Sgrt-free optimum residual)
The optimum residual e can be computed with no square-root
operations as follows:

Poai ki
e = — (H————) b, (53)

2, K
i=1 K Vi ki

McWhirter{9] successfﬁlly employed Gentleman’s propo-
sition {4] in computing the residual e without sqrt opera-
tions. By choosing

pio=v =a; =1, 1<i<p, (54)
the optimum residual can be reduced to

(@)

i=1

b(’l’l (Gentleman/McWhirter).

2
(5)
This result was first observed by McWhirter.
Another example can be taken from Hammarling's sug-
gestion [6] as follows,

a + 0K

kiai ’ ; (56)

i=Lospe o)

i
v, = 1/a,

then it follows that k! = k;a;;/p; and the optimum residual
is given by

e = - (flﬂ-_ﬂ)bgz, (58)
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4 Conclusions

Planar (Givens) and hyperbolic rotations are the most com-
monly used methods in performing QRD up/downdating.
Most, of these rotation-based methods require explicit square-
root computations, which are undesirable from the practical
VLSI circuit design point of view. Since the square-root op-
eration takes up much area and its computational time is
slow (due to many iterations), the associated areaftime ef-
ficiency is poor. This is the first effort to establish the basic
understanding toward all known square-root-free QRD algo-
rithms, from which the basic criterion is seen to be simple.
This unified approach also provides a fundamental frame-
work for the square-root-free. RLS algorithms which are es-
sential for practical VLSI implementations.
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Table 1: Choices of g and v for various sqrt-free Givens
rotations
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