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Abstract— Enhancing the connectivity of wireless sensor net- hoc network in order to optimize the network’s connectivity
works is necessary to avoid the occurrence of coverage gaps. Infor better Quality of Service (QoS) and coverage.
this paper, we aim at improving the network connectivity of a In this paper, the main goal is to fully enhance the

given network by adding a set of relays to it. We characterize the . . .
network connectivity by the Fiedler value, which is the second conpectmty of the wireless sensor networks .by adding an
smallest eigenvalue of the Laplacian matrix representing the available set of relays to the network. We quantify the network
network graph. We propose a network-maintenance algorithm, connectivity using the Fiedler value [5], [6], [7], [8], which
which finds the best locations for a given set of relays. The will be defined later as the second smallest eigenvalue of the
proposed algorithm obtains the best relays’ locations through Laplacian matrix representing the network graph. Hence, we

a multi-level approach. In each level, the search problem can _. t finding th ti locati f : t of rel
be formulated as a standard semi-definite programming (SDP) aim at inding the optimum focations for a given Set of relays

optimization problem. We show that the proposed algorithm can in order to maximize the Fiedler value of the resulting graph.
increase the average Fiedler value by5% by adding one relay Finding the optimum locations for such relays is a difficult

only. problem due to the continuous nature of this problem, which
results in an infinite number of possible solutions. In this paper
. INTRODUCTION we overcome this problem and propose a network-maintenance
algorithm, which specifies the near-optimum locations for an
Recently, there have been much interest in wireless senggailable number of relays > 1 to maximize the Fiedler
networks due to its various application areas such as battlefigidue of the network.
surveillance systems and industry monitoring systems [1]. AQur proposed network-maintenance algorithm can be ex-
sensor network consists of a large number of sensor nodggined as follows. First, we divide the network area into a
which are deployed in a particular area to measure certaigrtain number of equal regions and represent each region by
phenomenon such as temperature and pressure. These se@s@sfay in its center. Second, we choose the Héstelays’
send their measured data to a central processing unit, whigbations by solving aemi-definite programmingSDP) opti-
collects the data and develops a decision. In general, eagfzation problem. Third, we iteratively refine our solution by
sensor can transmit its data and relay other sensors’ datajidding each obtained relay’s region into a number of smaller
the sensors that are in its transmission range. regions and repeating the same procedure. Thus, our algorithm
The network is considered connected if there is a pattonsists of a number of stages, which are cakeels Finally,
possibly a multi-hop path, from each sensor to the centsgk choose the best location after a few number of levels, where
processing unit. Consequently, the network is connectedeifich relay can be deployed.
there is a path between each two sensors in the network. AfteThe majorcontribution of this paper is to propose an al-
deploying the sensors for sometime, some sensors lose thgitithm, which formulates the network-maintenance problem
available energy, which affects its ability to send its own datgs a semi-definite programming optimization problem. This
as well as relay the other sensors’ data. This situation resultgdnmulation significantly simplifies the problem and allows us
having acoverage gajin the network area, i.e., some locationso utilize one of the available standard SDP solvers. By doing
will not be successfully sensed. Furthermore, it affects th®, we show that we can increase the Fiedler valugi®
network connectivity and may result in the network beingfter adding one relay only. This result is very close to what
disconnected. In this work, we are concerned about keeping get by exhaustively searching for the optimum location.
the network away from being disconnected, which is knowrowever, our proposed algorithm requires onl§20 of the
in the literature asmetwork maintenancg]. time taken by the exhaustive search scheme. Finally, we point
In the literature, there have been some works that considemd that our proposed network-maintenance algorithm can
the connectivity in wireless networks. In [2], the authorbe implemented through utilizing low-altitude UAVsS. More
considered deploying as few additional nodes as possiblept@cisely, we can utilize one UAV or more, which can fly along
reconnect a disconnected network. In [3], the authors hathee obtained relays’ locations to improve the connectivity of
considered the problem of maximizing a particular utilitghe ground network.
function by deploying a certain number of relay nodes. In [4], The rest of the paper is organized as follows. In the next
the authors proposed a mathematical approach to positiongegtion, we describe the network model and review some
and flying an unmanned air vehicle (UAV) over a wireless aof the definitions related to the algebraic connectivity of a



graph. In Section Ill, we formulate the network-maintenancéll. PROBLEM FORMULATION AND PROPOSEDSOLUTION

problem and describe our proposed algorithm to solve it. Wg this section, we formulate the network maintenance prob-
discuss the formulation of our optimization problem as & SOBm, then we propose our algorithm to solve it. The connec-
optimization problem in Section IV. In Section V, we presenfyity problem can be formulated as follows. Given a base
some simulation res_ults that show_the S|gn|f|cance pf OHktwork deployed in @ x g square area and represented by
propose network-maintenance algorithm. Finally, Section Yhe graphG, = (Vi, E,), as well as a set ok relays, what are
concludes the paper. the optimum locations for these relays in order to maximize
Il. NETWORK MODEL the Fiedler value of the resulting network? Intuitively, adding
relay to the base network may result in connecting two

In this section, we describe the wireless sensor network mode!! .
gnsors or more, which were not connected together. Because

In addition, we review some related concepts related to tﬂ" ol n be within the transmission ran £ th o
algebraic connectivity of a graph [6], [9]. A wireless senso S relay can be € transmission range ot these two
nsors, hence it can relay data from one sensor to the other.

network can be modeled as an undirected simple finite gr (ﬁ . : .
G(V,E), whereV = v1,vs,--- 0, is the set of all nodes erefore, adding a relay may result in adding an edge or
o e Jnore to the original graph.

(sensors) andt is the set of all edges (links). An undirecte . .
graph implies that all the links in the network are bidirectional, Let EC(K) denote the set of edges resulting frqm adding
hence, if nodey; can reach node; then the opposite is also @ candidate set of{ relays. Thus, the network maintenance
true. A simple graph means that there is no self loop in eaeFIOblem can be formulated as

node and there are no multiple edges connecting two nodes. max A (L(Eb U EC(K))) . 3)
Finally, a finite graph implies that the cardinality of the sEts E.(K)

and £ is finite. Letn andm denote the number of nodes andsince each relay can be deployed anywhere in the network, the
edges in the graph, respectively, i.8/| = n and|E| = m, |ocation of each relay is considered as a continuous variable,
where|.| denotes the cardinality of the given set. which belongs to the intervd[0, g], [0, g]). It is hard to solve

We consider a simple topology model, which is denoted R)is problem in its current form due to the infinite number of
the disk model In this model, two nodes are connected if thggssiple solutions.
distance between them is less than the transmission range. Wg, the sequel, we explain our proposed algorithm to solve
assume that all the sensors have fixed transmission power, jg8q problem. First, we divide the x g network area intoz.
fixed transmission radiu®. Hence, an edge exists betwee@qum square regions, each with widthThus,n, = (%)2_ We

two nodes if the distance between them is less tHafor an  represent each region by a relay deployed in its center. Thus,
edgel, 1 <1 <m, connectmgnnodeei andv;, {vi,v;} €V, e have a set ofi. candidate relays, hence the subscript
define the edge vectar, € R™, wherea;; = 1, a;; = =1, and we want to choose the optimufi relays among these

and the rest is zero. Thiecidencematrix A € R"*™ of the , "rejays. This optimization problem can be formulated as
graphG is the matrix with withl-th column given bya,;. We

note that the grapld7 is connected if there exists a series of max Az (L(z)) 4)
edges (path) between each two nodes. st 1Te=K, z ¢ {0,1}"
The n x n Laplacianmatrix L is defined as
, where N
L:AAT:Zala,lT. Q) L(I’):Lb—‘rleAlA,lT, (5)
=1 =1
The diagonal entryL; ; is the degree of nodg andL; ; = andl1 e R"™ is the all-ones vector.

—1 if (v;,v;) € E, otherwiseL; ; = 0. We note that the In (5), 4, is the incidence matrix resulting from adding
summation of the elements in each row (column) eqQals relay ! to the original graph. Assuming that adding relay
addition, the Laplacian matrix is positive semi-definlie- 0 results inI; edges between the original sensors, then the
and its smallest eigenvalue is zelg(L) = 0. The second matrix 4; can be formed asi; = [a},a?,--- ,alI’], where
smallest eigenvalue of, \>(L), is of great importance with a7 € R", 2 = 1,2.--- , I;, represents an edge between two
respect to algebraic connectivity of the gra@He6], [5]. It is original sensors. We note that the optimization vector in (5)
calledFiedler valueand it measures how connected the gragb the vectorz € R"¢. Each element inc is either1 or 0,
is because of following reasons. First(L) > 0 if and only which represents whether this relay should be chosen or not,
if G is connected and the multiplicity of the zero eigenvaluespectively. The optimization problem (4) is close to the one
is equal to the number of the connected sub-graphs. Secand[6], with the matrix A; replaced by one edge vector. In
A2(L) is monotone increasing in the edge set, i.e., Section 1V, we will show that the optimization problem in (4)
it Gi=(V,E\),Gs=(V,Es) ,Es C Es can be form.ulat'ed as a standard semi—definite programming
(2) (SDP) optimization problem and that it can be solved using
then Az(L1) < Aa(Le) any SDP standard solver.
where L, denotes the Laplacian matrix of the grapfy for Assuming for the time being that the optimization problem
qg=1,2. in (4) can be solved efficiently and that we can chodse



Step 1The first level: Divide the network area into. equal|  onimization problem in (6) is @onvex optimizatioproblem

square regions. Each region is represented by a relay at its cente . . .
Step 2Solve the optimization problem in (4) and obtain the best 10]. Furthermore, the convex optimization problem in (6) is

K < n. relays among the. relays defined irStep 1 equivalent to the following SDP optimization problem [6], [9]
Step 3Start a new level: For each solution, £k =1,2,--- , K,
divide thek-th region inton. equal square regions and obtain t

he max §

best area for this relay. This can be solved using (4) by setting s.tos(l — ll 1T) < L(z) T —K 0<z<1 (8)

K =1. o n = ’ TRV =T =4,

Step 4 RepeatStep 3until there is no improvement in the . . . . .

resSIting F?edler vzglue. P whe_r_el € R"X” is the identity matrix and< denotes semi-

TABLE | positive definiteness. In the sequel, we show how the two
) . ) optimization problems in (6) and (8) are equivalent. Let
Proposed multi-level network-maintenance algorithm.
- 1, .r

locations, denoted by, k¥ = 1,2,---, K, among then, L(z) = L(z) = s(l - 511 ) ©)
available ones. We call this stage of the algorithménel As  \yheres is an unknown scalar. Thus, for amyx 1 vectory,
indicated earlier, each locatian, £ = 1,2, --- , K, represents where||y|| = 1 and1” y = 0, we get

a square region of widthy. Choosingz; = 1 implies that the

k-th region is more significant, in terms of the connectivity of 7 [,(z)y = ¢y L(z)y — s(y" | y — l(yT 1) (17 y))
the whole network, than other ones that have not been chosen. . n

In order to improve the current solution, we repeat the same =y L(z)y—s.

procedure by dividing each-th region inton. smaller areas To ensure thaf;(x) =0, e, s(l — lllT) < L(z), then the
and representing each one by a relay at its center. Then, WEximum possible value of is " -
find the best location in these. regions to have the relay

(10)

deployed there. This problem is the same as the one in (4) s = inf {v" L(z)yl Iyl =1, 17y = 0}
by setting K = 1. We do the same step for each region _)\‘ (L( )) (11)
k, 1 < k < K obtained in (4). The proposed network- = 25

maintenance algorithm applies a finite number of levels untilhere the second equality holds from (7). Hence, maximizing
there is no more improvement in the connectivity. In Table k in (8) is equivalent to maximizing\z(L(z)) in (6), given

we summarize the implementation of our proposed networttat all the other constraints are satisfied.

maintenance algorithm. The optimal solution for (8) is obtained numerically using
one of the standard SDP solvers such as the SDPA-M software
package [11]. Finally, we use a heuristic to obtain a Boolean
The exhaustive search scheme to solve (4) is done by covector from the SDP optimal solution, which is the solution
puting A\o(L) for different (7;() Laplacian matrices, which for the original problem in (4). In this paper, we consider a
requires huge computations for large. Hence, we need simple heuristic, which is to set the largestid{to 1 and the
an efficient and quick way to solve (4). In this section, weest to0. In the future, we will consider more sophisticated
describe how the optimization problem in (4) can be relaxedgorithm to obtain the combinatorial solution.

to SDP optimization problem.

By relaxing the Boolean constrainte {0,1}"< to be a lin-
ear constraint: € [0, 1], we can represent the optimizatiorn this section, we present some simulation results to show the
problem in (4) as performance of our proposed network-maintenance algorithm.

In the simulations, we have used the SDPA-M software
max Az (L(z)) (6) package [11] to solve the SDP problem in (8) at each level. In
st 1Tz =K 0<a2<1. order to associate edges with certain relay, first we find all the
We note that the optimal value of the relaxation problem ﬁensqs n the original graph that are within distaficef this
falays location. Second, we construct an edge between each

6) is an upper bound for the optimal value of the original . ;
EJrz)blem (4)p,pas it has a larger feF;sibIe region. As ment?on'ewo of these sensors. Obviously, it may happen that two relays

in Section II,Al(L(x)) = 0 and its corresponding eigenvecto(es.ug ina fto”_‘m?h” edge: For such gase,fwz choolset t.rt].e rlelay
is 1€ R" Lety € R" be the eigenvector corresponding t ICh TESUIS In the maximum number of edges. Intuitively,

Ao (L(x)j). Thus, 17 y = 0and||y|| = 1. Since,L(z) y = Aa 4, we need to have as many edges as possible associated with
L(

hencey z)y = X2 yT y = \y. Therefor, the Fiedler value th? Ieas; nutrnbgnr Otf r(;,\lays. d network-maint
can be expressed as n order to illustrate our proposed network-maintenance

algorithm, we consider the small network shown in Fig. 1.
X2 (L(z)) = inf {y" L(z)y | [|yl| = 1, 1"y =0} . (7) It consists of a set ofy = 20 sensors, deployed randomly in
Y a6 x 6 area. Each sensor is marked withand each edge is
In (7), A2 (L(x)) is the point-wise infimum of a family of represented by a solid line connecting two sensors. We assume
linear functions ofr. Hence, it is a concave function in In that an edge exists between each two sensors if the distance
addition, the relaxed constraints are linearcinTherefore, the between them is less thah = 2. We assume that the number

IV. SEMI-DEFINITE PROGRAMMING (SDP) FORMULATION

V. SIMULATION RESULTS
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Fig. 1. Sensor network consisting of= 20 nodes in & x 6 area. Sensors Fig. 3. The Fiedler value versus the number of added relay for a sensor
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are represented in solid and dashed lines, respectively.
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. . ) Fig. 4. The average Fiedler value versus the number of added relagdor
Fig. 2. The Fiedler value versus the number of levels employing= 1 sensor networks, each consistsrof= 100 nodes and deployed in &0 x 10
relay for a sensor network consisting of= 20 nodes deployed in 6 X 6 504
area.
of available relays is onds = 1. By calculating the Laplacian ~ Next, we explore the effect of increasing the number of

matrix of the original network, we find that its Fiedler valug?ossible relays on the Fiedler value. Fig. 3 depicts the Fiedler
is A2(0) = Ao (K)|x—o = 0.2359. value as a function of the added number of relays. Obviously,

As we explained in Section Ill, our proposed networkthe Fiedler value increases with the number of added relays.

maintenance algorithm finds the optimum location of this rel{fe note that there is a large increase in the Fiedler value
through a number of levels. In the first level, it divides thélue to the addition of the first few relays, whichisn this
network area inta:, = 9 square regions, each of widgh and example. As we increase the number of added nodes beyond
deploys a relay at the center of each region. We notice tiB@t, we notice that the Fiedler value of the resulting graph is
the algorithm picks the region represented by a relay deploy@nost constant and does not increase.
at (3,5). Deploying a relay at this locatiof,5) results in We also compare the performance of our proposed algorithm
an increase in the Fiedler value to be(1) = 0.3679. In with the exhaustive search and random addition schemes. We
the second level, this small region is divided intp = 9 have implemented the exhaustive search scheme by dividing
smaller regions and the Fiedler value increases slightly tiee 6 x 6 network area into many small regions, each region
be \o(1) = 0.377. After 4 levels, the algorithm chooses thds represented by a relay at its center. The random addition
location (3,4.33) to be the best location for the relay. Fig. 1scheme chooses randomly relays’ locations. Fig. 3 depicts
depicts the best location of the relay, representedobys the Fiedler value of these two schemes. We have implemented
well as the edges resulting from adding this relay shown the exhaustive search algorithm up&o= 4 nodes due to the
dashed lines. For this choice, the resulting final Fiedler valliéige processing time needed to get the results. As shown, the
iS A2(1) = 0.3782. performance of our proposed algorithm almost coincide with
Fig. 2 depicts the Fiedler value versus the number of levélie exhaustive search performanceiin= 1 and K’ = 4 cases.
for the network shown in Fig. 1. As shown, there is an increagénally, we notice that the random addition performs poorly
of the Fiedler value in the first few levels until the third onecompared to our proposed algorithm.
After that, the Fiedler value is constant and does not increas@Ve also consider a more realistic scenario where we have
with more levels. This result signifies the efficiency of oua large number of sensors,= 100, deployed in al0 x 10
proposed algorithm and its ability to obtain the best relayarea. The transmission radius i&8 = 3. Fig 4 depicts the
locations within a few levels. Based on that result, we set tlk@éedler value for various schemes averaged oM#r inde-
number of levels to b8 in the rest of this section. pendent network realizations. In each realizatith() sensors
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Fig. 5. Sensor network consisting of= 200 nodes in &5 x 25 area. The Fig. 6. The Fiedler value versus the number of added relay for a disconnected
network is reconnected by addidg = 1 relay at the locatior{4.98,5.02).  sensor network consisting ef = 200 nodes and deployed inZb x 25 area.

are uniformly deployed in the network area. A& = 1, have proposed a network maintenance algorithm, which finds
the performance of our proposed algorithm is close to tlikee optimum locations for an available set of relays that result
exhaustive search one. For ti¢ = 1 case, our proposedin the maximum possible Fiedler value. This algorithm finds
network-maintenance algorithm neetlg7 seconds to choose the near-optimum location through a small number of levels.
the best location, while the exhaustive search scheme nebltdsach level, the network maintenance problem is formulated
138.44 seconds to do the same job. Thus, our proposed a semi-definite programming (SDP) optimization problem,
algorithm achieves almost the same performance as thatwdfich can be solved using the available standard SDP solvers.
the exhaustive search scheme to allocate a single relayV¥e showed that adding the first few relays has a more
approximately1/20 of the time needed for the exhaustivesignificant effect than adding more relays afterwards. In a
search scheme. The percentage of the enhancement in sgagsor network oft = 100 sensors deployed in B x 10 area
Fiedler value can be calculated Ag) = %@?2(0)% . In  with transmission radiu® = 3, the Fiedler value is increased
a sensor network of = 100 sensors deployed in®x 10 area by 35% due to the addition of one relay only. Moreover, our
with transmission radius? = 3, the Fiedler value increasesproposed algorithm achieves almost the same performance as
by (1) = 35% due to the addition of one relay only. that of the exhaustive search scheme to allocate a single relay
Finally, we consider the case when the original network i8 approximatelyl/20 of the time needed for the exhaustive
disconnected, i.e)2(0) = 0. Fig. 5 depicts &5 x 25 network search scheme.
of n = 200 nodes, which is divided into two sub-networks. By
following our network-maintenance algorithm using = 25 o _ o
locations, we find out that the network can be conr?ected.usi[r% . Sﬁ'ﬁlﬁﬁ'zﬁe‘é\v&jg’f '|ESSEKSLar?%tLﬁT;?Aﬁ?mingdaiag a\)’c')j_c'l’m/‘\ps;n{%é_
one relay only deployed at4.98,5.02). By deploying this 114, Aug 2002.
elay the Fldler value Jumps (1) = 0.0475. Fig, 6 depicts 1 L2551 omionmt Somertiy o St oo
the Fiedler value of this disconnected network versus the and U‘biquitot.Js Systems: Networking and Services (MobiQuitous’05), pp.
number of added relays. The performances of both exhaustive314-324, Jul. 2005.
search and random addition schemes are depicted as wellBInH. Koskinen, J. Karvo, and O. Apilo,"On Improving Connectivity of
Fig. 6. For thek — 1 case, the optimum Solution obtained  age AHoC Networke by Ading Nodes! Froc, Tre Fourt annue
through our algorithm in11.6 seconds and the exhaustive 169-178, 2005.
search solution obtained #55.6 seconds result in the samg4] Zhu Han, A. Lee Swindlehurst, and K. J. Ray Liu, “Smart deploy-
Fiedler value. Hence, our proposed algorithm achieves the fien et of maned o vetice o mpreue conmectuty i
same performance in time equal 1¢g82 of that needed by ference(WCNC'06), vol. 1, pp. 252-257, Apr. 2006.
the exhaustive search scheme. [5] M. Fiedler,“Algebraic connectivity of graphs,” Czechoslovak Lathematics
We note that for a disconneCt_ed network, our propos i?ucr;m?)lysr?%n%jgg.33?)’)/(:;,gzcas}owing well-connected graphs,” Proc. IEEE
algorithm does not guarantee that it can reconnect this network conference on Decision and Control (CDC), Dec. 2006.

by adding a predetermined set of relays to it. In the futurf&] C. Pandana and K. J. Ray Liu, "Maximum connectivity and maximum

. . oo . . lifetime energy-aware routing for wireless sensor networks,” Proc. IEEE
we will consider the network rebundmg prOblem' in which Global Telecommunications Conference (Globecom’05), vol. 2, pp. 1034-

we determine the minimum number of relays along with their 1038, Nov. 2005.
optimum locations needed in order to reconnect a disconnect8dB- Mohar, “Some applications of Laplace eigenvalues of graphs,” In G.
network Hahn and G. Sabidussi, editors, Graph Symmetry: Algebraic Methods
: and Applications, vol. 497 of NATO ASI Series C, pp. 227-275. Kluwer,
Dordrecht, 1997.
VI. CONCLUSION [9] S. Boyd, “Convex Optimization of Graph Laplacian Eigenvalues,” Proc.
In this paper, we have addressed the problem of improving the International Congress of Mathematicians, 3:131_1—;31_9, 2006. _
T . . r{ég] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge
connectivity in wireless sensor networks. We have conside university press, 2006.
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