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Distributed Adaptive Networks: A Graphical
Evolutionary Game-Theoretic View
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Abstract—Distributed adaptive filtering has been considered
as an effective approach for data processing and estimation over
distributed networks. Most existing distributed adaptive filtering
algorithms focus on designing different information diffusion
rules, regardless of the nature evolutionary characteristic of a
distributed network. In this paper, we study the adaptive network
from the game theoretic perspective and formulate the distributed
adaptive filtering problem as a graphical evolutionary game. With
the proposed formulation, the nodes in the network are regarded
as players and the local combiner of estimation information from
different neighbors is regarded as different strategies selection.
We show that this graphical evolutionary game framework is very
general and can unify the existing adaptive network algorithms.
Based on this framework, as examples, we further propose two
error-aware adaptive filtering algorithms. Moreover, we use
graphical evolutionary game theory to analyze the information
diffusion process over the adaptive networks and evolutionarily
stable strategy of the system. Finally, simulation results are shown
to verify the effectiveness of our analysis and proposed methods.

Index Terms—Adaptive filtering, graphical evolutionary game,
distributed estimation, adaptive networks, data diffusion.

I. INTRODUCTION

R ECENTLY, the concept of adaptive filter network
derived from the traditional adaptive filtering was

emerging, where a group of nodes cooperatively estimate
some parameters of interest from noisy measurements [1].
Such a distributed estimation architecture can be applied to
many scenarios, such as wireless sensor networks for envi-
ronment monitoring, wireless Ad-hoc networks for military
event localization, distributed cooperative sensing in cognitive
radio networks and so on [2], [3]. Compared to the classical
centralized architecture, the distributed one is not only more
robust when the center node may be dysfunctional, but also
more flexible when the nodes are with mobility. Therefore,
distributed adaptive filter network has been considered as
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an effective approach for the implementation of data fusion,
diffusion and processing over distributed networks [4].
In a distributed adaptive filter network, at every time instant
, node receives a set of data that satisfies a linear
regression model as follow

(1)

where is a deterministic but unknown vector,
is a scalar measurement of some random process is the

regression vector at time with zero mean and covariance
matrix , and is the random noise
signal at time with zero mean and variance . Note that the
regression data and measurement process are temporally
white and spatially independent, respectively and mutually. The
objective for each node is to use the data set to
estimate parameter .
In the literatures, many distributed adaptive filtering algo-

rithms have been proposed for the estimation of parameter .
The incremental algorithms, in which node updates , i.e.,
the estimation of , through combining the observed data sets
of itself and node , were proposed, e.g., the incremental
LMS algorithm [5]. Unlike the incremental algorithms, the dif-
fusion algorithms allow node to combine the data sets from all
neighbors, e.g., diffusion LMS [6], [7] and diffusion RLS [8].
Besides, the projection-based adaptive filtering algorithms were
summarized in [9], e.g., the projected subgradient algorithm
[10] and the combine-project-adapt algorithm [11]. In [12], the
authors considered the node’s mobility and analyzed the mobile
adaptive networks.
While achieving promising performance, these traditional

distributed adaptive filtering algorithms mainly focused on
designing different information combination rules or diffu-
sion rules among the neighborhood by utilizing the network
topology information and/or nodes’ statistical information.
For example, the relative degree rule considers the degree
information of each node [8], and the relative degree-variance
rule further incorporates the variance information of each node
[6]. However, most of the existing algorithms are somehow
intuitively designed to achieve some specific objective, sort of
like bottom-up approaches to the distributed adaptive networks.
There is no existing work that offers a design philosophy to
explain why combination and/or diffusion rules are developed
and how they are related in a unified view. Is there a general
framework that can reveal the relationship among the existing
rules and provide fundamental guidance for better design of
distributed adaptive filtering algorithms? In our quest to answer
the question, we found that in essence the parameter updating
process in distributed adaptive networks follows similarly the
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evolution process in natural ecological systems. Therefore,
based on the graphical evolutionary game, in this paper, we
propose a general framework that can offer a unified view of
existing distributed adaptive algorithms, and provide possible
clues for new future designs. Unlike the traditional bottom-up
approaches that focus on some specific rules, our framework
provide a top-down design philosophy to understand the fun-
damental relationship of distributed adaptive networks.
The main contributions of this paper are summarized as fol-

lows.
1) We propose a graphical evolutionary game theoretic frame-
work for the distributed adaptive networks, where nodes in
the network are regarded as players and the local combi-
nation of estimation information from different neighbors
is regarded as different strategies selection. We show that
the proposed graphical evolutionary theoretic framework
can unify existing adaptive filtering algorithms as special
cases.

2) Based on the proposed framework, as examples, we fur-
ther design two simple error-aware distributed adaptive fil-
tering algorithms. When the noise variance is unknown,
our proposed algorithm can achieve similar performance
compared with existing algorithms but with lower com-
plexity, which immediately shows the advantage of the
proposed general framework.

3) Using the graphical evolutionary game theory, we analyze
the information diffusion process over the adaptive net-
work, and derive the diffusion probability of information
from good nodes.

4) We prove that the strategy of using information from good
nodes is evolutionarily stable strategy either in complete
graphs or incomplete graphs.

The rest of this paper is organized as follows. We sum-
marize the existing works in Section II. In Section III, we
describe in details how to formulate the distributed adaptive
filtering problem as a graphical evolutionary game. We then
discuss the information diffusion process over the adaptive
network in Section IV, and further analyze the evolutionarily
stable strategy in Section V. Simulation results are shown in
Section VI. Finally, we draw conclusions in Section VII.

II. RELATED WORKS

Let us consider an adaptive filter network with nodes. If
there is a fusion center that can collect information from all
nodes, then global (centralized) optimization methods can be
used to derive the optimal updating rule for the parameter ,
where is a deterministic but unknown vector for es-
timation, as shown in the left part of Fig. 1. For example, in
the global LMS algorithm, the parameter updating rule can be
written as [6]

(2)

where is the step size and denotes complex conjugation
operation. With (2), we can see that the centralized LMS algo-
rithm requires the information of across the whole
network, which is generally impractical. Moreover, such a cen-

Fig. 1. Left: centralized model. Right: distributed model.

tralized architecture highly relies on the fusion center and will
collapse when the fusion center is dysfunctional or some data
links are disconnected.
If there is no fusion center in the network, then each node

needs to exchange information with the neighbors to update the
parameter as shown in the right part of Fig. 1. In the literature,
several distributed adaptive filtering algorithms have been in-
troduced, such as distributed incremental algorithms [5], dis-
tributed LMS [6], [7], and projection-based algorithms [10],
[11]. These distributed algorithms are based on the classical
adaptive filtering algorithms, where the difference is that nodes
can use information from neighbors to estimate the parameter
. Taking one of the distributed LMS algorithms, Adapt-then-

Combine Diffusion LMS (ATC) [6], as an example, the param-
eter updating rule for node is

(3)

where denotes the neighboring nodes set of node (including
node itself), and are linear weights satisfying the fol-
lowing conditions

(4)

In a practical scenario, since the exchange of full raw data
among neighbors is costly, the weight is usually

set as , if , as in [6]. In such a case, for node
with degree (including node itself, i.e., the cardinality of set
) and neighbor set , we can write the general

parameter updating rule as

(5)

where can be any adaptive filtering algorithm, e.g.,
for the LMS algo-

rithm, represents some specific linear combination
rule. The (5) gives a general form of existing distributed adap-
tive filtering algorithms, where the combination rule
mainly determines the performance. Table I summarizes the
existing combination rules, where for all rules ,
if .
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TABLE I
DIFFERENT COMBINATION RULES

From Table I, we can see that the weights of the first four
combination rules are purely based on the network topology.
The disadvantage of such topology-based rules is that, they are
sensitive to the spatial variation of signal and noise statistics
across the network. The relative degree-variance rule shows
better mean-square performance than others, which, however,
requires the knowledge of all neighbors’ noise variances. As dis-
cussed in Section I, all these distributed algorithms are only fo-
cusing on designing the combination rules. Nevertheless, a dis-
tributed network is just like a natural ecological system and the
nodes are just like individuals in the system, which may sponta-
neously follow some nature evolutionary rules, instead of some
specific artificially predefined rules. Besides, although various
kinds of combination rules have been developed, there is no gen-
eral framework which can reveal the unifying fundamentals of
distributed adaptive filtering problems. In the sequel, we will
use graphical evolutionary game theory to establish a general
framework to unify existing algorithms and give insights of the
distributed adaptive filtering problem.

III. GRAPHICAL EVOLUTIONARY GAME FORMULATION

A. Introduction of Graphical Evolutionary Game

Evolutionary game theory (EGT) is originated from the
study of ecological biology [18], which differs from the clas-
sical game theory by emphasizing more on the dynamics and
stability of the whole population’s strategies [19], instead of
only the property of the equilibrium. EGT has been widely
used to model users’ behaviors in image processing [20], as
well as communication and networking area [21], [22], such
as congestion control [23], cooperative sensing [24], coopera-
tive peer-to-peer (P2P) streaming [25] and dynamic spectrum
access [26]. In these literatures, evolutionary game has been
shown to be an effective approach to model the dynamic social
interactions among users in a network.

EGT is an effective approach to study how a group of players
converges to a stable equilibrium after a period of strategic in-
teractions. Such an equilibrium strategy is defined as the Evolu-
tionarily Stable Strategy (ESS). For an evolutionary game with
players, a strategy profile , where

and is the action space, is an ESS if and only if,
satisfies following [19]:

(6)

(7)

where stands for the utility of player and denotes the
strategies of all players other than player . We can see that the
first condition is the Nash equilibrium (NE) condition, and the
second condition guarantees the stability of the strategy. More-
over, we can also see that a strict NE is always an ESS. If all
players adopt the ESS, then no mutant strategy could invade the
population under the influence of natural selection. Even if a
small part of players may not be rational and take out-of-equi-
librium strategies, ESS is still a locally stable state.
Let us consider an evolutionary game with strategies

. The utility matrix, , is an matrix,
whose entries, , denote the utility for strategy versus
strategy . The population fraction of strategy is given by
, where . The fitness of strategy is given

by . For the average fitness of the whole
population, we have . The Wright-Fisher model
has been widely adopted to let a group of players converge to
the ESS [27], where the strategy updating equation for each
player can be written as

(8)

Note that one assumption in the Wright-Fisher model is that
when the total population is sufficiently large, the fraction of
players using strategy is equal to the probability of one indi-
vidual player using strategy . From (8), it can be seen that the
strategy updating process in the evolutionary game is similar to
the parameter updating process in adaptive filter problem. It is
intuitive that we can use evolutionary game to formulate the dis-
tributed adaptive filter problem.
The classical evolutionary game theory considers a popula-

tion of individuals in a complete graph. However, in many
scenarios, players’ spatial locations may lead to an incomplete
graph structure. Graphical evolutionary game theory is intro-
duced to study the strategies evolution in such a finite struc-
tured population [28], where each vertex represents a player
and each edge represents the reproductive relationship between
valid neighbors, i.e., denotes the probability that the strategy
of node will replace that of node , as shown in Fig. 2. Graph-
ical EGT focuses on analyzing the ability of a mutant gene to
overtake a group of finite structured residents. One of the most
important research issues in graphical EGT is how to compute
the fixation probability, i.e., the probability that the mutant will
eventually overtake the whole structured population [29]. In the
following, we will use graphical EGT to formulate the dynamic
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Fig. 2. Graphical evolutionary game model.

TABLE II
CORRESPONDENCE BETWEEN GRAPHICAL EGT AND DISTRIBUTED ADAPTIVE

NETWORK

parameter updating process in a distributed adaptive filter net-
work.

B. Graphical Evolutionary Game Formulation

In graphical EGT, each player updates strategy according to
his/her fitness after interacting with neighbors in each round.
Similarly, in distributed adaptive filtering, each node updates
its parameter through incorporating the neighbors’ informa-
tion. In such a case, we can treat the nodes in a distributed filter
network as players in a graphical evolutionary game. For node
with neighbors, it has pure strategies ,
where strategy means updating using the updated in-
formation from its neighbor . We can see that (5)
represents the adoption of mixed strategy. In such a case, the
parameter updating in distributed adaptive filter network can be
regarded as the strategy updating in graphical EGT. Table II
summarizes the correspondence between the terminologies in
graphical EGT and those in distributed adaptive network.
We first discuss how players’ strategies are updated in graph-

ical EGT, which is then applied to the parameter updating in
distributed adaptive filtering. In graphical EGT, the fitness of a
player is locally determined from interactions with all adjacent
players, which is defined as [30]

(9)

where is the baseline fitness, which represents the player’s
inherent property. For example, in a distributed adaptive net-
work, a node’s baseline fitness can be interpreted as the quality

Fig. 3. Three different update rules, where death selections are shown in dark
blue and birth selections are shown in red. (a) BD update rule. (b) DB update
rule. (c) IM update rule.

of its noise variance. is the player’s utility which is deter-
mined by the predefined utility matrix. The parameter repre-
sents the selection intensity, i.e., the relative contribution of the
game to fitness. The case represents the limit of weak
selection [31], while denotes strong selection, where fit-
ness equals utility. There are three different strategy updating
rules for the evolution dynamics, called as birth-death (BD),
death-birth (DB) and imitation (IM) [32].
• BD update rule: a player is chosen for reproduction
with the probability being proportional to fitness (Birth
process). Then, the chosen player’s strategy replaces one
neighbor’s strategy uniformly (Death process), as shown
in Fig. 3(a).

• DB update rule: a random player is chosen to abandon
his/her current strategy (Death process). Then, the chosen
player adopts one of his/her neighbors’ strategies with
the probability being proportional to their fitness (Birth
process), as shown in Fig. 3(b).

• IM update rule: each player either adopts the strategy of
one neighbor or remains with his/her current strategy, with
the probability being proportional to fitness, as shown in
Fig. 3(c).

These three kinds of strategy updating rules can be matched
to three different kinds of parameter updating algorithms in dis-
tributed adaptive filtering. Suppose that there are nodes in a
structured network, where the degree of node is . We use
to denote the set of all nodes and to denote the neighborhood
set of node , including node itself.
For the BD update rule, the probability that node adopts

strategy , i.e., using updated information from its neighbor
node , is

(10)
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where the first term is the probability that the neigh-

boring node is chosen to reproduction, which is proportional
to its fitness , and the second term is the probability that
node is chosen for adopting strategy . Note that the network
topology information is required to calculate (10). In such
a case, the equivalent parameter updating rule for node can be
written by

(11)

Similarly, for the DB updating rule, we can obtain the corre-
sponding parameter updating rule for node as

(12)

For the IM updating rule, we have

(13)

Note that (11), (12) and (13) are expected outcome of BD, DB
and IM updated rules, which can be referred in [35], [37].
The performance of adaptive filtering algorithm is usually

evaluated by two measures: mean-square deviation (MSD) and
excess-mean-square error (EMSE), which are defined as

(14)

(15)

Using (11), (12) and (13), we can calculate the network MSD
and EMSE of these three update rules according to [6].

C. Relationship to Existing Distributed Adaptive Filtering
Algorithms

In Section II, we have summarized the existing distributed
adaptive filtering algorithms in (5) and Table I. In this subsec-
tion, we will show that all these algorithms are the special cases
of the IM update rule in our proposed graphical EGT frame-
work. Compare (5) and (13), we can see that different fitness
definitions are corresponding to different distributed adaptive
filtering algorithms in Table I. For the uniform rule, the fitness
can be uniformly defined as and using the IM update
rule, we have

(16)

which is equivalent to the uniform rule in Table I. Here, the
definition of means the adoption of fixed fitness and

TABLE III
DIFFERENT FITNESS DEFINITIONS

weak selection . For the Laplacian rule, when updating
the parameter of node , the fitness of nodes in can be defined
as

(17)

From (17), we can see that each node gives more weight to the
information from itself through enhancing its own fitness. Sim-
ilarly, for the Relative-degree-variance rule, the fitness can be
defined as

(18)

For the metropolis rule and Hastings rule, the corresponding
fitness definitions are based on strong selection model ,
where utility plays a dominant role in (9). For the metropolis
rule, the utility matrix of nodes can be defined as

(19)

For the Hastings rule, the utility matrix can be defined as

(20)

Table III summarizes different fitness definitions corresponding
to different combination rules in Table I. Therefore, we can
see that the existing algorithms can be summarized into our
proposed graphical EGT framework with corresponding fitness
definitions.
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D. Error-Aware Distributed Adaptive Filtering Algorithm

To illustrate our graphical EGT framework, as examples, we
further design two distributed adaptive algorithms by choosing
different fitness functions. As discussed in Section II, the ex-
isting distributed adaptive filtering algorithms either rely on the
prior knowledge of network topology or the requirement of ad-
ditional network statistics. All of them are not robust to a dy-
namic network, where a node location may change and the noise
variance of each node may also vary with time. Considering
these problems, we propose error-aware algorithms based on
the intuition that neighbors with low mean-square-error (MSE)
should be given more weight while neighbors with high MSE
should be given less weight. The instantaneous error of node ,
denoted by , can be calculated by

(21)

where only local data are used. The approximated
MSE of node , denoted by , can be estimated by following
update rule in each time slot,

(22)

where is a positive parameter. We assume that nodes can
exchange their instantaneous MSE information with neighbors.
Based on the estimated MSE, we design two kinds of fitness:
exponential form and power form as follows:

(23)

(24)

where is a positive coefficient. Note that the fitness defined in
(23) and (24) are just two examples of our proposed framework,
while many other forms of fitness can be considered, e.g.,

. Using the IM update rule, we have

(25)

(26)

From (25) and (26), we can see that the proposed algorithms
do not directly depend on any network topology information.
Moreover, they can also adapt to a dynamic environment when
the noise variance of nodes are unknown or suddenly change,
since the weights can be immediately adjusted accordingly.
In [33], a similar algorithm was also proposed based on the
instantaneous MSE information, which is a special case of our
error-aware algorithm with power form of . Note that
the deterministic coefficients are adopted when implementing
(25) and (26), instead of using random combining efficient
with some probability. However, the algorithm can also be
implemented using a random selection with probabilities. There
will be no performance loss since the expected outcome is the
same, but the efficiency (convergence speed) will be lower.
In Section V, we will verify the performance of the proposed
algorithm through simulation.

Fig. 4. Graphical evolutionary game model.

IV. DIFFUSION ANALYSIS

In a distributed adaptive filter network, there are nodes with
good signals, i.e., lower noise variance, as well as nodes with
poor signals. The principal objective of distributed adaptive fil-
tering algorithms is to stimulate the diffusion of good signals
to the whole network to enhance the network performances. In
this section, we will use the EGT to analyze such a dynamic
diffusion process and derive the close-form expression for the
diffusion probability. In the following diffusion analysis, we as-
sume that all nodes have the same regressor statistics , but
different noise statistics.
In a graphical evolutionary game, the structured population

are either residents or mutants. An important concept is the fixa-
tion probability, which represents the probability that the mutant
will eventually overtake the whole population [34]. Let us con-
sider a local adaptive filter network as shown in Fig. 4, where the
hollow points denote common nodes, i.e., nodes with common
noise variance ; and the solid points denote good nodes, i.e.,
nodes with a lower noise variance . and satisfy that

. Here, we adopt the binary signal model to better
reveal the diffusion process of good signals. If we regard the
common nodes as residents and the good nodes as mutants, the
concept of fixation probability in EGT can be applied to analyze
the diffusion of good signals in the network. According to the
definition of fixation probability, we define the diffusion proba-
bility in a distributed filter network as the probability that a good
signal can be adopted by all nodes to update parameters in the
network.

A. Strategies and Utility Matrix

As shown in Fig. 4, for the node at the center, its neighbors
include both common nodes and good nodes. When the center
node updates its parameter , it has the following two possible
strategies:

(27)

In such a case, we can define the utility matrix as follow:

(28)

where represents the steady EMSE of node with noise
variance using information from node with noise variance
. For example, is the steady EMSE of node with
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noise variance adopting strategy , i.e., updating its
using information from node with noise variance which in
turn adopts strategy . In our diffusion analysis, we assume
that only two players are interacting with each other at one time
instant, i.e., there are two nodes exchanging and combining in-
formation with each other at one time instant. In such a case,
the payoff matrix is two-user case. Note that a node chooses one
specific neighbor with some probability, which is equivalent to
the weight that the node gives to that neighbor.
Since the steady EMSE in the utility matrix is deter-

mined by the information combining rule, there is no general ex-
pressions for . Nevertheless, by intuition, we know that
the steady EMSE of node with variance should be larger than
that of node with variance since , and adopting
strategy should be more beneficial than adopting strategy
since the node can obtain better information from others, i.e.,

. There-
fore, we assume that the utility matrix defined in (28) has the
quality as follow

(29)

Here, we use an example in [17] to have a close-form expression
for to illustrate and verify this intuition. According to
[17], with sufficiently small step size , the optimal can
be calculated by

(30)

(31)

where consists of the eigenvalues of
(recall that is the covariance matrix of the observed regres-
sion data ). According to (30) and (31), we have

(32)

(33)

(34)

(35)

Suppose , through comparing (32)–(35), we can de-
rive the condition for

as follows

(36)

According to [17], the derivation of optimal in (30) and
(31) is based on the assumption that is sufficiently small.
Therefore, the condition of in (36) holds. In such a case, we
can conclude that

, which implies that .
In the following, we will analyze the diffusion process of

strategy , i.e., the ability of good signals diffusing over the
whole network. We consider an adaptive filter network based
on a homogenous graph with general degree and adopt the
IM update rule for the parameter update [35]. Let and

denote the percentages of nodes using strategies and in
the population, respectively. Let and de-
note the percentages of edge, where means the percentage
of edge on which both nodes use strategy and . Let
denote the conditional probability of a node using strategy
given that the adjacent node is using strategy , similar we
have and . In such a case, we have

(37)

(38)

where and are either or . The equations (37)–(38) imply
that the state of the whole network can be described by only two
variables, and . In the following, we will calculate the
dynamics of and under the IM update rule.

B. Dynamics of and

In order to derive the diffusion probability, we first need to
analyze the diffusion process of the system. As discussed in the
previous subsection, the system dynamics under IM update rule
can be represented by parameters and . Thus, in this
subsection, we will first analyze the dynamics of and
to understand the dynamic diffusion process of the adaptive net-
work. According to the IM update rule, a node using strategy
is selected for imitation with probability . As shown in the left
part of Fig. 4, among its neighbors (not including itself), there
are nodes using strategy and nodes using strategy ,
respectively, where . The percentage of such a con-

figuration is . In such a case, the fitness of this

node is

(39)

where the baseline fitness is normalized as 1. We can see that
(39) includes the normalized baseline fitness and also the fitness
from utility, which is the standard definition of fitness used in
the EGT filed, as shown in (9). Among those neighbors, the
fitness of node using strategy is

(40)

and the fitness of node using strategy is

(41)

In such a case, the probability that the node using strategy is
replaced by is

(42)

Therefore, the percentage of nodes using strategy , in-
creases by with probability

(43)
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Meanwhile, the edges that both nodes use strategy increase
by , thus, we have

(44)

Similar analysis can be applied to the node using strategy
. According to the IM update rule, a node using strategy
is selected for imitation with probability . As shown

in the right part of Fig. 4, we also assume that there are
nodes using strategy and nodes using strategy
among its neighbors. The percentage of such a phenomenon

is . Thus, the fitness of this node is

(45)

Among those neighbors, the fitness of node using strategy
is

(46)

and the fitness of node using strategy is

(47)

In such a case, the probability that the node using strategy
is replaced by is

(48)

Therefore, the percentage of nodes using strategy , de-
creases by with probability

(49)

Meanwhile, the edges that both nodes use strategy decrease
by , thus, we have

(50)

Combining (43) and (49), we have the dynamic of as

(51)

where the second equality is according to Taylor’s Theorem and
weak selection assumption with goes to zero [36], and the
parameters and are given as follows:

(52)

(53)

(54)

(55)

In (51), the dot notation represents the dynamic of , i.e.,
the variation of within a tiny period of time. In such a case,
the utility obtained from the interactions is considered as limited
contribution to the overall fitness of each player. On one hand,
the results derived from weak selection often remain as valid
approximations for larger selection strength [31]. On the other
hand, the weak selection limit has a long tradition in theoretical
biology [37]. Moreover, the weak selection assumption can help
achieve a close-form analysis of diffusion process and better
reveal how the strategy diffuses over the network. Similarly, by
combining (44) and (50), we have the dynamics of as

(56)

Besides, we can also have the dynamics of as

(57)

C. Diffusion Probability Analysis

The dynamic equation of in (51) reflects the dynamic
of nodes updating using information from good nodes, i.e.,
the diffusion status of good signals in the network. A posi-
tive means that good signals are diffusing over the net-
work, while a negative means that good signals have not
been well adopted. The diffusion probability of good signals is
closely related to the noise variance of good nodes . Intu-
itively, the lower , the higher probability that good signals
can spread the whole network. In this subsection, we will ana-
lyze the close-form expression for the diffusion probability.
As discussed at the beginning of Section IV, the state of whole

network can be described by only and . In such a case,
(51) and (57) can be re-written as functions of and

(58)

(59)

From (58) and (59), we can see that converges to equi-
librium in a much faster rate than under the assumption of
weak selection. At the steady state of , i.e., ,
we have

(60)
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In such a case, the dynamic network will rapidly converge onto
the slow manifold, defined by . Therefore,
we can assume that (60) holds in the whole convergence process
of . According to (37)–(38) and (60), we have

(61)

(62)

(63)

(64)

Therefore, the diffusion process can be characterized by only
. Thus, we can focus on the dynamics of to derive the

diffusion probability, which is given by following Theorem 1.
Theorem 1: In a distributed adaptive filter network which can

be characterized by a -node regular graph with degree , sup-
pose there are common nodes with noise variance and good
nodes with noise variance , where each common node has
connection edge with only one good node. If each node updates
its parameter using the IM update rule, the diffusion proba-
bility of the good signal can be approximated by

(65)

where the parameters and are as follows:

(66)

(67)

Proof: See Appendix.
Using Theorem 1, we can calculate the diffusion probability

of the good signals over the network, which can be used to eval-
uate the performance of an adaptive filter network. Similarly, the
diffusion dynamics and probabilities under BD and DB update
rules can also be derived using the same analysis. The following
theorem shows an interesting result, which is based on an impor-
tant theorem in [29], stating that evolutionary dynamics under
BD, DB, and IM are equivalent for undirected regular graphs.
Theorem 2: In a distributed adaptive filter network which can

be characterized by a -node regular graph with degree , sup-
pose there are common nodes with noise variance and good
nodes with noise variance , where each common node has
connection edge with only one good node. If each node updates
its parameter using the IM update rule, the diffusion proba-
bilities of good signals under BD and DB update rules are same
with that under the IM update rule.

V. EVOLUTIONARILY STABLE STRATEGY

In the last section, we have analyzed the information diffu-
sion process in an adaptive network under the IM update rule,
and derived the diffusion probability of strategy that using
information from good nodes. On the other hand, considering
that if the whole network has already chosen to adopt this fa-
vorable strategy , is the current state a stable network state,
even though a small fraction of nodes adopt the other strategy
? In the following, we will answer these questions using the

concept of evolutionarily stable strategy (ESS) in evolutionary

game theory. As discussed in Section III-A, the ESS ensures
that one strategy is resistant against invasion of another strategy
[38]. In our system model, it is obvious that , i.e., using in-
formation from good nodes, is the favorable strategy and a de-
sired ESS in the network. In this section, we will check whether
strategy is evolutionarily stable.

A. ESS in Complete Graphs

We first discuss whether strategy is an ESS in complete
graphs, which is shown by the following theorem.
Theorem 3: In a distributed adaptive filter network that can

be characterized by complete graphs, strategy is always an
ESS strategy.

Proof: In a complete graph, each node meets every other
node equally likely. In such a case, according to the utility ma-
trix in (28), the average utilities of using strategies and
are given by

(68)

(69)

where and are the percentages of population using strate-
gies and , respectively. Consider the scenario that the
majority of the population adopt strategy , while a small
fraction of the population adopt which is considered as in-
vasion, . In such a case, according to the definition of
ESS in (7), strategy is evolutionary stable if for

, i.e.,

(70)

For , the left hand side of (70) is positive if and only if

`` '' `` '' (71)

The (71) gives the sufficient evolutionary stable condition of
strategy . In our system, we have ,
which means that (71) always holds. Therefore, strategy is
always an ESS if the adaptive filter network is a complete graph.

B. ESS in Incomplete Graphs

Let us consider an adaptive filter network which can be char-
acterized by an incomplete regular graph with degree . The
following theorem shows that strategy is always an ESS in
such an incomplete graph.
Theorem 4: In a distributed adaptive filter network which can

be characterized by a regular graph with degree , strategy
is always an ESS strategy.

Proof: Using the pair approximation method [32], the
replicator dynamics of strategies and on a regular graph
of degree can be approximated simply by

(72)

(73)

where is the average
utility, and and are given as follows:

(74)
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The parameter depends on the three update rules (IM, BD and
DB), which is given by [32]

(75)

(76)

(77)

In such a case, the equivalent utility matrix is

(78)

According to (71), the evolutionary stable condition for
strategy is

(79)

Since , we have for all three
update rules. In such a case, (79) always holds, which means
that strategy is always an ESS strategy. This completes the
proof of the theorem.

VI. SIMULATION RESULTS

In this section, we develop simulations to compare the per-
formances of different adaptive filtering algorithms, as well as
to verify the derivation of information diffusion probability and
the analysis of ESS.

A. Mean-Square Performances

The network topology used for simulation is shown in the
left part of Fig. 5, where 20 randomly nodes are randomly lo-
cated. The signal and noise power information of each node are
also shown in the right part of Fig. 5, respectively. In the sim-
ulation, we assume that the regressors with size , are
zero-mean Gaussian and independent in time and space. The
unknown vector is set to be and the step size of
the LMS algorithm at each node is set as . All the
simulation results are averaged over 500 independent runnings.
All the performance comparisons are conducted among six dif-
ferent kinds of distributed adaptive filtering algorithms as fol-
lows:
• Relative degree algorithm [8];
• Hastings algorithm [17];
• Adaptive combiner algorithm [7];
• Relative degree-variance algorithm [6];
• Proposed error-aware algorithm with power form;
• Proposed error-aware algorithm with exponential form.

Among these algorithms, the adaptive combiner algorithm [7]
and our proposed error-aware algorithm are based on dynamic
combiners (weights), which are updated in each time slot. The
difference is the updating rule, where the adaptive combiner al-
gorithm in [7] uses optimization and projection method, and our
proposed algorithms use the approximated EMSE information.
In the first comparison, we assume that the noise variance

of each node is known by the Hastings and relative degree-
variance algorithms. Fig. 6 shows the transient network-per-
formance comparison results among six kinds of algorithms in

Fig. 5. Network information for simulation, including network topology for 20
nodes (left), trace of regressor covariance (right top) and noise variance
(right bottom).

Fig. 6. Transient performances comparison with known noise variances. (a)
Network EMSE. (b) Network MSD.

terms of EMSE and MSD. Under the similar convergence rate,
we can see that the relative degree-variance algorithm performs
the best. The proposed algorithm with exponential form per-
forms better than the relative degree algorithm. With the power
form fitness, the proposed algorithm can achieve similar perfor-
mance, if not better than, compared with adaptive combiner al-
gorithm, and both algorithms performs better than all other algo-
rithms except the relative degree-variance algorithm. However,
as discussed in Section 2, the relative degree-variance algorithm
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Fig. 7. Steady performances comparison with known noise variances. (a)
Node’s EMSE. (b) Node’s MSD.

requires noise variance information of each node, while our
proposed algorithm does not. Fig. 7 shows the corresponding
steady-state performances of each node for six kinds of dis-
tributed adaptive filtering algorithms in terms of EMSE and
MSD. Since the steady-state result is for each node, besides av-
eraging over 500 independent runnings, we average at each node
over 100 time slots after the convergence. We can see that the
comparison results of steady-state performances are similar to
those of the transient performances.
In the second comparison, we assume that the noise vari-

ance of each node is unknown, but can be estimated by the
method proposed in [17]. Figs. 8 and 9 show the transient and
steady-state performances for six kinds of algorithms in terms
of EMSE and MSD under similar convergence rate. Since the
noise variance estimation requires additional complexity, we
also simulate the Hastings and relative degree-variance algo-
rithms without variance estimation for fair comparison, where
the noise variance is set as the network average variance, which
is assumed to be prior information. Comparing with Fig. 7, we
can see that when the noise variance information is not avail-
able, the performance degradation of relative degree-variance
algorithm is significant, about 0.5 dB (12% more error) even
with noise variance estimation, while the performance of Hast-
ings algorithm degrades only a little since it relies less on the
noise variance information. From Fig. 8(b), we can clearly see
that when the variance estimation method is not adopted, our
proposed algorithm with power form achieves the best perfor-
mance. When the variance estimation method is adopted, the
performances of our proposed algorithm with power form, the
relative degree-variance and the adaptive combiner algorithm

Fig. 8. Transient performances comparison with unknown noise variances. (a)
Network EMSE. (b) Network MSD.

are similar, all of which perform better than other algorithms.
Nevertheless, the complexity of both relative degree-variance
algorithm with variance estimation and the adaptive combiner
algorithm are higher than that of our proposed algorithm with
power form. Such results immediately show the advantage of
the proposed general framework.We should notice that more al-
gorithms with better performances under certain criteria can be
designed based on the proposed framework by choosing more
proper fitness functions.

B. Diffusion Probability

In this subsection, we develop simulation to verify the dif-
fusion probability analysis in Section IV. For the simulation
setup, three types of regular graphs are generated with degree

, 4 and 6, respectively, as shown in Fig. 10(a). All these
three types of graphs are with nodes, where each
node’s trace of regressor covariance is set to be
, the common nodes’s noise variance is set as

and the good node’s noise variance is set as .
In the simulation, the network is initialized with the state that
all common nodes choosing strategy . Then, at each time
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Fig. 9. Steady performances comparison with unknown noise variances. (a)
Node’s EMSE. (b) Node’s MSD.

Fig. 10. Diffusion probabilities under three types of regular graphs. (a) Regular
graph structures with degree , 4 and 6. (b) Diffusion probability.

Fig. 11. Strategy updating process in a 10 10 grid network with degree
and number of nodes .

step, a randomly chosen node’s strategy is updated according
to the IM rules under weak selection , as illus-
trated in Section III-B. The update steps are repeated until ei-
ther strategy has reached fixation or the number of steps
has reach the limit. The diffusion probability is calculated by the
fraction of runs where strategy reached fixation out of
runs. Fig. 10(b) shows the simulation results, from which we
can see that all the simulated results are basically accord with
the corresponding theoretical results and the gaps are due to the
approximation during the derivations.Moreover, we can see that
the diffusion probability of good signal decreases along with the
increase of its noise variance, i.e., better signal has better diffu-
sion capability.

C. Evolutionarily Stable Strategy

To verify that strategy is an ESS in the adaptive network,
we further simulate the IM update rule on a 10 10 grid net-
work with degree and number of nodes , as
shown in Fig. 11 where the hollow points represent common
nodes and the solid nodes represent good nodes. In the simu-
lation, all the settings are same with those in the simulation of
diffusion probability in Section VI.B, except the initial network
setting. The initial network state is set that the majority of nodes
adopt strategy denoted with black color (including both
hollow and solid nodes) in Fig. 11, and only a very small per-
centage of nodes use strategy denoted with red color. From
the strategy updating process of the whole network illustrated in
Fig. 11, we can see that the network finally abandons the unfa-
vorable strategy , which verifies the stability of strategy .

VII. CONCLUSION

In this paper, we proposed an evolutionary game theoretic
framework to offer a very general view of the distributed adap-
tive filtering problems and unify existing algorithms. Based on
this framework, as examples, we further designed two error-
aware adaptive filtering algorithms. Using the graphical evo-
lutionary game theory, we analyzed the information diffusion
process in the network under the IM update rule, and proved that
the strategy of using information from nodes with good signal
is always an ESS. We would like to emphasize that, unlike the
traditional bottom-up approaches, the proposed graphical evo-
lutionary game theoretic framework provides a top-down design
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philosophy to understand the fundamentals of distributed adap-
tive algorithms. Such a top-down design philosophy is very im-
portant to the field of distributed adaptive signal process, since
it offers a unified view of the formulation and can inspire more
new distributed adaptive algorithms to be designed in the future.

APPENDIX
PROOF OF THEOREM 1

Proof: First, let us define as the mean of the incre-
ment of per unit time given as follows

(80)

where the second step is derived by substituting (60)–(64) into
(51) and the parameters and are given as follows:

(81)

(82)

We then define as the variance of the increment of
per unit time, which can be calculated by

(83)

where can be computed by

(84)

In such a case, can be approximated by

(85)

Suppose the initial percentage of good nodes in the network is
. Let us define as the probability that these good

signals can finally be adopted by the whole network, i.e., all
nodes can update their own using information from good
nodes. According to the backward Kolmogorov equation [39],

satisfies following differential equation

(86)

With the weak selection assumption, we can have the approxi-
mate solution of as

(87)

Let us consider the worst initial system state that each
common node has connection with only one good node, i.e.,

, we have

(88)

By substituting (81) and (82) into (88), we can have the close-
form expression for the diffusion probability in (65). This com-
pletes the proof of the theorem.
Remark: From (87), we can see that there are two terms con-

stituting the expression of diffusion probability: the initial per-
centage of strategy (the initial system state) and the
second term representing the changes of system state after be-
ginning, in which determines whether is increasing or
decreasing along with the system updating. If , i.e.,
the diffusion probability is even lower than the initial percentage
of strategy , the information from good nodes are shrinking
over the network, instead of spreading. Therefore,
is more favorable for the improvement of the adaptive network
performance.
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