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Abstract—With the emergence of big data computing and analysis, cloud computing services become more and more popular, which

has recently drawn researchers’ great attentions to develop various new applications and mechanisms. In this paper, we consider the

on-demand mechanism design in the infrastructure as a service (IaaS), including resource allocation and pricing issues under dynamic

scenarios. Most of existing works on mechanism design assumed static and independent individual utility, while the cloud computing

services are provided in a dynamic environment. To solve such problems, we start with analyzing the Google cluster-usage dataset to

draw the statistical and stochastic characteristics of the IaaS consumers and providers. Based on the characteristics mined from real

data, we propose a stochastic matching algorithm with Markov Decision Process (MDP), which aims at optimizing the long-term system

efficiency, with its online version using Q-learning method to address the imperfect model estimation problem. We further design

an efficient (EF), incentive compatible (IC), individual rational (IR) auction mechanism, which is an extension of traditional Vickrey-

Clarke-Groves (VCG) mechanism. The proposed mechanism is studied under two application scenario: quality sensitive services,

where unilateral MDP-VCG auction is implemented; and quality insensitive services, where MDP-VCG double auction is implemented.

To verify the performance of our proposed mechanism, we conduct experiment using the Google dataset and show that the proposed

MDP-based VCG auction mechanism can achieve EF, IC and IR properties simultaneously.

Index Terms—Cloud computing service, IaaS, Markov decision process, Q-learning, Vickrey-Clarke-Groves, mechanism design
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1 INTRODUCTION

1.1 Background

THE rapid growth of demand for big data and large scale
data processing lead the cloud computing into a boom-

ing era. Cloud computing services consists of three layers,
i.e., infrastructure as a service (IaaS), platform as a service
(PaaS) and software as a service (SaaS) [1], where IaaS pro-
vides the hardware foundation and is our focus in this
paper. Lots of IaaS providers have emerged, e.g., Amazon
CloudFormation, Google Compute Engine, HP Cloud etc.
Meanwhile, open-source cloud service platforms like
Hadoop [2] and Eucalyptus [3] are becoming more and
more reliable and scalable, making it easier and faster to
deploy computing clusters. This trend further encourages
companies and institutions with large or small scale data-
centers to join the profitable cloud service market.

One of the most important concepts in IaaS is utility com-
puting [4]. In IaaS, computing resource is treated as a special
kind of utility, just like electricity or water. For instances, a
cloud service billing/pricing system was proposed to fulfill
the computing service transactions in [5]; while a Nash equi-
librium between the IaaS providers and SaaS providers

regarding service provisioning was proposed in [6]. Mean-
while, the competition and cooperation among cloud pro-
viders were investigated in [7] and a IaaS provider’s revenue
maximization scheme using optimization method was pro-
posed in [8]. Based on the pay-as-you-go market model, IaaS
makes it possible for small institutions to perform large scale
computations with reasonable cost. With the growing num-
ber of service providers and customers, auction becomes a
natural choice for pricing in the cloud computing services.
For example, the pricing policy of Amazon, “spot instances”,
allows users to bid for unused capacities. However, due to
the large number of potential IaaS providers and consumers,
it is difficult to design an effective auction mechanism that
can efficiently utilize the computing resource. Recently, a
new idea called “volunteer cloud” has been proposed [9],
[10], [11], where researchers made some early attempt to
combine volunteer computing with cloud service such that
every personal computer can become a potential IaaS pro-
vider. This makes the auction mechanism design even more
challenging, and thus calls for new solutions to the bilateral
trading between IaaS providers and consumers.

1.2 Motivations

In the literature, many auction mechanisms have been pro-
posed, including first-price, second-price, English and
Dutch auctions [12]. Most of the existing works on auction
mechanism design assumed static and independent private
value. Meanwhile, the value function of the users was con-
structed in a myopic way, without considering the continu-
ous changes of the system state. However, in the cloud
computing service provision, the value model is different
from traditional setting in two perspectives.
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1) The value of an IaaS consumer may vary according
to the specific IaaS provider’s computing resources.
Different matchings between different consumers
and providers may result in extremely different user
experiences (values). For example, as shown in Fig. 1
drawn from the Google cluster-usage traces [13],
matching an IaaS consumer who requests 0.2 CPU
resource (unified within [0,1] by Google) with an
IaaS machine who can provide 0.9 CPU resource
would be over-satisfied for the consumer but under-
utilized for the provider, and vice versa.

2) The cloud computing service is provided in a
dynamic environment. In Fig. 1, we can see that dif-
ferent IaaS consumers requesting different CPU and
memory resources dynamically arrive at the system.
Meanwhile, IaaS machines providing different
resources, i.e., CPU and memory, are also dynami-
cally added, removed or updated. Apparently, both
service consumers and providers appear in a tempo-
ral basis and stay in the system for a period time.
Under such circumstances, it is natural for the sys-
tem to consider the opportunity cost in the near
future instead of one-shot or immediate reward.

The aforementioned two distinct problems require us to
customize an on-demand auction mechanism for the cloud
computing services according to their specific statistical and
stochastic characteristics. While one fundamental problem
is how we can find the statistical characteristics of the IaaS
providers and consumers. As a matter of fact, those charac-
teristics are hidden in the real big data generated by the
practical services, just as the Google cluster-usage traces. In
this paper, we start with analyzing the characteristics of
IaaS consumers and providers using the Google data traces.
Then, based on the characteristics mined from the real data,
we propose a practical MDP-based dynamic VCG auction
mechanism for the cloud computing services. The proposed
mechanism is studied under two application scenarios:
quality sensitive services, where unilateral MDP-VCG is

implemented; and quality insensitive services, where MDP-
VCG double auction is implemented.

1.3 Related Works

Themajor goals for auctionmechanism design are efficiency,
incentive compatibility (IC) and individual rationality (IR).
The Vickrey-Clarke-Groves (VCG) auction mechanism [14],
[15], [16] is able to achieve all the three properties simulta-
neously. While the problem with VCG mechanism is that it
often incurs low revenue for the sellers, which can cause seri-
ous budget balance (BB) problem in bilateral trading. In
terms of bilateral trading, the seminal work of Myerson [17]
provided the fundamental theory that it is impossible to
achieve efficiency, incentive compatibility, individual ratio-
nality, and budget balance simultaneously. Nevertheless,
continual effort is being made to leverage these criteria and
find the optimal tradeoff. The most widely adopted bilateral
trading mechanism is the McAfee mechanism [18], since it is
easy to implement and has the dominant-strategy incentive
compatible and asymptotically efficient properties. In [19],
the authors designed a competitive truthful double auction
mechanism, with the goal of achieving the (approximate)
optimal revenue for the auctioneer. Fudenberg et al. in [20]
analyzed existence of pure strategy equilibrium in double
auction markets and argued that the equilibrium is close to
truth bidding as the market size grows, while Zhao et al. in
[21] proposed a matching mechanism extending the tradi-
tional VCGmechanism to the double auction scenario.

In the cloud computing literature, there are some existing
works on the auction-based cloud service provision model
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. In [22], [23], [24], [25], [26], unilateral auction-based
models were employed in studying the resource allocation
and pricing issues, e.g., the combinatorial auction model and
the reverse auction model. Double auction models were also
studied in the cloud computing market to ensure both
providers’ and users’ truthful computing resource trading
[27], [28], [29]. Meanwhile, some dynamic auction models
were proposed in [31], [32], [33], [34] to deal with the dynam-
ically fluctuating cloud computing resource demands and
multi-round auction scenario. However, these existing
works only designed the auction mechanism to maximize
the immediate system value while ignoring the long-term
expected utility, which is also of importance since the com-
puting resource trading between the service consumers and
providers are long-term instead of one-shot. Although the
authors in [33] have used the MDP model to consider the
opportunity cost in the near future, they focused on the sce-
nario of single service provider and only considered the uni-
lateral auction model, which is substantially different from
our work where we focus on the stochastic matching
between multiple providers and consumers and investigate
both unilateral and double auction models. Last but not the
least, in this paper, we start with the real service data analy-
sis and the mechanism is built on the characteristics drawn
from the real data, which is the fundamental difference
between ourwork and the existingworks.

1.4 Organizations

The rest of the paper is organized as follows. Section 2
analyzes the statistical characteristics from the Google

Fig. 1. Google cluster-usage traces: consumers with dynamic CPU
requests andmemory requests (first and second), providers with dynamic
CPU andmemory servers (third and fourth), all unified within [0,1].
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cluster-usage dataset. Based on this, Section 3 proposes a
learning strategy of optimal IaaS consumer-provider match-
ing. Then, Section 4 proposes the MDP-VCG mechanism in
terms of both unilateral and double auctions with the theo-
retic proves of efficiency, incentive compatibility, individual
rationality. In Section 5, experiments are conducted to verify
the properties of the proposed mechanism. Finally, Section 6
concludes the paper.

2 MINING STATISTICAL CHARACTERISTICS

The Google cluster-usage traces dataset contains data from an
12k-machine cell over about amonth-long period inMay 2011
with size of approximately 40 GB. A cell is a set of machines,
typically all in a single cluster, that share a common cluster-
management system which is in charge of matching work to
machines. Work arrives at a cell in the form of jobs and each
job is comprised of one or more tasks. Each task represents a
Linux program, possibly consisting of multiple processes, to
be run on (matched to) a single machine. There is a set of
resource requirements accompanied with each task, which is
used for matching the task to some specific machine. In this
paper, we regard machines and tasks as IaaS providers (sell-
ers) and IaaS consumers (buyers), respectively.

In the dataset, there are task-event tables containing the
time stamp and status of each task, as well as the resource
request for CPU cores by each task. There are nine kinds of
status definitions for each task: submit, schedule, evict, fail,finish,
kill, lost, update_pending and update_running. With these status
definitions, “a new task is submitted” can be treated as a new
buyer arriving, while “an existing task is completed” can be
regarded as a buyer leaving the system. In such a case, with
the time stamp, we can extract the buyers’ arrival and leaving
intervals to estimate their traffic characteristic, i.e., arrival rate
and leaving rate. Besides, there are also machine-event tables
containing the time stamp and status of eachmachine, as well
as the CPU resource each machine can provide. There are
three kinds of status definitions for eachmachine: add, remove,
update. In such a case, we can regard adding a newmachine as
a new seller’s arrival, and removing an existing machine as a
seller leaving the system.1

When performing matching between consumers’ tasks
and providers’ machines, perfect matching considering
each individual consumer’s requests and each individual
provider’s resources would be preferable. However, such
perfect matchings would incur extremely high computa-
tional cost due to the numerous computations and
dynamic environment. In practical scenarios, we have to
categorize the consumers and providers into discretized
types, and perform matches between different types of
consumers and different types of providers. This would
reduce the system complexity to a large extent and ensure
the practicality. Let us take CPU resource as an example.
As defined in the dataset, the CPU resource is normalized
to [0,1] by scaling to the largest capacity of the resource
on any machine in the trace. Thus, we can define the
types of IaaS buyers and sellers according to the quan-
tized CPU resource levels as follows.

� Type 1 sellers: sellers with CPU resources belonging
to interval [0, 0.5];

� Type 2 sellers: sellers with CPU resources belonging
to interval (0.5, 1].

For the types of IaaS consumers, according to the Google
dataset, since almost all the CPU resource requests are
below 0.5, we can define the types of buyers as

� Type 1 buyers: buyers requesting CPU resources
within [0, 1/6];

� Type 2 buyers: buyers requesting CPU resources
within (1/6, 1/3];

� Type 3 buyers: buyers requesting CPU resources
within (1/3, 0.5].

The motivation of categorizing the resource sellers into two
types and resource buyers into three types comes from the
analysis of the real Google cluster-usage traces. As shown
in Fig. 1, the service provides’ CPU resources can be easily
categorized into two types, i.e., larger than 0.5 or smaller
than (equal with) 0.5, and the CPU resource requests can be
divided into three types, i.e., [0,1/6), [1/6,1/3), and [1/
3,0.5]. Note that the proposed services matching algorithm
is independent of the categorizations and thus will work for
any categorizations.

Based on the quantized types, we can further estimate
the statistic characteristics of different types of service sell-
ers and buyers, including the arrival rate � and leaving rate
m. Through analyzing the Google dataset, we find that the
service buyers and sellers arrive at and leave the system
with Poisson process, as shown in Fig. 2 which illustrates
the probability density of arriving/leaving intervals
for type 1 buyers and type 1 sellers. From Fig. 2, we can see
that the empirical distribution matches well with the expo-
nential distribution, and the estimated probability density
using Poisson modeling matches well with the empirical
probability density from real data. Note that the estimation
results in Fig. 2 is obtained by using minimum mean square
error (MMSE) estimator and the estimated Poisson parame-
ters are listed in Table 1. Based on those statistic characteris-
tics, we will discuss how to perform online matching and
dynamic auction in the following sections. Note that the

Fig. 2. Intensities of different types of buyers/sellers.

1. In this paper, we use service seller/buyer and service provider/
consumer alternatively.
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peoposed matching and auction mechanisms are not fully
relied on the statistics discovered from the Google dataset.
As long as the IaaS sellers and buyers are independent and
memoryless, i.e., satisfying Poisson process, our proposed
approaches can be applied. On one hand, one prominent
change in cloud scenario recently is the volunteer cloud,
where all users are unknown with each other and quite
independent and memoryless. On the other hand, even the
Poisson characteristic is not satisfied, our approach can also
be easily extended to the general scenario by modifying the
state definition and transitions.

3 STOCHASTIC MATCHING SERVICE

In this section, we study the resource matching problem
between the IaaS consumers and IaaS providers. Unlike the
traditional heuristic and/or myopic matching rule, we pro-
pose a stochastic scheduling rule based on MDP to achieve
long-term efficiency. We have noticed that there was an
MDP-based online mechanism in the literature proposed in
[35] targeting at the matching of individual consumer and
provider. The major drawback is that it is not scalable when
the number of users grows. To reduce the complexity and
make the mechanism more practical, we classify users into
performance clusters and consider the matching among
clusters, i.e., considering matching between different types
of IaaS consumers and IaaS providers as mentioned in the
previous section. Moreover, considering the system model
can be varying with time or even unknown to the auctioneer,
we further propose a Q-learning algorithm, the implementa-
tion of which does not rely on any systemmodel parameters.

3.1 Stochastic Matching Using MDP

In our formulation of the cloud services provision, we
regard IaaS consumers as buyers, which can consist of SaaS
providers who rent the hardware to provide software ser-
vice for its own customers, and individual users who use
the rented hardware for their own purpose. The IaaS pro-
viders are regarded as sellers, which can be either large-
scale datacenter managers or small hardware owners.
When a certain buyer i is matched to a certain seller j, the
buyer gets a value of zij, which is dependent on both his/
her intrinsic valuation of the service and the service quality
provided by seller j. Suppose the task arrival rate at the
buyer i is �i and the deadline requirement of buyer i is Ti;
the service rate of service provider j is mj, where both arriv-

als and services are assumed to follow Poisson process.
Let us denote the matching between all buyers and
sellers as X. The value of buyer i can also be denoted as a

function ziðXÞ ¼ �i 1� e�ðmi��iÞTi� �
. Correspondingly, the

cost for a seller to provide his/her resources is denoted as

cjðXÞ ¼ hmj if seller j is successfully matched to some buyer

by X, otherwise 0. Note that once the seller j is matched to
some buyer, the cost is only dependent on the fixed quality
of service (QoS) but not the specific buyer he/she is
matched to. In other words, the dependence on X in cjðXÞ
is only about whether the seller is matched or not. The
immediate value of the system at time t can be defined as
the buyer’s total value minus the seller’s total cost:

RðtÞ ¼
X
i;j

ziðXðtÞÞ � cjðXðtÞÞ; (1)

where i; j are matched by matching rule XðtÞ. Fig. 3 illus-
trates an example of the matching between three IaaS con-
sumers and three IaaS providers, where the matching rule
X is buyer 1 being matched with seller 2, buyer 2 being
matched with seller 3, and buyer 3 being matched with
seller 1. Under such system settings, the immediate value of

the system is R ¼ P3
i¼1 ziðXÞ �P3

j¼1 cjðXÞ, as shown at the

bottom of Fig. 3.
As discussed in Section 1, when designing the match-

ing rule X, most of existing works only considered the

immediate value RðtÞ. However, the myopic rule may not
be the optimal rule since the system dynamic is not taken
into account. To further improve the system performance,
the long-term optimized matching rule is a more favor-
able solution under the time-varying scenario. Markov
decision process (MDP) model can find such a long-term
optimal matching rule by analyzing the system state tran-
sitions and optimizing the expected long-term value func-
tion. Moreover, as shown in Section 2, the statistical
characteristics of service buyers/sellers follow Poisson
process, which makes the system state transition follow-
ing Markov property. For numerical tractability, similar
to classical MDP formulation, we introduce a discounting
factor d when calculating the long-term system value. In
such a case, supposing that current system state is s and
current matching rule is X, the long-term system value,
Qðs;XÞ, can be calculated by

Qðs;XÞ ¼ E
X1
t¼0

dðtÞRðtÞ
" #

; (2)

where state s consists of the types (�i, Ti, mj) of all buyers
and sellers currently in the system.

Fig. 3. Example of the matching.

TABLE 1
Traffic Intensity Parameters

Arrival Rate � Leaving Rate m

Type 1 Buyers �b1 ¼ 0:028 mb1 ¼ 0:032
Type 2 Buyers �b2 ¼ 0:025 mb2 ¼ 0:030
Type 3 Buyers �b3 ¼ 0:020 mb3 ¼ 0:026
Type 1 Sellers �s1 ¼ 0:005 ms1 ¼ 0:0058
Type 2 Sellers �s2 ¼ 0:005 ms2 ¼ 0:0060

746 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018



According to MDP, the optimal long-term value function
is defined as follows:

V �ðsÞ ¼ max
X

Qðs;XÞ: (3)

Therefore, the optimal system value and matching rule can
be iteratively computed using [36]

V �ðsÞ ¼ Rðs;X�ðsÞÞ þ d
X
s0

P ðs0js;X�ðsÞÞV �ðs0Þ; (4)

X�ðsÞ ¼ argmax
X

Rðs;XÞþd
X
s0

P ðs0js;XÞV �ðs0Þ
( )

; (5)

where Rðs;XÞ is the immediate value of the system with
current system state s and matching rule X, and P ðs0js;XÞ
is the state transition probability from s to s0, with the
matching rule X. To achieve system efficiency, the auction-
eer needs to implement the optimal matching rule X�ðsÞ at
every system state s, which can be found using value itera-
tion method [36].

3.2 Low-Complexity Cluster Matching

Suppose there are N buyers and M sellers in the system.
The state of the system (�i, Ti, mj) gives rise to a scale of

M �M �N ¼ NM2 dimensional space that is clearly com-
putationally intractable as N and M grows mildly, no mat-
ter how coarse we quantize the value on each dimension
(the range and granularity of the value/cost). Even if we
parameterize the buyers’ values as being determined by a
single intrinsic parameter (only �i or Ti), the space complex-
ity will be of N �M. Moreover, since each service seller can
be matched to multiple buyers and all sellers are indepen-
dent, i.e., each seller has N possible matches, the total num-

ber of possible matchings X will be of the order OðNMÞ,
which is also unacceptable. Therefore, it is necessary to use
a more concise representation of the state space.

An opportunity is that in the bidding system for cloud
computing services, users tend to choose among a few pre-
defined options, rather than actually constructing random
options by themselves. For example, a SaaS server can rate
the value of the service according to its own customer
arrival rate (customers of the software service, different
from customers of the infrastructure service), and classify it
into three levels as high, medium or low. An individual
user can rate the value of the service as important, medium
or non-important. An IaaS provider can rate its QoS as high,
medium or low. In other words, we can quantize the type of
buyers/sellers into several coarse levels, and classify the
buyers/sellers into clusters. Since users belonging to the
same cluster are with similar types, the scheduling of cloud
services within a cluster can be random and has little effect
on the overall performance. In such a case, we only need to
consider the cluster matching instead of individual match-
ing by describing the system state as the number of traders
of each type. Suppose the buyers and sellers each have three
possible types, and denote nk as the number of buyers with
type k and ml as the number of seller with type l, then a
state of the system can simply be described using a six-
dimensional vector as s ¼ ðn1; n2; n3;m1;m2;m3Þ.

With such a representation of the state space, the match-
ing space is also much simpler. Instead of specifying all

matching explicitly, we now only need to specify the num-
ber of traders to be matched for each pair of types. Let the
number of matches between type k buyers and type l sellers
be xkl, then we have

X3
l¼1

xkl � nk;
X3
k¼1

xkl � ml; xkl 2 N: (6)

Fig. 4 illustrates the example of matching between three
types of buyers and sellers. In such a case, the matching
ruleX can be represented by a nine-dimensional vector as

X ¼ x11; x12; x13; x21; x22; x23; x13; x23; x33ð Þ: (7)

If the system capacity of each type is smax ¼ ðN1; N2;
N3;M1;M2;M3Þ, then it is easy to see that the size of match-

ing space would be less than N1þ3
3

� �
N2þ3

3

� �
N3þ3

3

� �
, which is

the total number of non-negative integer solutions of (6).
The matching space grows polynomially with respect to
system capacity and exponentially with respect to the
number of level type partitions. Therefore, keeping the type
partition coarse makes the value iteration (4), (5) computa-
tionally tractable.

The concise representation of the state space also makes
it easier to describe the statistical model of the system. We
model the system as a queuing model, where the buyer/
sellers’ arrivals and departures follow a standard birth-
death process. At each time slot, the arrival rates of buyers/
sellers with type k/l are denoted as �bk/�sl. Accordingly,
the departure rates of buyers/sellers currently in the system
are nkmbk/mlmsl, where mbk and msl are the “death rate” of
the corresponding traders currently in the system. With suf-
ficiently small time slot, the probability of two or more
simultaneous arrivals or leavings is tiny and thus can be
negligible. This model is known as “sampled-time approxi-
mation to a Markov process” [37], where the Poisson arriv-
ing and leaving processes can be approximated by
Bernoulli processes. During each time slot, a single user
arrives with probability � or a single user leaves with proba-
bility m. Therefore, given current system state s and match-
ing rule X, the state transition probability can be
summarized in (8). Due to the local-connecting characteris-
tic of the state transition diagram, the transition probabili-
ties P ðs0js;XÞ do not need to be stored in a huge matrix.
Instead, the required probability can be computed online
with little overhead.

Fig. 4. Example of the matching between three types of buyers and
sellers.
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State transition probability:

Up to now, we can summarize the four elements of our
proposed MDP model: system state, action, state transition
probability and value function, as follows:

� System state: the combination of the number of
different types of buyers and sellers s ¼ ðn1;
n2; n3;m1;m2;m3Þ.

� Action: the matching rule XðsÞ ¼ ðx11; x12; x13; x21;
x22; x23; x13; x23; x33Þ, where xkl should satisfy (6).

� State transition probability: as defined in (8).
� Value function: as defined in (4).

Given the transition probability of the random process
P ðs0js;XÞ, we can simply initialize V �ðsÞ with any arbitrary
value and run value iteration until it converges, as summa-
rized in Algorithm 1.

Algorithm 1. Value Iteration for MDP-based Matching

1: /********** Initialization **********/
2: Initialize V ð0ÞðsÞ for all system states s.
3: Initialize matching ruleXð0ÞðsÞ for all system state s.
4: Setup the discount rate s and tolerance �.
5: while

P
s V ðtÞðsÞ � V ðt�1ÞðsÞ� �2� � do

6: for each state s do
7: /***** Determine current matching rule *****/
8: Calculate current optimal matching ruleXðtÞðsÞ
9: by solving

XðtÞðsÞ ¼ argmax
X

V ðt�1ÞðsÞ:
10: Determine the state transition probability using (8).
11: end for
12: for each state s do
13: /***** Update value function *****/
14: Update V ðtÞðsÞ by computing

V ðtÞðsÞ ¼ RðtÞðs;XðtÞðsÞÞ
þd

P
s0 P ðs0js;XðtÞðsÞÞV ðt�1Þðs0Þ:

15: end for
16: Calculate

X
s

V ðtÞðsÞ � V ðt�1ÞðsÞ
� �2

.
17: t ¼ tþ 1.
18: end while
19: /********** Output **********/
20: V �ðsÞ ¼ V ðtÞðsÞ.
21: X�ðsÞ ¼ XðtÞðsÞ.

3.3 Online Algorithm for Imperfect Model
Estimation

The value iteration algorithm is designed for the scenario
where the model is known perfectly and the system is sta-
tionary. When the model is imperfect, or slowly varying
with time, the learned matching rule derived by value itera-
tion will be sub-optimal. A solution to solve this problem is
to use Q-learning [38], which is essentially a Monte-Carlo
method for MDP. The updating formula of standard Q-
learning can be written as follows:

QðtÞðs;XÞ ¼ ð1� atÞQðt�1Þðs;XÞ
þ at

�
RðtÞ þmax

Y
Qðt�1Þðs0; Y Þ

�
:

(9)

Here, different from the value iteration method, RðtÞ is the
observed immediate system value at time slot t, and s0 is the
observed next state, where the transition from s to s0 is driven
by the underlying true system model. The at is the learning
rate parameter which controls to what extent the learner
relies on previous learning result. After the Q-function con-
verges to Q�ðs;XÞ, the optimal value function and optimal
matching are simply

V �ðsÞ ¼ max
X

Q�ðs;XÞ; (10)

X�ðsÞ ¼ argmax
X

Q�ðs;XÞ: (11)

The Q-learning algorithm is summarized in Algo-
rithm 2. We can see that the most significant advantage of
Q-learning is that it does not require any knowledge
about the model. The effect of the model is not explicitly
shown in the updating formula. Instead, it is implicitly
implemented in the underlying model. In such a case, we
can avoid the model error caused by the imprecise esti-
mation of the model parameters. Moreover, the algorithm
can be easily modified to an online version by performing
the optimal matching based on current estimate of the Q
function. In this way, the optimal matching strategy
can automatically adapt to the slow change of the under-
lying model.

P s0js ¼ ðn1; n2; n3;m1;m2;m3Þ; X ¼ x11; x12; x13; x21; x22; x23; x13; x23; x33ð Þf g ¼
�b1 or n0

1mb1; if s0 ¼ n0
1 þ 1; n0

2; n
0
3;m

0
1;m

0
2;m

0
3

� �
or n0

1 � 1; n0
2; n

0
3;m

0
1;m

0
2;m

0
3

� �
;

�b2 or n0
2mb2; if s0 ¼ n0

1; n
0
2 þ 1; n0

3;m
0
1;m

0
2;m

0
3

� �
or n0

1; n
0
2 � 1; n0

3;m
0
1;m

0
2;m

0
3

� �
;

�b3 or n0
3mb3; if s0 ¼ n0

1; n
0
2; n

0
3 þ 1;m0

1;m
0
2;m

0
3

� �
or n0

1; n
0
2; n

0
3 � 1;m0

1;m
0
2;m

0
3

� �
;

�s1 or m0
1ms1; if s0 ¼ n0

1; n
0
2; n

0
3;m

0
1 þ 1;m0

2;m
0
3

� �
or n0

1; n
0
2; n

0
3;m

0
1 � 1;m0

2;m
0
3

� �
;

�s2 or m0
2ms2; if s0 ¼ n0

1; n
0
2; n

0
3;m

0
1;m

0
2 þ 1;m0

3

� �
or n0

1; n
0
2; n

0
3;m

0
1;m

0
2 � 1;m0

3

� �
;

�s3 or m0
3ms3; if s0 ¼ n0

1; n
0
2; n

0
3;m

0
1;m

0
2;m

0
3 þ 1

� �
or n0

1; n
0
2; n

0
3;m

0
1;m

0
2;m

0
3 � 1

� �
;

1�P3
k¼1 �bk þ n0

kmbk

� ��P3
l¼1 �sl þm0

lmsl

� �
; if s0 ¼ n0

1; n
0
2; n

0
3;m

0
1;m

0
2;m

0
3

� �
;

0; otherwise;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(8)

n0
1 ¼ n1 �

X3
l¼1

x1l; n0
2 ¼ n2 �

X3
l¼1

x2l; n0
3 ¼ n3 �

X3
l¼1

x3l;

m0
1 ¼ m1 �

X3
k¼1

xk1; m0
2 ¼ m2 �

X3
k¼1

xk2; m0
3 ¼ m3 �

X3
k¼1

xk3:
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Algorithm 2. Q-learning for MDP-based Matching

1: /********** Initialization **********/
2: Initialize Qð0Þðs;XÞ for all system states s and matching

rulesX.
3: Initialize optimal matching rule X�ð0ÞðsÞ for all system

state s.
4: Setup the exploration rate �.
5: for t ¼ 1; 2; 3; . . . ; tmax do
6: /******* Determine current matching rule *******/
7: Observe current system state sðtÞ.
8: Generate random number �ðtÞ uniformly between ½0; 1�.
9: if �ðtÞ � � then
10: Determine current matching rule asX�ðtÞðsðtÞÞ.
11: else
12: Randomly determine current matching rule.
13: end if
14: The system state will transit to a new state sðtþ1Þ.
15: /********** Update Q-function **********/
16: Setup current learning rate at.
17: Observe the next system state sðtþ1Þ after matching.
18: Observe the immediate system vale RðtÞ.
19: Update QðtÞðs;XÞ for all s andX with

QðtÞðs;XÞ ¼ ð1� atÞQðt�1Þðs;XÞ þ at RðtÞ þmaxY
�

Qðt�1Þðs; Y ÞÞ:
20: Compute

V �ðtÞðsÞ ¼ max
X

QðtÞðs;XÞ;

and

X�ðtÞðsÞ ¼ argmax
X

QðtÞðs;XÞ:

21: end for
22: /********** Output **********/
23: X�ðsÞ ¼ X�ðtmaxÞðsÞ.
24: V �ðsÞ ¼ V �ðtmaxÞðsÞ.

It is worth mentioning that there are some conditions
needed to hold to guarantee the convergence of the algo-
rithm. According to [38], a valid combination of these condi-
tions are: 1) the rule of matching at each time slot ensures
that each state is visited infinitely often (such as the �-explo-
ration rule); 2) the sequence of at satisfies that

X1
t¼0

at ¼ 1;
X1
t¼0

a2
t < 1: (12)

Intuitively, the parameter � controls the trade-off between
exploration and exploitation in online learning, while the
parameter at controls the learning rate, which can be under-
stood as a measure of “stubbornness” about previous
knowledge or “curiosity” towards new information. Being
too stubborn makes the learning slow, while being too curi-
ous makes the learning unstable. A good learner should
properly trade-off between these two. Since one of the major
reasons of using Q-learning in our system is to adapt with
the model change, a constant learning rate rather than a
decaying sequence as specified by (12) should be used.
Although such a setting generally leads to a sub-optimal
matching decisions along time, it generally give satisfactory
solution that is adaptive to the environment.

4 DYNAMIC VCG AUCTION MECHANISM

When it comes to the auction mechanism design, four key
properties have to be involved to evaluate the performance
of the mechanism, which are as follows.

� Efficiency (EF): resources are distributed to users that
value them most.

� Incentive compatibility: a user cannot do better by uni-
laterally misreport his/her value.

� Individual rationality: users always expect non-nega-
tive value from the auction.

� Budget balance: auctioneer do not lose money in the
auction.

Vickrey-Clarke-Groves is the only family of auction mecha-
nisms that can simultaneously achieve efficiency, incentive
compatibility and individual rationality [14], [15], [16]. It is
often used in applications where multiple items are traded
among multiple traders in one shot. However, it is obvious
that the auction associated with the cloud computing ser-
vice is a dynamic multi-shot process. To tackle this
challenge, we develop a dynamic VCG mechanism with
the help of MDP, which considers the long-term expected
value.

4.1 Dynamic VCG Auction for Quality Sensitive
Services

In this section, we discuss the auction mechanism design
under the quality sensitive services scenario, where the
buyers are sensitive to the QoS provided by the sellers. We
first introduce some notations and definitions for the MDP-
based auction mechanism that are counterparts of tradi-
tional VCG auction. We assume that the value for a buyer
can vary when matched to different sellers, and this varia-
tion can be characterized by a single parameter (type) wi.
For example, when the buyers are SaaS providers, the type
can be the traffic intensity of the corresponding buyer; while
when the buyers are individual users, the type can be the
computing resources requested by the corresponding buyer.
Note that the type of buyer here is equivalent with the type
defined in the previous section when defining the system
state of the MDP model. After a new arriving buyer reports
his/her type, the auctioneer can observe the system state s
according to the reported types and make the matching
decisions. However, due to the selfishness of rational users,
a buyer may intentionally report his/her type as ri, which is
different from the true type wi, if this kind of misreporting
can gain more utilities for the buyer. For example, a buyer
may exaggerate his/her computing resource requirement as
some value which far outweighs his/her true requirement,
in order to be matched to sellers with higher computing
capability. Since the auctioneer has no knowledge about the
true type of each buyer, his/her observation of the system
state has to purely depend on the buyers’ reported type. As
discussed at the beginning of this section, an auction mecha-
nism should effectively prevent users from misreporting
their types, i.e., the incentive compatibility.

Let viðwi;XðsÞÞ be the expected (discounted) long-term
value obtained by buyer i with his/her true type wi, when
the reported system state is s and the matching policy is
XðsÞ. Note that if all buyers report their types truthfully,
viðwi;XðsÞÞ only depends on s. As an individual value
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function, viðwi;XðsÞÞ satisfies similar MDP formulation as
the system value function as follows:

viðwi;XðsÞÞ ¼ giðriÞ þ d
X
s0

P ðs0js;XÞviðwi;Xðs0ÞÞ; (13)

where we use giðriÞ to denote the apparent benefit received
by buyer i when buyer i leaves the system. Note that giðriÞ
is inferred by the auctioneer according to the reported type
ri, and becomes the true benefit if and only if ri ¼ wi.

A mechanism for the dynamic auction of cloud comput-
ing services consists of a matching policy X and a pricing
rule q, both of which are functions of system state s. To for-
mulate the price in the Bayesian setting, let qiðri;XðsÞÞ
denote the expected payment of buyer iwith reported type ri
when the system state is s and the matching policy is XðsÞ.
With the above notation definitions, we show our proposed
MDP-based VCGmechanism in the following definition.

Definition 1 (MDP-based VCG mechanism). The MDP-
based VCG mechanism (MDP-VCG) is a mechanism with the
following matching and pricing rule.

� Matching rule: The matching function XðsÞ is
the optimal matching policy calculated from the MDP
formulation (4) and (5), implemented using either
value iteration or Q-learning:

V �ðsÞ ¼ Rðs;X�ðsÞÞ þ d
X
s0

P ðs0js;X�ðsÞÞV �ðs0Þ;

X�ðsÞ ¼ argmax
X

Rðs;XÞ þ d
X
s0

P ðs0js;XÞV �ðs0Þ
( )

:

Note that the MDP formulation is based on the auc-
tioneer’s observed types of the buyers, i.e., their
reported types. Therefore, s may not be the true
system state.

� Pricing Rule: The pricing rule is to collect payment

qiðri;X�ðsÞÞ ¼ giðriÞ � V �ðsÞ þ V ��s� frig
�
; (14)

from buyer i when he/she leaves the system. Here s is
the system state when the buyer first joins the system,
s� frig is the system state by excluding buyer i. For
example, if the current system state is ðn1; n2; n3;
m1;m2;m3Þ and buyer i is of type 2, then s �
frig ¼ ðn1; n2 � 1; n3;m1;m2;m3Þ.

In the following, we will theoretically show that our pro-
posed MDP-VCG mechanism is Bayesian efficient (BE),
Bayesian incentive compatible and Bayesian individual
rational (BIR). Before that, let us first define the Bayesian
efficiency, Bayesian incentive compatibility and Bayesian
individual rationality for the dynamic auction.

Definition 2 (Bayesian Efficiency, BEF). A mechanism for
dynamic auction is Bayesian efficient when the long-term
expected system value V ðsÞ is maximized for all system state
s, i.e.,

maxV ðsÞ ¼ Rðs; X�ðsÞÞ þ d
X
s0

P ðs0js;X�ðsÞÞV �ðs0Þ: (15)

Definition 3 (Bayesian incentive compatibility, BIC). Let s
be the observed system state when all buyers truthfully report

their types, and sðiÞ be the observed system state when buyer i
misreports the type while all other buyers truthfully report
their types. A mechanism for dynamic auction is Bayesian
Incentive Compatible when

vi
�
wi;XðsÞ�� qi

�
wi;XðsÞ� �

vi
�
wi;XðsðiÞÞ�� qi

�
ri;XðsðiÞÞ�; 8i; (16)

where wi is the true type and ri is the misreported type.

Definition 4 (Bayesian individual rationality). A (incentive
compatible) mechanism for dynamic auction is Bayesian Indi-
vidual Rational when

vi
�
wi;XðsÞ�� qi

�
wi;XðsÞ� � 0; 8i; (17)

where wi is the true type.

Theorem 1. The proposed MDP-VCG is Bayesian efficient, Bayes-
ian incentive compatible and Bayesian individual rational.

Proof. Due to the page limit, we have put the detailed proof
in the supplementary file, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/10.1109/
TSC.2015.2464810. tu

4.2 Dynamic VCG Double Auction for Quality
Insensitive Services

In this section, we discuss the dynamic auction mechanism
under the quality insensitive services scenario, where the
buyers are insensitive to the QoS provided by the sellers. In
such a case, both buyers and sellers can misreport their types
and the proposed MDP-VCG mechanism need to be
extended to the double auction to enforce truth telling of both
sides. The formulation of double auction is similar to that of
unilateral auction discussed in the previous section. The only
difference is that in a double auction wi can denote the type
of either a buyer or a seller (QoS), and viðwi;X

�ðsÞÞ can
denote the value function for either a buyer or a seller. For a
matched seller, viðwi;X

�ðsÞÞ taking a negative value repre-
sents the cost of the seller for providing the service. The form
of the mechanism stays the same and the proof of EF, IC and
IR does not change. However, the budget balance cannot be
guaranteed in double auction, which means that the total
payment made by buyers may be less than the total payment
to the sellers, making the auctioneer lose money. Fortunately,
such loss is typically small as shown later in the evaluations.

Note that the pricing rule (14) in our proposed mecha-
nism is different from the traditional Clarke Pivot Rule in
[39]. If Clarke Pivot Rule is used in the mechanism, the IR
property will not hold for double auction, as illustrated by
the simple example in Fig. 5. In the figure, we have three
buyers with values 10, 5 and 4, and three sellers with costs
2, 3 and 10. We are trying to determine the price (payment)
for seller 3. If Clarke Pivot Rule is used, we should first
determine the best matching and system value for all six
traders, as shown in the upper half of the figure, where
V �ðsÞ ¼ 10. Then we should find the matching X0 (still over
all six traders) that maximizes the value Qðs;X0Þ � vs3,
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resulting in Qðs;X0Þ � vs3 ¼ 14. The payment of seller 3 will
then be determined as vs3 � V �ðsÞ þ ðQðs;X0Þ � vs3Þ and the
net value is V �ðsÞ � ðQðs;X0Þ � vs3Þ ¼ �4, violating individ-
ual rationality.

5 EVALUATION

In this section, we conduct experiments to verify the effi-
ciency, incentive compatibility and individual rationality

properties of our proposed mechanism. At the same time,
we also analyze the budget balance issue. In the evaluations,
we use the real-world traces collected from Google cluster
to compare the proposed mechanism with the existing
works in terms of efficiency, and show the IC, IR and BB
properties. The traffics and types of the IaaS providers and
consumers discussed in Section 2 are also used for perfor-
mance evaluation.

5.1 Efficiency Verification

In the experiments, we consider the application of allocat-
ing IaaS resources to individual users, i.e., the IaaS pro-
viders are sellers and individual users are buyers. In such
an application, the value of the service can be character-
ized by the waiting time of the individual users, which is
dependent on the computing capability of the specific
seller. Suppose that the requested computing resources of
buyer i is si, and the computing capability of the corre-
sponding seller j is zj, we can define the (immediate)

value function of the buyers as

ziðXÞ ¼ e�bsi=zj ; (18)

and the cost of the seller as a linear function of his/her com-
puting capacity asFig. 6. Efficiency comparison with perfect traffic model.

Fig. 7. Efficiency comparison with imperfect traffic model.

Fig. 5. Problem with Clarke Pivot Rule.
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cjðXÞ ¼ gzj; (19)

where b and g are positive coefficients.
Based on the value and cost functions definitions in

(18) and (19), we can define different types of sellers’ val-
ues and different types of sellers’ cost according to the
types mined from the Google dataset in Section 2. Since
the types are quantized levels of computing resources, an
approximation is required. Here, we adopt the mean for
the approximation, e.g., for the type 1 sellers with CPU
resources in [0, 0.5], their computing capability is quan-
tized to 0.25. In such a case, we can obtain the value and
cost between different pairs of types of buyers and sellers,
as shown in Table 2 where b ¼ 1, g ¼ 0:1 and ð	; 	Þ means
ðbuyer’s value, seller’s costÞ.

With the buyers’ values and seller’s costs defined in
Table 2, we can conduct experiment to verify the efficiency
of our proposed mechanism using the Google dataset. In
the experiment, we compare the system value of four differ-
ent methods as follows:

� Proposed mechanism with value iteration algorithm
as shown in Algorithm 1,

� Proposed mechanism with Q-learning algorithm as
shown in Algorithm 2,

� Existing mechanism without considering the long-
term efficiency, ([23], [25], [28], [31], [32]),

� Random mechanism.

For the existing mechanism, the auctioneer determines
the resource allocation through maximizing the immedi-
ate (myopic) system value R without taking into account

the long-term system value in the near future, as in [23],
[25], [28], [31], [32]. While with the random mechanism, a
random matching rule is selected, which is considered as
a comparison benchmark in the experiment. For our pro-
posed MDP-based mechanism, the discount factor is set
as a ¼ 0:9 and the learning rate is set as � ¼ 0:5. Fig. 6a
shows the system value comparison results, where all
methods start with a same initial system state. The results
are averaged over 1,000 independent experiments. From
Fig. 6a, we can see that due to the discount factor a, the
system values of four methods converge to some con-
stants as time slot index goes to 50. The system values of
our proposed mechanism with value iteration and Q-
learning are basically the same, both of which perform
better than the existing and random mechanisms. More-
over, as shown in Fig. 6b, we also compare the four meth-
ods in terms of accumulated system value, which is
calculated from the summation of system values associ-
ated with 1,000 random initial system states. The experi-
ment results are consistent with the theoretical results,
which are directly calculated from value function. Simi-
larly, we can see that our proposed mechanism can
achieve the highest efficiency.

Fig. 8. IR, IC and BB verification for “quality sensitive services”.

TABLE 2
Buyers’ Values and Sellers’ Costs

Type 1 Sellers Type 2 Sellers

Type 1 Buyers (0.9355, 0.025) (0.9780, 0.075)
Type 2 Buyers (0.8187, 0.025) (0.9355, 0.075)
Type 3 Buyers (0.7165, 0.025) (0.8948, 0.075)
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In the previous experiment, we assume that the auction-
eer has perfect knowledge (estimation) about the traffic
model listed in Table 1. Under such circumstance, we can
see that there is no difference between value iteration algo-
rithm and Q-learning algorithm as shown in Fig. 6. In this
experiment, to compare the performance of value iteration
and Q-learning, we study the case when the traffic model
estimation is not precise or the traffic model is slowly

varying with time. In Fig. 7a, we show the system value
comparison between value iteration and Q-learning algo-
rithms under the imperfect traffic model estimation. We can
see Q-learning can adapt to the true underlying model and
achieve better performance than value iteration. Therefore,
Q-learning is a better candidate to decide optimal matching
in real applications. Moreover, we also compare the two
algorithms in terms of accumulated system value for 1,000
time slots in Fig. 7b. Similarly, we can see that there is no
performance degradation when the model transits from per-
fect case to imperfect case.

5.2 Incentive Compatibility and Individual
Rationality Verification

To verify IC and IR, we consider two application scenarios.
The first one is “quality sensitive services”, where buyers’
value functions are influenced by the sellers’ service quality,

Fig. 9. IR and IC verification for “quality insensitive services”.

TABLE 3
Buyers’ Values and Sellers’ Costs for Quality

Insensitive Scenario

Type 1 Sellers Type 2 Sellers

Type 1 Buyers (0.9672, 0.025) (0.9672, 0.075)
Type 2 Buyers (0.9048, 0.025) (0.9048, 0.075)
Type 3 Buyers (0.8465, 0.025) (0.8465, 0.075)
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and sellers are enforced to report truthfully. The application
of allocating IaaS resources to individual users discussed in
the previous section belongs to this “quality sensitive serv-
ices” scenario, as shown in the definition of buyers’ value
function (18). Unilateral MDP-VCG mechanism is used for
this kind of application scenario. The second application
scenario is “quality insensitive services”, where buyers’
value functions are not influenced by the sellers’ service
quality, and neither buyers nor sellers are enforced to truth-
fully report their types. The double auction version of
MDP-VCG is used for this “quality insensitive services”
application scenario.

In the experiment of “quality sensitive services”, all the
system settings are same with the previous section.
Firstly, in Fig. 8a, we show the average value of a buyer
with different initial system states. We can see that the
buyer’s value is always non-negative, which means that
our proposed mechanism satisfies the individual rational
property. Secondly, in Fig. 8b, we show the difference of
the buyer’s value from bidding truthfully minus that
from bidding untruthfully. The buyer is supposed to be
of type 2 and untruthfully report his/her type as 1 or 3.
In order to clearly show the results, we only depict sev-
eral random initial state. From Fig. 8b, we can see that the
differences are always non-negative, which means that
our proposed mechanism satisfy the incentive compatible
property. Finally, in Fig. 8c, we show the budget of the
auctioneer, which is the total payment from the buyers
minus the total cost of the sellers. From Fig. 8c, we can
see that the budget is always non-negative, i.e., the bud-
get balance is also achieved.

In the experiment of “quality insensitive services”,
where the buyers’ values are not influenced by the com-
putation capacity of sellers, we modify the system set-
tings discussed in the previous section, especially the
buyer’s value function. In this case, since the buyers only
care about whether the task is done regardless how the
task is implemented, we can re-define the buyer’s value
function as

z0iðXÞ ¼ e�bsi=z; (20)

where z ¼ 0:5 is a constant. In such a case, the modified
buyers’ values and sellers’ costs can be calculated as Table 3.

Other system settings, including the sellers’ cost function,
the types and traffic model of sellers and buyers, are still
same with those in the previous section.

Under such settings, sellers are allowed to misreport their
types (their costs). In this experiment, a buyer reports his/
her value of service and a seller reports a single scalar indi-
cating its cost. The double auction version of MDP-VCG is
then implemented. We show the IC and IR verification
results in Fig. 9, from which it can be seen that similar to the
“quality sensitive services” scenario, both the buyers’ and
sellers’ incentive compatibility and individual rationality are
satisfied. However, from Fig. 10, we can see that different
from the “quality sensitive services” scenario, the budget
balance is not satisfied in the “quality insensitive services”
scenario with double auction. Fortunately, the violation of
budget balance is not very severe. One possible practical
solution to the budget balance is through external advertise-
ment. Just as Amazon and Alibaba, while organizing an auc-
tion platform to coordinate the sellers and buyers, the
auctioneer can earn additional profits through external
advertisement on the platform to achieve the budget balance.

6 CONCLUSION

In this paper, we discussed the resource allocation and pric-
ing issue in the cloud services provision. We first analyze
the Google cluster-usage dataset to obtain the statistical
characteristics of the IaaS consumers and providers. Based
on the characteristics mined from real data, we proposed a
stochastic matching algorithm using MDP model, which
aims at optimizing long-term system efficiency. To reduce
the complexity of the MDP-based algorithm, we classify the
buyers/sellers into different clusters and consider the clus-
ter matching instead of individual matching. We then pro-
posed its online version using Q-learning to address the
imperfect model/slowly changing model problem. Based
on the MDP formulation, we designed an efficient, incentive
compatible, individual rational auction mechanism that is
an extension of traditional VCG mechanism. The proposed
mechanism were discussed under two application scenar-
ios: quality sensitive services, where unilateral MDP-VCG is
implemented; and quality insensitive services, where MD-
VCG double auction is implemented. Finally, we conducted
experiments using Google cluster-usage traces to verify the
properties of the proposed mechanism.

ACKNOWLEDGMENTS

This research was supported by NSFC China under projects
61371079 and by a Postdoctoral Science Foundation funded
project.

REFERENCES

[1] K. M. Sim, “Agent-based cloud computing,” IEEE Trans. Serv.
Comput., vol. 5, no. 4, pp. 564–577, 4th Quarter 2012.

[2] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA:
O’Reilly Media, 2012.

[3] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, “The eucalyptus open-source cloud-
computing system,” in Proc. 9th IEEE/ACM Int. Symp. Cluster Com-
put. Grid, 2009, pp. 124–131.

[4] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 5, no. 2, pp. 164–177, Apr.–Jun. 2012.

Fig. 10. Auctioneer’s budget balance for “quality insensitive services”.

754 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018



[5] K.-W. Park, J. Han, J. Chung, and K. H. Park, “THEMIS: A mutu-
ally verifiable billing system for the cloud computing environ-
ment,” IEEE Trans. Serv. Comput., vol. 6, no. 3, pp. 300–313, Jul.–
Sep. 2013.

[6] D. Ardagna, B. Panicucci, and M. Passacantando, “Generalized
nash equilibria for the service provisioning problem in cloud sys-
tems,” IEEE Trans. Serv. Comput., vol. 6, no. 4, pp. 429–442, Oct.–
Dec. 2013.

[7] T. Truong-Huu and C.-K. Tham, “A novel model for competition
and cooperation among cloud providers,” IEEE Trans. Cloud Com-
put., vol. 2, no. 3, pp. 251–265, Jul. 2014.

[8] A. N. Toosi, K. Vanmechelen, K. Ramamohanarao, and R. Buyya,
“Revenue maximization with optimal capacity control in infra-
structure as a service cloud markets,” to appear in IEEE Trans. on
Cloud Comput. 10.1109/TCC.2014.2382119, 2015.

[9] V. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa,
“Volunteer computing and desktop cloud: The cloud@ home
paradigm,” in Proc. 8th IEEE Int. Symp. Netw. Comput. Appl.,
2009, pp. 134–139.

[10] A. Chandra and J. Weissman, “Nebulas: Using distributed volun-
tary resources to build clouds,” in Proc. Conf. Hot Topics Cloud
Comput., 2009, pp. 2–2.

[11] A. Marosi, J. Kov�acs, and P. Kacsuk, “Towards a volunteer
cloud system,” Future Gener. Comput. Syst., vol. 29, pp. 1442–
1451, 2012.

[12] V. Krishna, Auction Theory. San Francisco, CA, USA: Academic,
2009.

[13] J.Wilkes andC. Reiss. (2011). Google Cluster-usage traces [Online].
Available: http://code.google.com/p/googleclusterdata

[14] W. Vickrey, “Counterspeculation, auctions, and competitive
sealed tenders,” J. Finance, vol. 16, no. 1, pp. 8–37, 2012.

[15] E. Clarke, “Multipart pricing of public goods,” Public Choice,
vol. 11, no. 1, pp. 17–33, 1971.

[16] T. Groves, “Incentives in teams,” Econometrica: J. Econometric Soc.,
vol. 41, pp. 617–631, 1973.

[17] R. Myerson and M. Satterthwaite, “Efficient mechanisms for bilat-
eral trading,” J. Econ. Theory, vol. 29, no. 2, pp. 265–281, 1983.

[18] R. McAfee, “A dominant strategy double auction,” J. Econ. Theory,
vol. 56, no. 2, pp. 434–450, 1992.

[19] K. Deshmukh, A. Goldberg, J. Hartline, and A. Karlin, “Truthful
and competitive double auctions,” in Proc. 10th Annu. Eur. Symp.
Algorithms, 2002, pp. 127–130.

[20] D. Fudenberg, M. Mobius, and A. Szeidl, “Existence of equilib-
rium in large double auctions,” J. Econ. Theory, vol. 133, no. 1,
pp. 550–567, 2007.

[21] D. Zhao, D. Zhang, and L. Perrussel, “Mechanism design for dou-
ble auctions with temporal constraints,” in Proc. 22nd Int. Joint
Conf. Artif. Intell., 2011, vol. 1, pp. 472–477.

[22] S. Zaman and D. Grosu, “Combinatorial Auction-based mecha-
nisms for VM provisioning and allocation in clouds,” in Proc.
IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci., 2011, pp. 107–114.

[23] X. Wang, J. Sun, M. Huang, C. Wu, and X. Wang, “A resource auc-
tion based allocation mechanism in the cloud computing environ-
ment,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
PhD Forum, 2012, pp. 2111–2115.

[24] Q. Wang, K. Ren, and X. Meng, “When cloud meets eBay:
Towards effective pricing for cloud computing,” in Proc. IEEE
INFOCOM, 2012, pp. 936–944.

[25] C.-C. Chang, K.-C. Lai, and C.-T. Yang, “Auction-based resource
provisioning with SLA consideration on Multi-cloud systems,” in
Proc. IEEE Annu. Comput. Softw. Appl. Conf. Workshops, 2013,
pp. 445–450.

[26] M. Anisetti, C. A. Ardagna, E. Damiani, P. A. Bonatti, M. Faella, C.
Galdi, and L. Sauro, “E-auctions for multi-cloud service
provisioning,” in Proc. IEEE Int. Conf. Services Comput. 2014,
pp. 35–42.

[27] I. Fujiwara, K. Aida, and I. Ono, “Applying double-sided combi-
national auctions to resource allocation in cloud computing,” in
Proc. Annu. Int. Symp. Appl. Internet, 2010, pp. 7–14.

[28] S. Shang, J. Jiang, Y. Wu, Z. Huang, G. Yang, and W. Zheng,
“DABGPM: A double auction Bayesian game-based pricing
model in cloud market,” Netw. Parallel Comput., vol. 6289,
pp. 155–164, 2010.

[29] R. Prodan, MarekWieczorek, and H. M. Fard, “Double auction-
based scheduling of scientific applications in distributed grid and
cloud environments,” J. Grid Comput., vol. 9, no. 4, pp. 531–548,
2011.

[30] W. Wang, B. Liang, and B. Li, “Designing truthful spectrum dou-
ble auctions with local markets,” IEEE Trans. Mobile Comput.,
vol. 13, no. 1, pp. 75–88, Jan. 2014.

[31] W.-Y. Lin, G.-Y. Lin, and H.-Y. Wei, “Dynamic auction mecha-
nism for cloud resource allocation,” in Proc. IEEE 10th IEEE/ACM
Int. Conf. Cluster, Cloud Grid Comput., 2010, pp. 591–592.

[32] Q. Zhang, E. Gurses, R. Boutaba, and J. Xiao, “Dynamic resource
allocation for spot markets in clouds,” in Proc. IEEE 4th Int. Conf.
Utility Cloud Comput., 2011, pp. 178–185.

[33] W. Wang, B. Liang, and B. Li, “Revenue maximization with
dynamic auctions in IaaS cloud markets,” in Proc. IEEE/ACM 21st
Int. Symp. Quality Service, 2013, pp. 1–6.

[34] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu, “A
framework for truthful online auctions in cloud computing with
heterogeneous user demands,” in Proc. IEEE INFOCOM, 2013,
pp. 1510–1518.

[35] D. Parkes and S. Singh, “AnMDP-based approach to online mech-
anism design,” in Proc. Adv. Neural Inf. Process. Syst., vol. 16, 2004,
pp. 791–798.

[36] M. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York, NY, USA: Wiley, 1994.

[37] R. G. Gallager, Draft of Discrete Stochastic Processes. Cambridge,
MA: MIT Press, 2013.

[38] R. Sutton and A. Barto, Reinforcement Learning: An Introduction,
vol. 1, no. 1. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[39] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Algorithmic
Game Theory. Cambridge, U.K.: Cambridge Univ. Press, 2007.

Chunxiao Jiang (S’09-M’13) received the BS
degree from Beihang University in 2008 and the
PhD degree from Tsinghua University (THU) in
2013, both with the highest honors. He is cur-
rently a postdoc at the Department of Electronic
Engineering, THU, with research interests includ-
ing data-driven analysis on wireless and social
networks. He received the Best Paper Award
from IEEE GLOBECOM in 2013. He is a member
of the IEEE.

Yan Chen (S’06-M’11-SM’14) received the bach-
elor’s degree from the University of Science and
Technology of China in 2004, the MPhil degree
from Hong Kong University of Science and Tech-
nology (HKUST) in 2007, and the PhD degree
from the University of Maryland College Park in
2011. His current research interests are in data
science, network science, game theory, social
learning and networking, as well as signal proc-
essing and wireless communications. He
received multiple honors and awards including

best paper award from IEEE GLOBECOM in 2013, Future Faculty Fel-
lowship and Distinguished Dissertation Fellowship Honorable Mention
from Department of Electrical and Computer Engineering in 2010 and
2011, respectively, Finalist of Dean’s Doctoral Research Award from A.
James Clark School of Engineering at the University of Maryland in
2011, and Chinese Government Award for outstanding students abroad
in 2011. He is a senior member of the IEEE.

JIANG ET AL.: DATA-DRIVEN AUCTION MECHANISM DESIGN IN IAAS CLOUD COMPUTING 755

http://code.google.com/p/googleclusterdata


Qi Wang received the BS degree in electrical and
information engineering from Xidian University,
Xi’an, China, in 2011, and the MS degree from
the University of Maryland, College Park, in
2014. He is currently an algorithm engineer at
Douban Inc., China. His current research inter-
ests include recommendation systems and archi-
tectural aspects of machine learning systems.

K.J. Ray Liu (F’03) was named a distinguished
scholar-teacher in the University of Maryland,
College Park, in 2007, where he is a Christine
Kim Eminent professor of information technology.
He leads the Maryland Signals and Information
Group conducting research encompassing broad
areas of information and communications
technology with recent focus on future wireless
technologies, network science, and information
forensics and security. He received the 2016
IEEE Leon K. Kirchmayer Technical Field Award

on graduate teaching and mentoring, IEEE Signal Processing Society
2014 Society Award, and IEEE Signal Processing Society 2009 Techni-
cal Achievement Award. Recognized by Thomson Reuters as a Highly
Cited Researcher, he is a Fellow of IEEE and AAAS. He is a director-
elect of the IEEE Board of Director. He was the president of the IEEE
Signal Processing Society, where he has served as a vice president –
Publications and Board of Governor. He has also served as the editor-
in-chief of the IEEE Signal Processing Magazine. He also received
teaching and research recognitions from the University of Maryland
including university-level Invention of the Year Award; and college-level
Poole and Kent Senior Faculty Teaching Award, Outstanding Faculty
Research Award, and Outstanding Faculty Service Award, all from A.
James Clark School of Engineering. He is a fellow of the IEEE.

756 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


