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Abstract—Energy harvesting from the surroundings is a
promising solution to perpetually power-up wireless sensor com-
munications. This paper presents a data-driven approach of find-
ing optimal transmission policies for a solar-powered sensor node
that attempts to maximize net bit rates by adapting its trans-
mission parameters, power levels and modulation types, to the
changes of channel fading and battery recharge. We formulate
this problem as a discounted Markov decision process (MDP)
framework, whereby the energy harvesting process is stochasti-
cally quantized into several representative solar states with distinct
energy arrivals and is totally driven by historical data records at
a sensor node. With the observed solar irradiance at each time
epoch, a mixed strategy is developed to compute the belief infor-
mation of the underlying solar states for the choice of transmission
parameters. In addition, a theoretical analysis is conducted for a
simple on-off policy, in which a predetermined transmission pa-
rameter is utilized whenever a sensor node is active. We prove that
such an optimal policy has a threshold structure with respect to
battery states and evaluate the performance of an energy harvest-
ing node by analyzing the expected net bit rate. The design frame-
work is exemplified with real solar data records, and the results are
useful in characterizing the interplay that occurs between energy
harvesting and expenditure under various system configurations.
Computer simulations show that the proposed policies signifi-
cantly outperform other schemes with or without the knowledge of
short-term energy harvesting and channel fading patterns.

Index Terms—Energy harvesting, solar-powered communica-
tion, stochastic data-driven model, Markov decision process,
transmission policy.

I. INTRODUCTION

IN traditional wireless sensor networks, sensor nodes are
often powered by non-rechargeable batteries and distributed

over a large area for data aggregation. But a major limitation
of these untethered sensors is that the network lifetime is often
dominated by finite battery capacity. Since the battery charge
depletes with time, periodic battery replacement is required
for prolonging the sensor node operations, though it becomes
infeasible, costly and even impossible in some environments
such as a large-scale network. As a result, there has been
much research on designing efficient transmission mechanisms/
protocols for saving energy in sensor communications [1].
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Recently, energy harvesting has become an attractive alterna-
tive to circumvent this energy exhaustion problem by scaveng-
ing ambient energy sources (e.g., solar, wind, and vibration)
to replenish the sensors’ power supply [2]. Though an inex-
haustible energy supply from the environments enables wireless
sensors to function for a potentially infinite lifetime, manage-
ment of the harvested energy remains a crucial issue due to
the uncertainty of battery replenishment. In fact, most ambient
sources occur randomly and sporadically in nature. Different
sources exhibit different energy renewal processes in terms of
predictability, controllability, and magnitude, which results in
various design considerations.

In this paper, we focus on solar-powered wireless sensor net-
works, where each node is equipped with an energy harvesting
device and a solar panel to collect surplus energy through the
photovoltaic effect. Since the energy generation rate is uncon-
trollable, the energy is temporarily stored and accumulated up
to a certain amount in the capacity-limited rechargeable battery
for future data transmissions. But in practice, the amount of
energy quanta available to a sensor could fluctuate dramatically
even within a short period, and the level depends on many
factors, such as the time of the day, the current weather, the
seasonal weather patterns, the physical conditions of the envi-
ronment, and the timescale (from seconds to days) of the energy
management, to name but a few. This makes the prediction
of energy harvesting very challenging, even though the solar
irradiance is partially predictable with the aid of daily irradi-
ance patterns [3]. Hence, there is a need for a stochastic energy
harvesting model specific to each node, which is capable of cap-
turing the dynamics of the solar energy associated with real data
records. Besides, overly aggressive or conservative use of the
harvested energy may either run out of the energy in the battery
or fail to utilize the excess energy. Consequently, another essen-
tial challenge lies in adaptively tuning the transmission param-
eters in a smooth way that considers the randomness of energy
generation and channel variation, avoids early energy depletion
before the next management cycle, and maximizes certain
utilities through a finite or infinite horizon of epochs.

Various energy generation models have been adopted in the
literature to study the performance of solar-powered sensor
networks. They can be categorized into two classes: deter-
ministic models [4], [5] and stochastic models [3], [6]–[18].
Deterministic models, which assume that energy arrival instants
and amounts are known in advance by the transmitter, were
applied in [4] and [5] for designing transmission schemes. The
success of the energy management in this category rests on
accurate energy harvesting prediction over a somewhat long
time horizon, whereas modeling mismatch occurs when the

0733-8716 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1506 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 8, AUGUST 2015

prediction interval is enlarged. Recently attention has shifted to
stochastic models by accommodating the energy management
to the randomness of energy renewal processes. By assuming
that energy harvested in each time slot is identically and inde-
pendently distributed, the energy generation process has been
described via Bernoulli models with a fixed harvesting rate [7]–
[10]. Other commonly used models that are uncorrelated across
time include the uniform process [3], Poisson process [11], and
exponential process [12]. In [13]–[17], energy from ambient
sources was modeled by a two-state Markov model to mimic
the time-correlated harvesting behavior. A generalized Markov
model was presented in [18] by introducing a scenario param-
eter, and discrete harvested energy was assumed for estimating
the scenario parameter and the transition probability based
on a suboptimal moving average and a Bayesian information
criterion. However, there has been little research to validate the
assumptions, along with exact physical interpretation, of the
aforementioned stochastic models. It is essential to incorporate
a data-driven stochastic model, which is capable of linking
its underlying parameters to the dynamics of empirical energy
harvesting data, into the design of sensor communications to
develop more realistic performance characteristics.

Resource management has been studied to optimize the
system utility and to harmonize the energy consumption with
the battery recharge rate. The optimization of energy usage is
subject to a neutral constraint which stipulates that at each time
instant, the energy expenditure cannot surpass the total amount
of energy harvested so far. With deterministic energy and chan-
nel profiles, a utility maximization framework was investigated
in [19] to achieve smooth energy spending. The authors of [20]
jointly designed power and rate adaption for maximizing data
throughput, but the design is solely subject to an average power
constraint. Directional water-filling was proposed in [21] for
throughput maximization. A major limitation of these works is
the requirement for non-causal energy arrival profiles, and they
primarily focused on short-term objectives, instead of long-
term objectives. Moreover, the optimization problem size grows
exponentially with the scheduling interval, thereby increasing
the computational burden. With stochastic models, the authors
of [12] designed a threshold to decide whether to transmit or
drop a message based on its importance. The outage probabil-
ities were analyzed in fading channels by taking into account
both the energy harvesting and event arrival processes [7], [22].
A simple power control policy was developed in [23] to attain
near optimal throughput in a finite-horizon case. However, joint
power control and adaptive modulation that maximize the bit
rate have not yet been considered. Some pragmatic issues were
neither addressed, e.g., the setting of stochastic models and its
relation to system designs and the adaption of transmission to
measured solar irradiance.

More recently, Markov decision processes (MDP) have been
utilized to deal with the resource management problems for
energy harvesting systems. When the battery replenishment, the
wireless channel, and the packet arrival are regarded as Markov
processes, sleep and wake-up strategies were developed in [6].
Similar investigations were carried out with different reward
functions, e.g., buffer delay [14], [24]. Since very simple chan-
nel fluctuation and energy harvesting models were adopted, the

performance may be considerably degraded in practical sce-
narios. In addition, the aforementioned works all prearranged
stochastic energy generation models for the development of
transmission mechanisms without concern for the reality of the
assumptions underlying the considered models. Further, none
of these works linked the solar irradiance data, gathered by
an energy harvesting node, to the constructions of the design
frameworks and the optimal transmission policies.

In this paper, we present data-driven transmission policies for
an energy harvesting source node that aims to transmit packets
to its sink over a wireless fading channel.1 For this we maximize
the long-term bit rates by adapting transmission power and
modulation to the source’s knowledge of its current battery and
channel status. The novelty of this paper is the development of
realistic and reliable energy harvesting communication, which
enables a sensor node to be aware of the neighborhood environ-
ment to adapt its transmission parameters through measurement
results. Specifically, the novelty and contribution are summa-
rized as follows:

• We employ a Gaussian mixture hidden Markov model to
quantify energy harvesting conditions into several repre-
sentative solar states, whereby the underlying parameters
enable us to effectively describe the statistical properties of
the solar irradiance. Our model is different from the gen-
eralized Markov model in [18] which is constructed with
discrete solar energy as its input regardless of the underly-
ing distribution of solar energy. On the contrary, real solar
irradiance is adopted in our model. We justify the validity
of Gaussian mixture models for illustrating stochastic
solar energy processes and use expectation-maximization
(EM) algorithms to extract the underlying parameters.

• Through the discretization, a novel stochastic model that
describes the generation of energy quanta is proposed
and integrated into our design framework to capture the
interplay between the underlying and the system param-
eters. The adaptive transmission is formulated as a dis-
counted MDP and solved by a value iteration algorithm.
Both the energy wastage and the throughput degradation
caused by packet retransmission are taken into account.
Since the exact solar state is unknown to the sensor, an
observation-based mixed strategy is developed to compute
the belief state information and to decide the transmission
parameters, based on the present measurement of the solar
irradiance. To the best of our knowledge, this is the first
attempt to develop adaptive transmission schemes which
are directly driven by measured data.

• To get more insight, we present a theoretical study on a
simple on-off transmission policy. That means packets are
transmitted at constant power and modulation levels if the
action is “ON,” while no transmission occurs if the action
is “OFF.” In this special case, there exists a threshold
structure in the direction along the battery states, and the
long-term expected bit rate is increased with the amount
of energy quanta in the battery. Our analysis appears to
be more general than the previous work [14] that simply

1Here, “data” means historical records or present measurement of harvested
energy rather than “information-bearing data” in communications.
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TABLE I
BRIEF SUMMARY OF MAJOR SYMBOLS

considers an uncorrelated energy arrival model and a two-
state channel model. By exploiting this structure, we pro-
vide an energy deficiency condition and an upper bound
for the achievable net bit rate to characterize the per-
formance limit. Finally, the existence of structures for a
composite policy which contains multi-levels of power and
modulation actions is discussed.

• Real data records of the solar irradiance measured by
different solar sites in [25] are utilized to exemplify our
design framework as well as performance evaluation. The
performance of the proposed transmission policies is val-
idated by extensive computer simulations and compared
with other radical policies with or without the knowledge
of short-range energy harvesting and channel variation
patterns.

The rest of this paper is organized as follows. A brief
summary of major symbols is listed in Table I. In Section II, we
describe the stochastic energy harvesting model, the training of
its underlying parameters, and its connection to the real data
record. The MDP formulation of the adaptive transmission is
presented in Section III, followed by the optimization of the
policies and the mixed strategy in Section IV. Section V is
devoted to the analysis of a simple on-off transmission policy.
Simulation results are presented in Section VI, and concluding
remarks are provided in Section VII.

II. STOCHASTIC ENERGY HARVESTING

MODELS AND TRAINING

The model for describing the harvested energy depends on
various parameters, such as weather conditions (e.g., sunny,
cloudy, rainy), sunshine duration (e.g., day and night), and
behavior of the rechargeable battery (e.g., storage capacity). We
focus on modeling the solar power from the measurements by
using a hidden Markov chain, and establish a framework to ex-
tract the underlying parameters that can characterize the availa-
bility of solar power.

We begin with a toy example to justify the rationality of the
proposed energy harvesting models. Consider a real data record
of irradiance (i.e., the intensity of the solar radiation in units
μW/cm2) for the month of June from 2008 to 2010, measured
by a solar site in Elizabeth City State University (EC), with the
measurements taken at five-minute intervals [25]. In Fig. 1(a),
the time series of the irradiance is sketched over twenty-four
hours for June 15th, 2010, along with the average results for the
month of June in 2008 and 2010. We can make the following

Fig. 1. Toy examples of solar irradiance measured by solar sites in Elizabeth
City State University (EC) and Savannah State College (SS). (a) Time series
of the daily irradiance. (b) Histogram of the irradiance during a time period of
seven o’clock to seventeen o’clock.

observations. First, the daily solar radiation fluctuates slowly
within a short time interval, but could suddenly change from
the current level to adjacent levels with higher or lower mean
values. Second, the average irradiance value is sufficiently
high only from the early morning (seven o’clock) to the late
afternoon (seventeen o’clock). In fact, the measured irradiance
could be positive during daytime hours or negative at night or in
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Fig. 2. Gaussian mixture hidden Markov chain of the solar power harvesting
model with the underlying parameters (μj , ρj) (NH = 4).

the early morning, depending on the total amount of irradiance
that comes in and goes out the solar panel. Third, the evolution
of the diurnal irradiance follows a very similar time-symmetric
mask, whereas the short-term profiles of different days can
be very different and unpredictable. The other data record,
measured by Savannah State College (SS) in October between
1998 and 2000, also exhibits the same observations, but with a
shorter sunlight active duration. By considering the irradiance
from seven o’clock to seventeen o’clock, Fig. 1(b) shows the
corresponding histogram plotted against the irradiance on the
x-axis, which represents the percentage of the occurrences of
data samples in each bin of width 103 μW/cm2. We see that the
irradiance behaves like a mixture random variable generated by
a number of distributions. The prediction of solar irradiance
has been an open problem in atmospheric science over the
past decades. Some research studies have suggested the use of
the Gaussian distribution as the ingredient for describing the
irradiance [26], [27]. The assertion stems from the fact that the
solar irradiance experiences scattering, diffusion and reflection
by molecules, tiny particles in the air, and obstacles (e.g., cloud
and terrain) in the surrounding of sensors. Motivated by these
discussions, we model the evolution of the irradiance via a
hidden Markov chain with a finite number of states, each of
which is specified by a normal distribution with unknown mean
and variance.

An NH -state solar power harvesting hidden Markov model
is illustrated in Fig. 2, where the underlying normal distri-
bution for the jth state is specified by the parameters of
the mean μj and the variance ρj . The solar irradiance can
be classified into several states SH to represent harvesting
conditions such as “Excellent”, “Good”, “Fair”, and “Poor”.
Without loss of generality, the solar states are numbered in
ascending order of the mean values μj . Let S(t)

H be the solar
state at time instant t. We further assume that the hidden
Markov model is time homogeneous and governed by the
state transition probability P (S

(t)
H = j|S(t−1)

H = i) = aij , for
i, j = 0, . . . , NH − 1. The parameters of the model are thus de-
fined as Θ = {μ,ρ,a}, where μ = [μ0, . . . , μ(NH−1)]

T , ρ =
[ρ0, . . . , ρ(NH−1)]

T , and a = [a00, a01, . . . , a(NH−1)(NH−1)]
T .

Let x = {X(1) = x1, . . . , X
(T ) = xT } be a sequence of ob-

served data over a measurement period T , corresponding to
a sequence of hidden states s = {S(1)

H = s1, . . . , S
(T )
H = sT }.

The probabilistic model is trained by an EM algorithm, which
is a general method of finding the maximum-likelihood (ML)

estimate for the state parameters of underlying distributions
from incomplete observed data, as follows:

Θ(n)= argmax
Θ

Es

[
logP (x, s|Θ)|x,Θ(n−1)

]
= argmax

Θ

∑
s

logP (x, s|Θ)·P
(
x, s|Θ(n−1)

)
, (1)

where Θ(n) is the estimation update at the nth iteration. The
problem (1) can be efficiently solved using the well-known
iterative forward and backward algorithms, and further details
can be referred to [28]. The training procedures are repeated for
several iterations until Θ(n) gets converged.

The training results with respect to the example above are
shown in Fig. 1(b) and Table II, where the measurements are
performed every five or fifteen minutes from seven to seven-
teen o’clock. We can observe that the similarity between the
histograms of the training results and the measurement data is
improved as NH is increased from two to four at the expense
of the increased complexity. Our experimental experience sug-
gests that a four-state hidden Markov model is good enough
to achieve acceptable results. Also in Table II, where the data
record of the solar site in EC is used, the transition probabilities
from the current solar state to the other adjacent states are very
small when the measurements are taken at five-minute intervals,
and only a slight increase in the transition probability is ob-
served as the sampling period is increased to fifteen minutes.

The solar power harvesting model is a continuous-time
model. In practice, the solar energy is stored in the battery to
supply the forthcoming communications, and the transmission
strategy is designed on the basis of the required numbers of en-
ergy quanta and remains unchanged over a management period
of several data packets TL. Below, we map the continuous-time
model into a discrete energy harvesting model, in which the
Markov chain states are described by the numbers of harvested
energy quanta. Let PU be the basic transmission power level
of sensors, corresponding to one unit of the energy quantum
EU = PUTL during the management period. For the harvested
solar power PH , the obtained energy over TL is given by
EH = PHTL. At t = nTL, define E

(n)
R as the residual energy

in the capacitor before harvesting, and E
(n)
C as the accumulated

energy after harvesting over TL. Accordingly, the capacitor can
provide at most Q energy quanta to recharge the battery, and
the remaining part, which is smaller than EU , is regarded as the
residual energy in the capacitor at t = (n+ 1)TL:

E
(n)
C =E

(n)
R + EH ; (2)

Q =

⌊
E

(n)
C

EU

⌋
, E

(n+1)
R = E

(n)
C −QEU , (3)

where �·� is the floor function. By assuming that the fluctuation
of the harvested power level is quasi-static over many power
management runs, it can be analyzed that if qEU ≤ EH ≤ (q +
1)EU for some q, then the probability of the number of energy
quanta, Q, can be computed as

P (Q = i) =

⎧⎨
⎩

EH−qEU

EU
, i = q + 1;

1− EH−qEU

EU
, i = q;

0, otherwise.

(4)
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TABLE II
TRAINING RESULTS OF THE HIDDEN MARKOV SOLAR POWER HARVESTING MODEL FOR THE SOLAR SITE IN EC (NH = 4).

(a) MEAN, VARIANCE, AND STEADY STATE PROBABILITY. (b) STATE TRANSITION PROBABILITY

When a sensor node is operated at the jth solar state with the
normal distribution N (x;μj , ρj), the obtained energy EH is
again a normally distributed random variable, which is equal
to the solar power per unit area x multiplied by the solar
panel area ΩS , the time duration TL and the energy conversion
efficiency ϑ, i.e., EH = xΩSTLϑ. The conversion efficiency
typically ranges between 15% and 20% [2]. Thus, the mean and
variance of EH are respectively given as μ̄j = μjΩSTLϑ and
ρ̄j = ρjΩ

2
ST

2
Lϑ

2, and the probability of the number of energy
quanta is calculated by averaging (4) with respect to the random
variable EH , as follows:

P (Q = i|SH = j)

=

⎧⎪⎪⎨
⎪⎪⎩

∫ (i+1)EU

iEU

(i+1)EU−EH

EU
N (EH ; μ̄j , ρ̄j)dEH , i = 0;∫ (i+1)EU

iEU

(i+1)EU−EH

EU
N (EH ; μ̄j , ρ̄j)dEH

+
∫ iEU

(i−1)EU

EH−(i−1)EU

EU
N (EH ; μ̄j , ρ̄j)dEH , i �=0.

(5)

Denote the complementary error function as erfc(·). After some
manipulations, we get

P (Q = i|SH = j)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
(i+1)− μ̄j

EU

)
g1(i, μ̄j , ρ̄j)−g2(i+1, μ̄j , ρ̄j), i=0;(

(i+1)− μ̄j

EU

)
g1(i, μ̄j , ρ̄j)−g2(i+ 1, μ̄j , ρ̄j)

+
(

μ̄j

EU
−(i− 1)

)
g1(i−1, μ̄j , ρ̄j)+g2(i, μ̄j , ρ̄j), i �=0,

(6)

where the relevant terms are defined as

g1(i, μ̄j , ρ̄j) =
1

2

(
erfc

(
1√
2ρ̄j

(iEU − μ̄j)

)

− erfc

(
1√
2ρ̄j

((i+1)EU − μ̄j)

))
; (7)

g2(i, μ̄j , ρ̄j) =

√
ρ̄j

2πE2
U

(
exp

(
− 1

2ρ̄j
((i− 1)EU − μ̄j)

2

)

− exp

(
− 1

2ρ̄j
(iEU−μ̄j)

2

))
. (8)

III. MARKOV DECISION PROCESS USING STOCHASTIC

ENERGY HARVESTING MODELS

We study the adaptive transmissions for sensor communica-
tions concerning the channel and battery status, the transmis-
sion power, the modulation types, and the stochastic energy
harvesting model. Consider a point-to-point communication
link with two sensor nodes, where a source node intends to
convey data packets to its sink node. Each data packet consists
of LS data symbols at a rate of RS (symbols/sec), and hence,
the packet duration is given by TP = LS/RS .

The design framework is formulated as an MDP with the
goal of maximizing the long-term net bit rate. As illustrated
in Fig. 3, the MDP is mainly composed of the state space,
the action set, and the state transition probabilities, and it is
operated on the time scale of TL, covering the time duration of
D data packets, i.e., TL = DTP . Let S be the state space which
is a composite space of the solar state H = {0, . . . , NH − 1},
the channel state C = {0, . . . , NC − 1} and the battery state
B = {0, . . . , NB − 1}, i.e., S = H× C × B, where × denotes
the Cartesian product. At the nth battery state, we further
denote the action space as A which consists of two-tuple action
spaces: transmission power W = {0, . . . ,min{n,NP − 1}}
and modulation types M = {0, . . . , NM − 1}. Since the tran-
sition probabilities of the channel and battery states are
independent of each other, the transition probability from
(SH , SC , SB) = (j, i, n) to (SH , SC , SB) = (j ′, i′, n′) with re-
spect to the action (W,M)=(w,m) under the jth solar state
can be formulated as

Pw,m ((SH , SC , SB) = (j ′, i′, n′)|(SH , SC , SB) = (j, i, n))

= P (SH = j ′|SH = j)P (SC = i′|SC = i)

· Pw (SB = n′|(SH , SB) = (j, n)) , (9)

where the battery state transition is irrespective of the modula-
tion type, and the transition probability of the solar states can be
directly obtained by using the training results in Section II. We
elaborate on each of the components in Fig. 3 before describing
the solution of the Bellman optimality equation.

A. Actions of Transmission Power and Modulation Types

When the action (w,m) ∈ W ×M is chosen by the sen-
sor node, the transmission power and modulation levels are
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Fig. 3. Markov chain for the Markov decision process (NH = 2, NC = 3
and NB = 3).

respectively set as wPU and 2χm -ary phase shift keying (PSK)
or quadrature amplitude modulation (QAM), e.g., QPSK,
8 PSK and 16 QAM, during the policy management period,
where χm represents the number of information bits in each
data symbol. Remember that PU is the basic transmission
power level of the sensor node if data transmission takes place.
On the other hand, if w = 0, the node remains silent without
transmitting data packets.

B. Channel State and State Transition Probability

The wireless channel is quantized using a finite number of
thresholds Γ = {0 = Γ0,Γ1, . . . ,ΓNC

= ∞}, where Γi < Γj

for all i < j. The Rayleigh fading channel is said to be in the
ith channel state, for i = 0, . . . , NC − 1, if the instantaneous
channel power, γ, belongs to the interval [Γi,Γi+1). We as-
sume that the wireless channel fluctuates slowly and the policy
management period is shorter than the channel coherence time.
Hence, the channel state transition occurs only from the current
state to its neighboring states. The stationary probability of the
ith state is

P (SC = i) = exp

(
−Γi

γ0

)
− exp

(
−Γi+1

γ0

)
, (10)

where γ0 = E[γ] is the average channel power. Define h(γ) =√
2πγ/γ0fD exp(−γ/γ0), where fD is the maximum Doppler

frequency, normalized by 1/TL. The state transition probabili-
ties are determined by [29]

P (SC = k|SC = i)

=

⎧⎪⎪⎨
⎪⎪⎩

h(Γi+1)
P (SC=i) , k = i+ 1, i = 0, . . . , NC − 2;
h(Γi)

P (SC=i) , k = i− 1, i = 1, . . . , NC − 1;

1− h(Γi)
P (SC=i)−

h(Γi+1)
P (SC=i) , k= i, i=1, . . . , NC−2,

(11)

and the transition probabilities of P (SC = i|SC = i) for the
boundaries are given by

P (SC = 0|SC = 0) = 1− P (SC = 1|SC = 0);

P (SC = NC − 1|SC = NC − 1)

= 1− P (SC = NC − 2|SC = NC − 1). (12)

C. Battery State and State Transition Probability

Consider a rechargeable battery with finite capacity which
is described by NB states. When the sensor node is run at
the nth battery state, the available energy in the battery is
stored up to n energy quanta, i.e., nEU , and the possible action
that can be performed is from 0 to min{n,NP − 1}. The wth

power action will consume a total of w energy quanta for data
transmission. In particular, the sensor is unable to make any
transmission when the energy is completely depleted at the 0th

state. Once the underlying parameters of the NH solar states
are appropriately estimated through the measurement data, the
state transition probabilities for the nth battery state and the
wth power action under the jth solar state can be constructed
by exploiting (6), as follows:

Pw (SB = k|(SH , SB) = (j, n))

=

{
P (Q=k−n+w|SH=j), k=n−w, . . . ,NB−2;

1−
∑NB−2−n+w

i=0 P (Q= i|SH =j), k=NB−1,

(13)

for n = 0, . . . , NB − 1 and w = 0, . . . ,min{n,NP − 1}.

D. Reward Function

We adopt the average number of good bits per packet trans-
mission as our reward function. It is assumed that the sink
node periodically feeds back the channel state information
to the source node for planning the next transmission. Let
Pe,b((SC , SB ,W,M) = (i, n, w,m)) be the average bit error
rate (BER) at the ith channel state and the nth battery state
when the action (W,M) = (w,m) is taken. By applying the

upper bound of the Q-function Q(x) ≤ 1
2 exp

(
−x2

2

)
, it can be

computed as

Pe,b ((SC , SB ,W,M) = (i, n, w,m))

=

∫ Γi+1

Γi

∑
r
αm,rQ

(√
βm,rwPUγ

N0

)
1
γ0

exp
(
− γ

γ0

)
dγ∫ Γi+1

Γi

1
γ0

exp
(
− γ

γ0

)
dγ

≤
∑
r

αm,r

wβm,rγU+2

exp
(
−Γi

γ0

)
− exp

(
−Γi+1

γ0

)
·
(
exp

(
− 1

2γ0
(wβm,rγU + 2)Γi

)

− exp

(
− 1

2γ0
(wβm,rγU + 2)Γi+1

))
Δ
= η(i, n, w,m), (14)

where N0 is the noise power, γU = PUγ0/N0 is the average
signal-to-noise power ratio (SNR) when the basic transmission
power level is adopted, and the BER is expressed as a sum-
mation of Q-functions with modulation specific constants αm,r

and βm,r for QPSK, 8 PSK and 16 QAM in Table III [30],
[31]. Hence, the probability of successful packet transmission
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TABLE III
MODULATION SPECIFIC CONSTANTS

(i.e., all χmLS bits in a packet are successfully detected) is ex-
pressed as

Pf,k ((SC , SB ,W,M) = (i, n, w,m))

= (1− Pe,b(i, n, w,m))χmLS . (15)

If the sensor fails to decode the received data packet, the re-
transmission mechanism is employed in the sensor communica-
tions. Let Z be the total number of retransmissions required to
successfully convey a data packet. By assuming that each trans-
mission is independent, the variable Z can be expressed as a
geometric random variable, and the average number of retrans-
missions for the successful reception of a packet is given by

E[Z] = 1/Pf,k(i, n, w,m). (16)

Since TL = DTP , the number of effective data packets due to
retransmission during each management period is in average
given as

DE =
D

E[Z]
=

TL

E[Z]TP
. (17)

From (14)–(17), the net bit rate can therefore be lower
bounded by

Gw,m ((SC , SB) = (i, n)) =
1

TL
DEχmLS

=
1

TP
χmLS (1− Pe,b(i, n, w,m))χmLS

≥ 1

TP
χmLS (1− η(i, n, w,m))χmLS . (18)

Since Q(x) ≤ 1
2 exp

(
−x2

2

)
is asymptotically tight as x is

large, or equivalently, Pe,b(i, n, w,m) ≈ η(i, n, w,m) for a
sufficiently large γU , this implies that the lower bound of the
net bit rate is tight in high SNR regimes.

Definition 1: The reward function for the action (W,M) =
(w,m) at the state (SC , SB) = (i, n) is defined as

Rw,m ((SC , SB) = (i, n))

=

{
0, w =0;
1
TP

χmLS (1−η(i, n, w,m))χmLS, w∈W\{0}. (19)

The reward function has the following properties:
(a) Rw,m((SC , SB) = (i, n)) = 0 for w = 0, because no

data transmission occurs when the transmission power
is zero.

(b) Rw,m((SC , SB) = (i, n)) = Rw′,m((SC , SB) = (i, n′))
for any w = w′, because the immediate reward is
independent of the battery state.

(c) Rw,m((SC , SB) = (i, n)) ≥ Rw,m((SC , SB) = (i′, n))
for any i ≥ i′, which means a higher immediate reward
is obtained as the channel condition improves.

E. Transmission Policies

Two transmission policies are implemented regarding the
affordable actions in the action set A.

Definition 2 (Composite Policy): A transmission policy is
composite, if NP ≥ NB . The action set at the nth battery state
is given by A = {0, . . . , n} × {0, . . . , NM − 1}.

Definition 3 (On-Off Policy): A transmission policy is on-
off, if NP = 2 and NM = 1. The action set at the nth battery
state is given by A = {0, . . . ,min{n, 1}} × {0}.

In the composite policy, the power action could be uncon-
ditional as long as the resultant energy consumption during
the management period is below the battery supply. On the
contrary, only a single power and modulation level is accessible
in the on-off policy whenever the sensor is active. The compos-
ite policy undoubtedly has better performance than the on-off
policy, whereas the later one, as its name suggests, operates in a
relatively simple on-off switching mode for data transmission.

IV. OPTIMIZATION OF TRANSMISSION POLICIES

A. Optimal Policies and Belief Update

The main goal of the MDP is to find a decision policy
π(s) : S → A that specifies the optimal action in the state s
and maximizes the objective function. Since we are interested in
maximizing some cumulative functions of the random rewards
in the Markov chain, the expected discounted infinite-horizon
reward is formulated by using (19):

Vπ(s0)=Eπ

[∑∞

k=0
λkRπ(sk)(sk)

]
, sk ∈ S, π(sk) ∈ A,

(20)

where Vπ(s0) is the expected reward starting from the initial
state s0 and continuing with the policy π from then on, and
0 ≤ λ < 1 is a discount factor. The adjustment of λ provides
a wide range of performance characteristics, and the long run
average objective can be closely approximated by choosing a
discount factor close to one.2 It is known that the optimal value
of the expected reward is unrelated to the initial state if the
states of the Markov chain are assumed to be recurrent. From
(9) and (20), there exists an optimal stationary policy π∗(s) that
satisfies the Bellman’s equation [32]:

Vπ∗(s) = max
a∈A

(
Ra(s) + λ

∑
s′∈S

Pa(s
′|s)Vπ∗(s′)

)
, s ∈ S.

(21)

The well-known value iteration approach is then applied to
iteratively find the optimal policy [32]:

V a
i+1(s)=Ra(s)+λ

∑
s′∈S

Pa(s
′|s)Vi(s

′), s∈S, a∈A; (22)

Vi+1(s) = max
a∈A

{
V a
i+1(s)

}
, s ∈ S, (23)

2A link between average and discounted objective problems is provided
in [32]. Define the long run average reward as V̄π(s0) = lim supN→∞

1
N

·
E[
∑N−1

k=0
Rπ(sk)

(sk)]. For any stationary policy π, V̄π(s0) = limλ→1(1−
λ)Vπ(s0). Hence, a policy that maximizes Vπ(s0) for λ ≈ 1 also approxi-
mately maximizes the average cost V̄π(s0).
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TABLE IV
EFFECT OF PARAMETERS ON SYSTEM PERFORMANCE

where i is the iteration index, and the initial value of V0(s) is
set as zero for all s ∈ S . The update rule is repeated for several
iterations until a stop criterion is satisfied, i.e., |Vi+1(s)−
Vi(s)| ≤ ε. Based on the definition in Section III-E, the optimal
solutions for the two policies can be found by alternatively
executing (22) and (23). In general, the convergence of the
value iteration algorithm is guaranteed, and interested readers
are referred to [32] for more details. To get more insight, we
also summarize the impact of various parameters on the system
performance in Table IV.

In real applications, the channel state of the communication
link can be reliably obtained at the transmitter via channel
feedback information. The belief of the solar state can be
calculated from the observation prior to the action decision.
Let x(t) be the average value of the measured solar data
during the tth management period, and ζ

(t−1)
j = P (S

(t−1)
H =

j|x(1), . . . , x(t−1)) be the belief of the jth solar state according
to the historical observation up to the (t− 1)th period. With the
solar power harvesting model, the belief information at the tth

period is updated using Bayes’ rule as follows:

ζ
(t)
j =

∑NH−1
i=0 ζ

(t−1)
i aijfj

(
x(t)

)
∑NH−1

j′=0

∑NH−1
i′=0 ζ

(t−1)
i′ ai′j′fj′

(
x(t)

) , (24)

where fj(x) = N (x;μj , ρj) and aij are the normal distribution
and the state transition probability, as obtained in the training
results of Section II. The final task is to apply the belief
information for deciding the action at each management period.
We consider the following mixed strategy. Remember that in
the construction of the solar power harvesting model, each
observed data sample contributes to the values of all underlying
parameters at different states in a posteriori probability sense in
the EM training procedures [28]. Thus, the optimization of the
transmission policy inherently accounts for the probability of
the observation that belongs to each solar state. This implies
that the mixed strategy, which randomly plays the optimal
action corresponding to the jth solar state with probability

proportional to ζ
(t)
j , is the optimal strategy for the observations

up to the present time.

B. Computational Complexity

We now discuss the computational complexity of finding
the optimal transmission policies. The main complexity of the
value iteration algorithm arises from the multiplication in (22),
and the required number of multiplications per iteration is
given as

NH−1∑
j=0

NC−1∑
i=0

NB−1∑
n=0

min{n,NP−1}∑
a=0

NHNC(NB − n+ a)

=

{
(NHNC)

2
(
N2

B+NB−1
)
, on-off policy;

1
6 (NHNC)

2
(
2N3

B+3N2
B+NB

)
, composite policy.

(25)

In summary, the on-off policy has the complexity
of O(N2

HN2
CN

2
B), while the composite policy has

O(N2
HN2

CN
3
B). In real applications, the optimal policy can

be precalculated offline and stored in memory as a look-up
table. Thus, the involved online computation for the sensor
node is to update the belief information in (24), which has the
complexity of O(N2

H).

V. OPTIMAL ON-OFF TRANSMISSION POLICIES

A. Threshold Structure of Transmission Policies

To facilitate analysis, we focus on a simple on-off transmis-
sion policy and drop the modulation type index m, i.e., a =
w ∈ {0, 1}. From (6), (9) and (11)–(13), the expected reward
function with respect to the action a in (22) can be rewritten as
an expected form:

V a
i+1(z, x, y) = Ra(x, y) + λ

NH−1∑
j=0

P (SH = j|SH = z)

·
min{x+1,NC−1}∑
l=max{0,x−1}

P (SC = l|SC = x)

·
∞∑

q=0

P (Q = q|SH = z)Vi (j, l,min{NB − 1, y − a+ q})

= Ra(x, y)+λ · Ez,x,y [Vi (j, l,min{NB−1, y−a+q})] ,
(26)

where the subscript in Ez,x,y[·] is used to indicate the associated
solar, channel and battery states.

Lemma 1: For any fixed solar state z ∈ H and channel state
x ∈ C, V a

i (z, x, y − 1) ≤ V a
i (z, x, y), ∀ y ∈ B \ {0} and a =

0, 1. Moreover, Vi(z, x, y − 1) ≤ Vi(z, x, y), ∀ y ∈ B \ {0}.
Proof: From (23), if V a

i (z, x, y − 1) ≤ V a
i (z, x, y) is sat-

isfied, it implies

Vi(z, x, y−1)= max
a∈{0,1}

{V a
i (z, x, y − 1)}

≤ max
a∈{0,1}

{V a
i (z, x, y)}=Vi(z, x, y). (27)
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We prove the lemma by the induction. From (26) and the initial
condition V0(s) = 0, the statement is held for i = 1 because
V a
1 (z, x, y − 1) and V a

1 (z, x, y) only relate to the same reward,
for a ∈ {0, 1}. Hence, we obtain V1(z, x, y − 1) = V1(z, x, y).
Assume i = k holds, and for any z ∈ H and x ∈ C, it gives
Vk(z, x, y − 1) ≤ Vk(z, x, y), ∀ y ∈ B \ {0}. Using (26), we
prove that for i = k + 1:

V a
k+1(z, x, y)− V a

k+1(z, x, y − 1)

= λ

NH−1∑
j=0

P (SH = j|SH = z)

·
min{x+1,NC−1}∑
l=max{0,x−1}

P (SC= l|SC=x)
∞∑

q=0

P (Q=q|SH =z)

· (Vk (j, l,min{NB − 1, y − a+ q})
−Vk (j, l,min{NB − 1, y − 1− a+ q}))︸ ︷︷ ︸

≥ 0, since the assumption holds for i=k.

≥ 0. (28)

This thereby implies that Vk+1(z, x, y − 1) ≤ Vk+1(z, x, y),
and the statement holds for i = k + 1. �

Theorem 1: For the optimal on-off policy, the long-term
expected reward is non-decreasing with respect to the battery
state. That is, for any z ∈ H and x ∈ C, Vπ∗(z, x, y − 1) ≤
Vπ∗(z, x, y), ∀ y ∈ B \ {0}.

Proof: By applying Lemma 1 and following the value
iteration algorithm, the theorem is proved when the algorithm
has converged. �

Now we turn to describing the structure of the on-off trans-
mission policy. Since no transmission (i.e., a = 0) is the only
action when the battery state is zero, we concentrate on the
actions for y ∈ B \ {0} in the following.

Lemma 2: For each z ∈ H, x ∈ C and y ∈ B \ {0}, define
two difference functions:

Θi(z, x, y) =V 1
i (z, x, y)− V 0

i (z, x, y); (29)

Λi(z, x, y) =Ez,x,y

[
V 1
i (j, l,min{NB − 1, y + q})

−V 0
i (j, l,min{NB − 1, y − 1 + q})

]
. (30)

The function Θi(z, x, y) is monotonically non-decreasing in
y ∈ B \ {0}, if the function Λt(z, x, y) is non-increasing in
y ∈ B \ {0}, ∀ t < i, z ∈ H and x ∈ C.

Proof: We use induction to prove this lemma. When i =
1, the statement is true because Θ1(z, x, y) = V 1

1 (z, x, y)−
V 0
1 (z, x, y) = R1(x, y), for y �= 0, and the reward function

R1(x, y) keeps the same value in y ∈ B \ {0} for any given
x ∈ C. Assume i = k holds, the function Θk(z, x, y) is non-
decreasing in y ∈ B \ {0}, ∀ z ∈ H and ∀x ∈ C. It imme-
diately implies that the following two functions are both
non-decreasing in y:

Δmax
k (z, x, y) = max {0,Θk(z, x, y)} ≥ 0; (31)

Δmin
k (z, x, y) = min {0,Θk(z, x, y)} ≤ 0. (32)

For i = k + 1, the difference function Θk+1(z, x, y) can be
derived from (23) and (26) as follows:

Θk+1(z, x, y) = V 1
k+1(z, x, y)− V 0

k+1(z, x, y)

= R1(x, y)−R0(x, y)

+ λEz,x,y

[
max

{
V 0
k (j, l,min{NB − 1, y − 1 + q}) ,

V 1
k (j, l,min{NB − 1, y − 1 + q})

}]
− λEz,x,y

[
max

{
V 0
k (j, l,min{NB − 1, y + q}) ,

V 1
k (j, l,min{NB − 1, y + q})

}]
. (33)

Inserting (31) and (32) into (33) yields

Θk+1(z, x, y) = R1(x, y)− λΛk(z, x, y)

+ λEz,x,y [Δ
max
k (j, l,min{NB − 1, y − 1 + q})]

+ λEz,x,y[Δ
min
k (j, l,min{NB − 1, y + q})]. (34)

According to the non-decreasing property of the functions
Δmax

k (z, x, y), Δmin
k (z, x, y) and R1(x, y), it can be shown

from (34) that Θk+1(z, x, y) preserves the non-decreasing
property in y ∈ B \ {0}, if Λk(z, x, y) is non-increasing in
y ∈ B \ {0}, ∀ z ∈ H and ∀x ∈ C. �

In fact, the validity of the non-decreasing property of
Θi(z, x, y) relies on the transition probabilities of the solar
states, channel states and battery states, and this property is
not necessarily satisfied in z ∈ H and x ∈ C. Below we show
that the function Λt(z, x, y) is indeed non-increasing in the
direction along the battery states for a given solar state and
channel state, and the following theorem is provided.

Theorem 2: For any z ∈ H and x ∈ C, the difference func-
tion Θi(z, x, y) is non-decreasing in y ∈ B \ {0}, and the opti-
mal on-off policy has a threshold structure.

Proof: We first show that Λt(z, x, y + 1)− Λt(z, x, y) ≤
0, for y = 1, . . . , NB − 2, in the following. It can be derived
from the definition in Lemma 2 that

Λt(z, x, y + 1)− Λt(z, x, y) =

NH−1∑
j=0

P (SH = j|SH = z)

·
min{x+1,NC−1}∑
l=max{0,x−1}

P (SC= l|SC=x)·
∞∑

q=0

P (Q=q|SH=z)Φy(j, l,q),

(35)

where the term Φy(j, l, q), for y = 1, . . . , NB − 2, is defined as

Φy(j, l, q) =V 1
t (j, l,min{NB − 1, y + 1 + q})

− V 0
t (j, l,min{NB − 1, y + q})

− V 1
t (j, l,min{NB − 1, y + q})

+ V 0
t (j, l,min{NB − 1, y − 1 + q}) . (36)
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The third summation over the variable q in (35) can be further
divided into three cases according to the range of q, and after
some straightforward manipulations, we obtain

Φy(j, l, q)=

⎧⎪⎨
⎪⎩

0, q = 0, . . . , (NB − y − 2);
−

(
V 0
t (j, l, NB−1)−V 0

t (j, l, NB−2)
)
≤0,

q=(NB−y−1);
0, q = (NB − y), . . . ,∞,

(37)

where the values for q �= NB − y − 1 are equal to zero due to
self-cancellation, and the inequality in the second line comes
from Lemma 1. As a result, Φy(j, l, q) is always non-positive.
From (35) and (37), it leads to Λt(z, x, y + 1) ≤ Λt(z, x, y),
and thus the function Λt(z, x, y) is non-increasing in y. By
applying Lemma 2, it suffices to prove that Θi(z, x, y) is non-
decreasing in y ∈ B \ {0}. When the value iteration algorithm
is converged, a threshold structure κ = {κ0, . . . ,κNH−1},
where κz = {κz,0, . . . , κz,NC−1}, is given by using the non-
decreasing property of Θi(z, x, y):

π∗(z, x, y) =

{
0, y ≤ κz,x;
1, y ≥ κz,x + 1, (38)

for a threshold κz,x that is satisfied with Θi(z, x, κz,x) < 0 and
Θi(z, x, κz,x + 1) ≥ 0 if κz,x ∈ B \ {0}, and Θi(z, x, κz,x +
1) ≥ 0 if κz,x = 0. �

In fact, whether the threshold structure exists or not strongly
depends on the state transition probabilities. The proof in
Lemma 2 and Theorem 2 also implicitly indicates that the
threshold structures for the solar or channel states do not
necessarily occur, since for any fixed battery and solar (or
channel) state, the function Λi(z, x, y) after taking the expec-
tation over the transition probabilities may not be guaranteed
to be non-increasing with respect to the channel (or solar)
states. By taking the training results in Table II as an example,
a threshold structure is demonstrated in Fig. 4 for SH = 0.
It appears that there exists a threshold κ0 = {7, 7, 0, 0, 0, 0}
above which data transmission occurs to gain the maximum
long-term expected reward. Furthermore, it can be seen that
for a fixed channel state, the long-term expected reward is non-
decreasing with respect to the battery state. The simplicity of
the threshold structure makes the on-off transmission policy
attractive for hardware implementation, and it also helps reduce
the computational burden in obtaining the optimal policy.

B. Energy Deficiency Condition

From (4) and (6), the harvested energy is quantized into two
consecutive levels, Q = 0 and Q = 1, if the harvested power
is less than PU (i.e., the mean and variance of each solar state
are small). The energy level of Q = 0 is referred to as energy
deficiency. A necessary energy deficiency condition for the ex-
istence of an optimal threshold policy at κ = {κ0, . . . ,κNH−1}
is provided in the following.

Theorem 3: Let Vπ∗(z, x, y) be the long-term expected
reward of the on-off policy π∗. Define Ξ(z, x, y) =
Ez,x[Vπ∗(j, l,min{NB − 1, y + 1})− Vπ∗(j, l,min{NB − 1,
y})] as a difference function of Vπ∗(z, x, y) at the two
battery states min{NB − 1, y + 1} and min{NB − 1, y},

Fig. 4. Threshold structure policy and long-term expected reward for the solar
state SH =0 (NC =6, NB=8, RS =105 symbols/sec, LS =103 symbols/
packet, TL = 300 sec, PU = 1.8× 104 μW, γU = 18.5 dB, ΩS = 0.1 cm2,
ϑ = 1, fD = 5× 10−2, Γ = {0, 0.3, 0.6, 1.0, 2.0, 3.0,∞}, λ = 0.5 and
8 PSK).

which is averaged over the channel and solar state transition
probabilities from the state (z, x) ∈ H × C to its adjacent
states. Consider two possible energy quantum levels Q = 0 and
Q = 1. There exists an optimal policy with the threshold
κ = {κ0, . . . ,κNH−1}, only if the energy deficiency
probability belongs to the interval Dz =

⋂NC−1
x=0 Dz,x, where

Dz,x is defined as

Dz,x =

⎧⎪⎨
⎪⎩

P (Q = 0|SH = z) ≤ φ(z, x, 1), κz,x = 0;
P (Q = 0|SH = z) ≥ φ(z, x, 0), κz,x = NB − 1;
φ(z, x, 0) ≤ P (Q = 0|SH = z) ≤ φ(z, x, 1),

otherwise,
(39)

where φ(z, x, n)=
R1(x)/λ−Ξ(z,x,κz,x+n)

Ξ(z,x,κz,x+n−1)−Ξ(z,x,κz,x+n) and R1(x)=

R1(x, κz,x + 1) = R1(x, κz,x).
Proof: By applying Theorem 2, it is sufficient to show

that κ is the optimal threshold policy, only if the following
conditions are satisfied, ∀ z ∈ H and ∀x ∈ C:⎧⎪⎪⎨
⎪⎪⎩

V 1
π∗(z, x, κz,x + 1) ≥ V 0

π∗(z, x, κz,x + 1), κz,x = 0;
V 1
π∗(z, x, κz,x) ≤ V 0

π∗(z, x, κz,x), κz,x = NB − 1;
V 1
π∗(z, x, κz,x) ≤ V 0

π∗(z, x, κz,x) and
V 1
π∗(z, x, κz,x + 1) ≥ V 0

π∗(z, x, κz,x + 1), otherwise.
(40)

From the definition in (26), the condition of V 1
π∗(z, x, κz,x) ≤

V 0
π∗(z, x, κz,x) in (40) becomes

R1(x) ≤ λ

1∑
q=0

P (Q = q|SH = z)Ξ(z, x, κz,x − 1 + q),

z ∈ H and x ∈ C. (41)

On the other hand, the condition of V 1
π∗(z, x, κz,x + 1) ≥

V 0
π∗(z, x, κz,x + 1) implies that

R1(x) ≥ λ
∑1

q=0
P (Q = q|SH = z)Ξ(z, x, κz,x + q),

z ∈ H and x ∈ C. (42)



KU et al.: STOCHASTIC MODELS AND POLICIES FOR ENERGY HARVESTING SENSOR COMMUNICATIONS 1515

Fig. 5. Energy deficiency regions P (Q = 0|SH = 0) versus immediate re-
wards R1(x = 2) for different thresholds κ0,2.

In addition, it can be derived that Ξ(z, x, κz,x − 1)−
Ξ(z, x, κz,x) ≥ 0 as follows:

Ξ(z, x, κz,x − 1)− Ξ(z, x, κz,x)

= Ez,x

[
V 0
π∗ (j, l,min{NB − 1, κz,x})
−V 0

π∗ (j, l,min{NB − 1, κz,x − 1})
]

− Ez,x

[
V 1
π∗ (j, l,min{NB − 1, κz,x + 1})
−V 0

π∗ (j, l,min{NB − 1, κz,x})
]

≥ Ez,x

[
V 1
π∗ (j, l,min{NB − 1, κz,x})
−V 0

π∗ (j, l,min{NB − 1, κz,x − 1})
]

− Ez,x

[
V 1
π∗ (j, l,min{NB − 1, κz,x + 1})
−V 0

π∗(j, l,min{NB − 1, κz,x})
]
≥ 0, (43)

where the threshold structure is used in the first equality;
for instance, Vπ∗(z, x, y) = V 0

π∗(z, x, y), for y ≤ κz,x, and
the last inequality holds due to (36) and (37). Similarly,
we get Ξ(z, x, κz,x)− Ξ(z, x, κz,x + 1) ≥ 0. By applying
P (Q = 0|SH = z) + P (Q = 1|SH = z) = 1 and (41)–(43)
into (40), the necessary conditions can be rewritten as
in (39). Hence, there exists an optimal threshold at κ =
{κ0, . . . ,κNH−1}, only if the probability P (Q = 0|SH = z) ∈
Dz =

⋂NC−1
x=0 Dz,x. �

This necessary condition gives an important insight into how
the energy deficiency probability affects the threshold of the
policy. Taking the long-term expected reward in Fig. 4 and
SH = 0 as an example, the energy deficiency regions versus
the immediate rewards R1(x = 2) for different thresholds κ0,2

are plotted in Fig. 5, where the other thresholds are fixed at
{κ0,0, κ0,1, κ0,3, κ0,4, κ0,5} = {7, 7, 0, 0, 0}. It is observed that
for R1(x = 2) = 2× 104 and 6× 104, the threshold κ0,2 = 1
could be the optimal policy, only if P (Q = 0|SH = 0) ≤ 0.25
and P (Q = 0|SH = 0) ≥ 0.5, respectively.

C. Expected Net Bit Rate Analysis

Here we use the expected net bit rate to assess the perfor-
mance of the optimal threshold policy. Consider a threshold
policy κ = {κ0, . . . ,κNH−1}, and denote νj,i×NB+n as the

stationary probability of the state (SH , SC , SB) = (j, i, n),
for i = 0, . . . , NC − 1 and n = 0, . . . , NB − 1. Define νj =
[νj,0, . . . , νj,i×NB+n, . . . , νj,NC×NB−1]

T , for j=0, . . . ,

NH−1, and ν=[νT
0 , . . . ,ν

T
NH−1]

T
. Let Πj,i be an NB ×NB

battery state transition probability matrix associated with the
threshold policy κ at the jth solar state and the ith channel
state, given by

[Πj,i]p,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P (Q = (p− q)|SH = j) ,

0 ≤ q ≤ κj,i, q ≤ p ≤ NB − 2;

0, 0 ≤ q ≤ κj,i, 0 ≤ p ≤ q − 1;

P (Q = (p− q + 1)|SH = j) ,

κj,i+1 ≤ q ≤ NB−1, q−1 ≤ p ≤ NB − 2;

0, κj,i+1 ≤q ≤NB−1, 0 ≤ p ≤ q − 2,
(44)

and [Πj,i]NB−1,q = 1−
∑NB−2

p=0 [Πj,i]p,q , for q = 0, . . . ,
NB − 1, where the (p, q)th entry of the matrix [Πj,i]
represents the transition probability from the state (SH , SC ,
SB) = (j, i, q) to the state (SH , SC , SB) = (j, i, p). Therefore,
the stationary probability with respect to the threshold policy κ
can be computed by solving the balance equation:[

Φ− I(NB×NC×NH
)

1T
(NB×NC×NH)

]
ν =

[
0(NB×NC×NH)

1

]
, (45)

where Φ is the state transition probability matrix of size (NB ×
NC ×NH)× (NB ×NC ×NH), whose (zNC + x, jNC +
i)th sub-matrix is equal to P (SH = z|SH = j) · P (SC =
x|SC = i) ·Πj,i, for z, j = 0, . . . , NH − 1, i = 0, . . . , NC −
1, and x = max{0, i− 1}, . . . ,min{i+ 1, NC − 1}, and the
remaining sub-matrices all equate to zero. By taking the expec-
tation of the reward function in (19), the expected net bit rate
using the 2χm -ary modulation scheme is given by

Rnet,m =
1

TP

NH−1∑
j=0

NC−1∑
i=0

NB−1∑
n≥κj,i+1

νj,(i×NB+n)

· χmLS (1− η(i, n, 1,m))χmLS . (46)

Theorem 4: Define an energy harvesting rate as q̄ =

lim
T→∞

q̄T = lim
T→∞

E

[
1
T

∑T
t=1 qt

]
, where qt denotes the number

of energy quanta obtained by a sensor at the tth policy manage-
ment period. The expected net bit rate of the on-off policy is
upper bounded by

Rnet,m ≤ min{q̄, 1} ·
(

1

TP
χmLS

· (1− η(NC − 1, NB − 1, 1,m))χmLS

)
. (47)

At asymptotically high SNR, the upper bound value converges
to min{q̄, 1} · 1

TP
χmLS .

Proof: Let at ∈ {0, 1} be the optimal action at the tth pol-
icy management period, corresponding to a sequence of channel
states xt and battery states yt, for t = 1, . . . , T . From (19),
the immediate reward can be rewritten as Rm(at, xt, yt) =
at

1
TP

χmLS(1− η(xt, yt, 1,m))χmLS . Thus, the average net
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bit rate, Rnet,m = lim
T→∞

E

[
1
T

∑T
t=1 Rm(at, xt, yt)

]
, is calcu-

lated as

Rnet,m = lim
T→∞

∑
it

P (xt = it, t = 1, . . . , T )

· 1
T

T∑
t=1

E

[
at

1

TP
χmLS (1− η(xt, yt, 1,m))χmLS

∣∣∣∣
xt = it, t = 1, . . . , T

]
≤ lim

T→∞

∑
it

P (xt = it, t = 1, . . . , T )

· 1
T

T∑
t=1

E [at|xt = it, t = 1, . . . , T ]

·
(

1

TP
χmLS (1−η(NC−1, NB−1, 1,m))χmLS

)
, (48)

where the marginal probability is performed in the first equality
by summing over all channel states it, and the BER relationship
of η(NC − 1, NB − 1, 1,m) ≤ η(xt, yt, 1,m) is used in the
second inequality. For any transmission policy, the accumulated
energy consumption cannot exceed the initial energy in the
battery plus the total amount of harvested energy, and it yields
the constraint:

1

T

∑T

t=1
at ≤

1

T
(NB − 1) +

1

T

∑T

t=1
qt. (49)

Besides, the on-off transmission imposes another energy expen-
diture constraint of 1

T

∑T
t=1 at ≤ 1. Substituting this constraint

and (49) into (48), we finally obtain the upper bound of the ex-
pected net bit rate in (47). From (14), it is found that the func-
tion η(NC − 1, NB − 1, 1,m) → 0 as γU → ∞, and the upper
bound converges to min{q̄, 1} · 1

TP
χmLS at asymptotically

high SNR. �

D. Some Structure Results for Composite Policies

Fig. 6 depicts the optimal composite policies with the same
parameters of Fig. 4, except as otherwise stated. A monotonic
policy is observed in the direction along the battery states.
To be explicit, for any fixed z ∈ H and x ∈ C, π∗(z, x, y) �
π∗(z, x, y′), ∀ y ≤ y′, where � is a generalized inequality. From
Lemma 4.7.1 in [33], there exists such a monotonic property,
if V a

i+1(z, x, y) in (23) is a superadditive function on A× B.3

Since it is tough to directly inspect the superadditivity of
V a
i+1(z, x, y), a sufficient condition is provided in the following

theorem.
Theorem 5: The optimal composite policy is a monotonic

policy, if the energy harvesting condition:∑max{α−n++w+,0}−1

i=max{α−n++w−,0}
P (Q = i|SH = j)

≤
∑max{α−n−+w+,0}−1

i=max{α−n−+w−,0}
P (Q = i|SH = j), (50)

3Let X and Y be two partially ordered sets. If a real-valued function f(x, y)
is superadditive on X × Y , then f(x+, y+)− f(x−, y+) ≥ f(x+, y−)−
f(x−, y−), ∀x+, x− ∈ X and ∀ y+, y− ∈ Y such that x+ ≥ x− and
y+ ≥ y−.

Fig. 6. Monotonic structures of the optimal composite policies with NM = 1
and NM = 3 (SH = 3 and γU = 12.5 dB). (a) NM = 1 and ΩS = 0.1 cm2;
(b) NM = 3 and ΩS = 0.4 cm2.

is satisfied at each solar state, ∀α ∈ B, ∀n+ ≥ n− ∈ B, and
∀w+ ≥ w− ∈ W .

Proof: From (13), let us first define βw(α|j, n) =∑NB−1
k=α Pw(SB = k|(SH , SB) = (j, n)), for α ∈ B. By apply-

ing Theorem 6.11.6 in [33], V a
i+1(z, x, y) is superadditive, if the

following three conditions hold: (a) Ra(z, x, y) is superadditive
on A× B; (b) V a

i (z, x, y) is nondecreasing in y ∈ B, ∀ a ∈
A; (c) βw(α|j, n) is superadditive on W ×B, ∀α ∈ B. It is
straightforward to show that the condition (a) holds because the
reward is independent of the battery state. Also, the condition
(b) can be assured by extending the proof in Lemma 1 to the
case of multiple power and modulation actions. From (13) and
the condition (c), the sufficient condition (50) is then obtained
after some manipulations. �

The theorem implicitly indicates that the optimal composite
policy tends to be monotonic when the probabilities of har-
vesting higher numbers of energy quanta are large enough to
allow for a quick battery recovery. For example, a monotonic
policy is given, if P (Q = i|SH = j) increases with the number
of energy quanta i. Unlike the on-off policy, where the optimal
threshold structure is always promised, the existence of such
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a monotonic structure in the composite policy indeed depends
on various system parameters, although a sufficient condition
regarding the energy harvesting is presented here. Fortunately,
this elegant structure often appears according to our experimen-
tal observations.

VI. SIMULATION RESULTS

Simulation results are presented in this section to evaluate the
performance of the proposed data-driven transmission policies.
In the system model, the numbers of solar states, battery states,
channel states are set as four, twelve, and six, respectively. The
data record of the irradiance collected by the solar site in EC in
June from 2008 to 2012 is adopted throughout the simulation
[25]. A four-state solar power harvesting model is trained using
the data in the first three years, where the underlying parameters
are given in Table II. The irradiance data of the subsequent
two years are then applied for performance evaluation. Sensor
communications usually require a bandwidth of a few hundreds
of kHz to support a data rate of hundreds of kbps. In the system
configuration, the symbol rate RS is operated at 100 kHz, and a
medium-sized packet of LS = 103 data symbols is used. In
other words, the packet duration TP is given by 0.01 sec.
Depending on sensor network applications, the transmission
power typically ranges on the order of several tens of mW.
Here, we set the basic transmission power level as PU = 40×
103 μW. The modulation types could be QPSK, 8 PSK and
16 QAM. These three modulation types are considered as
potential candidates for the composite policy, while only one
modulation type is preselected for the on-off policy. To avoid
frequent change of transmission actions, the policy manage-
ment period is set to five minutes, i.e., TL = 300 sec. In the
value iteration algorithm, the discount factor λ and the stopping
criterion ε are selected as 0.99 and 10−6, respectively. Since
the size of sensor nodes is small, the solar panel area is set
as ΩS = 1 cm2. From [2], the energy conversion efficiency
is assumed to be ϑ = 20%. We assume that the battery state
is randomly initialized. The channel quantization levels are
randomly selected as Γ1 = {0, 0.3, 0.6, 1.0, 2.0, 3.0,∞}, and
the optimization of quantization levels is beyond the scope of
this paper. By assuming that sensor nodes are located in a rich-
scattering environment, Jakes’ model is applied to generate
channel gains under a deterministic relative mobility between
the transmitter and the receiver [34]. It is assumed that nodes
have low mobility, and for a normalized Doppler frequency
fD = 0.05, the channel coherence time, TL

2fD
, is around one

hour. The above parameters are used as default settings, except
as otherwise stated. Finally, since the average transmission
power for a sensor is unknown and depends on real solar irradi-
ance, a normalized average SNR γC is defined with respect to
the transmission power of 103 μW throughout the simulation.

As a benchmark, two myopic policies are included for perfor-
mance comparisons. For these two policies, the actions are per-
formed without concern for the channel state and battery state
transition probabilities, and data packets are transmitted as long
as the battery storage is non-empty. The first policy (Myopic
Policy I) attempts to transmit data packets at the lowest trans-
mission power level, if the energy storage is positive. Regarding

Fig. 7. Expected net bit rate versus normalized SNR γC for different trans-
mission policies (ΩS = 1 cm2, and fD = 0.05).

with the second one (Myopic Policy II), the largest available
battery power is consumed for data transmission, if the bat-
tery state is non-zero. In addition, we compare the proposed
schemes with a deterministic energy harvesting scheme in
[19], called t-time fair rate assignment (t-TFR), which requires
perfect knowledge of the channel fading and energy harvesting
patterns for determining the optimal transmission power over
a short-term period t to maximize the reward function in (19).

Fig. 7 shows the expected net bit rates for the composite and
on-off transmission policies. The expected net bit rate of the on-
off policy is calculated according to (46), while that for the
composite policy can be analyzed in a similar way although the
accessible transmission actions appear to be more sophisticated.
The performance upper bound of the on-off policy in (47) is
also included for calibration purposes. For the on-off policy, it
is observed that the expected net bit rate is monotonically in-
creased with the operating SNRs, while the performance finally
becomes saturated at 0.6× 105 bits/sec, 0.9× 105 bits/sec and
1.2× 105 bits/sec for QPSK, 8 PSK and 16 QAM, respectively,
when γC is sufficiently high. A saturation effect is observed
because the BER becomes extremely small at high SNR regime
and the net bit rate is thus limited by the permissible modulation
schemes and the energy arrival rate. It is clear that the policy
with QPSK modulation exhibits a better bit rate, as compared
to 8 PSK and 16 QAM modulation when γC ≤ 2 dB. On
the contrary, it is advisable to employ high-level modulation
schemes, e.g., 8 PSK and 16 QAM, to achieve better perfor-
mance. This is because the adoption of high-level modulation
schemes generally requires larger SNRs to guarantee a low
packet error rate. As expected, the composite policy offers an
expected net bit rate better than the on-off policy because it
has more diversified actions, and the performance gap between
these two policies could be as large as 60× 103 bits/sec.
However, the on-off policy with a mixture of QPSK and
16 QAM modulation can still achieve a large fraction of bit
rate regions as available in the composite policy, and its simple
implementation makes it attractive for practical applications.
Besides, we demonstrate the exact performance for the on-off
policy with 8 PSK by applying numerical integration in (18).
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Fig. 8. Average net bit rate performances of the composite policy, Myopic
Policy I, Myopic Policy II and t-TFR with the real data record of irradiance
in June from 2011 to 2012, measured by a solar site in EC (ΩS = 1 cm2, and
fD = 0.05).

There is a minor gap between the exact performance without
applying the lower bound and the expected net bit rate when
γC is small, whereas the curves become identical at high SNRs.
Similar results can be achieved for the proposed policies with
other modulation types, although they are not shown in this
figure.

Fig. 8 shows the average net bit rates of the proposed com-
posite policy and other benchmark schemes, in which the real
data record in EC from 2011 and 2012 is utilized to assess the
performance. We can observe from this figure that Myopic Pol-
icy I with QPSK is superior to Myopic Policy II with 16 QAM
in terms of the average net bit rates for low SNR regions,
whereas the reverse trend is found for high SNR regions. This is
because aggressive energy expenditure merits better bit rate per-
formance when the operating SNR is high, and conservative use
of energy is more preferable at low SNRs. Actually, the average
net bit rate of Myopic Policy II with 16 QAM gets saturated
at 1.2× 105 bits/sec when γC ≥ 46 dB, although this effect is
not depicted. Moreover, the composite transmission policy is
capable of achieving much better average net bit rates than these
two myopic policies under the same modulation type. We can
also find that the average net bit rate of the composite policy
is superior to that of the t-TFR scheme, even if the energy
harvesting and channel variation patterns are assumed to be
perfectly predicted for one or two hours. Though the t-TFR
scheme could attain better performance with an increased pre-
diction interval, it suffers from the problems of larger prediction
error and higher computational complexity for a long prediction
interval. Finally, the composite policy in conjunction with the
three modulation types has much better performance than that
with a single modulation type.

The average net bit rate of the on-off transmission policy is
shown in Fig. 9 for different modulation types. Moreover, the
performances of the Myopic Policy I and the Two Hour-TFR
schemes, in conjunction with various modulation types, are
included in this figure. To make a fair comparison, the t-TFR
scheme also adopts on-off power actions for the short-term

Fig. 9. Average net bit rate performances of the on-off and other benchmark
policies (ΩS = 1 cm2, and fD = 0.05).

Fig. 10. Average net bit rate of the composite policy versus number of battery
states under different Doppler frequencies and solar panel areas.

scheduling of energy expenditure. It can be seen that the
maximum spectrum efficiency provided by our proposed on-
off policy is approximately given by 0.6 bits/sec/Hz and
1.2 bits/sec/Hz for QPSK and 16 QAM, respectively. With a
fixed modulation scheme, the on-off policy offers significant
performance gains over the myopic policy by taking advantage
of channel fluctuation gains. A closer look at this figure reveals
that the performance gap between these two policies becomes
wider as the modulation level increases. When compared with
the Two Hour-TFR scheme, the on-off policy can still achieve
better average net bit rates, no matter which modulation type
is used.

Fig. 10 illustrates the average net bit rate of the composite
policy as a function of the number of battery states. To clearly
understand the relationship between the Doppler frequency and
the battery storage capacity, the normalized Doppler frequency,
fD, is chosen as 0.005 and 0.05. We can observe that the
average net bit rate can be dramatically enhanced by enlarging
the energy buffer size to store more energy quanta, especially
when the operating SNR is low. For instance, the performance
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Fig. 11. Average net bit rate of the on-off policy for other data records
in different locations/months (NB = 12, ΩS = 4 cm2, fD = 0.05, and
16 QAM).

with NB = 16 at γC = 0 dB, ΩS = 8 cm2 and fD = 0.05 is
about 2.5× 105 bits/sec, probably 1.6 times that being achieved
by the same policy with NB = 2. Also, the bit rate is increased
with the increase of the solar panel area due to a higher energy
harvesting rate. The sensor node additionally benefits from
channel fluctuation gains if the energy spending is carefully
governed to respond to the change in channel conditions, and
the bit rate becomes better as fD increases.

Fig. 11 shows the average net bit rate for the data records,
measured by two solar sites in SS (in October from 1998 to
2002) and Mississippi Valley State University (MV) (in March
from 2000 to 2004) [25]. Another channel quantization Γ2=
{0, 1.0, 3.0,∞} (⊆ Γ1) with NC = 3 is applied here. With the
same quantization set, the proposed scheme can still outperform
the One/Two Hour-TFR schemes in different locations and
months. When comparing the results from different quanti-
zation sets, one can see that the performance can be further
improved by partitioning the channel into a larger number of
channel states.

VII. CONCLUSION

In this paper, we have studied the problem of maximizing
long-term net bit rates in sensor communication that solely
relies on solar energy for data transmission. A node-specific
energy harvesting model was developed to classify the harvest-
ing conditions into several solar states with different energy
quantum arrivals. Unlike previous works, which were not con-
cerned with the real-world energy harvesting capability, a data-
driven MDP framework was formulated to obtain the optimal
transmission parameters from a set of power and modulation
actions in response to the dynamics of channel fading and
battery storage. Since different nodes may possess different
energy harvesting capabilities, the parameters of the underlying
energy harvesting process were completely determined by the
solar irradiance observed at a sensor node. In practice, the
exact solar state at each time epoch is unavailable, and a mixed
strategy was proposed to associate the adaptive transmission
parameters with the beliefs of the solar states. The validity of

the proposed data-driven approach was rigorously justified by
the real data of solar irradiance. We also analyzed the properties
and the net bit rates of the optimal on-off transmission policy,
and it was proved that this policy has an inherent threshold
structure in the direction along the battery states. Through
extensive computer simulations, the proposed data-driven ap-
proach was shown to achieve significant gains with respect to
other radical approaches, while it did not require non-causal
knowledge of energy harvesting and channel fading patterns.
As a final remark, this work can be served as an important step
for investigating other upper-layer issues in energy harvesting
sensor networks, e.g., wake-up and sleep cycles and routing
protocols, that involve more sophisticated settings with prac-
tical considerations in the future.

APPENDIX A
EFFECT OF fD AND NB ON THE PERFORMANCE

We explain the idea of how the parameters fD and NB

affect the performance by considering a simple model. As-
sume that NC = 2 and NH = 1, and the solar energy pe-
riodically arrives at a constant rate fE , i.e., the sensor can
harvest one energy quantum every TE(∝ 1/fE) (time unit: TL).
Moreover, the channel alternates between the two states every
TC(∝ 1/fD) time units. It is undoubted that the more the
energy is harvested, the better the performance is; however, a
capacity-limited battery will cause an energy overflow problem
and reduce the chance to harvest energy. Thus, when the sensor
knows the capacity of its battery is going to be saturated, it
should at least spend one energy quantum for data transmission,
even if the current channel is bad. Actually, there is a tradeoff
for the sensor between the risk of energy overflow and the
chance of transition to good channel states. Since the sensor
will take the opportunity to transmit data in the good channel
as long as the battery is nonempty, we focus on the situation
in the bad channel as follows. If the current battery state is y
and (NB − 1− y)TE < TC , the sensor is impelled to spend
the energy in the bad channel, even though the obtained bit
rate is low. On the other hand, if (NB − 1− y)TE ≥ TC ,
the sensor is expected to experience several times of good
channels during (NB − 1− y)TE , and thus, the harvested en-
ergy is spent more efficiently to achieve a higher bit rate as
NB and fD increase.
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