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Toward a Unified Framework for
Modeling and Analysis of Diversity in

Joint Source-Channel Coding
Andres Kwasinski, Member, IEEE, and K. J. Ray Liu, Fellow, IEEE

Abstract— The study of Joint Source-Channel Coding (JSCC)
systems faces one major challenge in obtaining an analytical
expression for the function that links end-to-end distortion with
channel signal-to-noise ratio, the D-SNR curve. In this paper, for
certain multimedia systems using practical source and channel
codes in a JSCC bit rate allocation design, the D-SNR curve
is shown to be well approximated by a set of carefully selected
points where the relative contribution of channel errors to end-to-
end distortion is small. This approach has the potential advantage
that it could be applied to represent performance of many
practical systems using JSCC bit rate allocation for which it
is shown that the D-SNR function is approximately linear in
log-log scales. A unified framework for the modeling, analysis
and performance measurement of these systems is proposed by
considering a view of diversity more general than its usual
interpretation. This view extends that of diversity to include
redundant information so coding and diversity gain are still
used to characterize performance. Furthermore, the proposed
approach is applied to study issues arising from using practical
source and channel codes, including the effects on performance of
channel codes of different strength or source codes with different
compression efficiency.

Index Terms— Adaptive coding, source coding, channel coding.

I. INTRODUCTION

ONE of the most challenging problems in wireless com-
munications is the need to overcome channel fading.

One solution is the use of diversity, which improves the
link quality by transmitting multiple copies of the signal in
a way that each is independently affected by the channel.
Performance is usually characterized in terms of the error rate
at high signal-to-noise ratios (SNRs), where the error rate-
SNR function exhibits a linear behavior in log-log scales. Con-
sequently, performance is represented using two magnitudes:
the “coding gain” and the “diversity gain” [1]. Diversity is
not exclusive to implementations at the physical layer. As
studied in [2], diversity can also be formed when multiple
channels are provided to the application layer, where they
are exploited through multiple description source codecs or
joint source-channel coding (JSCC). In this case, performance
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is measured through the source distortion and diversity is
quantified through a magnitude akin to the diversity gain
named “distortion exponent”. In this sense, diversity shows an
overlap with the concept of redundancy because it is partially
generated as redundancy from the coding processes.

In this paper, we approach the concept of diversity with
a more general view than the one limited to the presence of
multiple channels or fading. In essence, the concept of diver-
sity, as that of transmitting multiple copies of a message, can
be extended to include the notion of redundant information.
In fact, error correcting codes exhibit an inherent diversity
since (maybe partial) copies of the message are coded as parity
data of a channel code. Also, residual redundancy after source
encoding can be seen as diversity in the form of useful partial
information. Then, since redundancy can be seen as a form
of diversity, we argue that they can both be explored in a
unified way. In this paper we explore this concept for certain
classes of real-time multimedia systems that use JSCC bit rate
allocation, which is the distribution of a fixed transmit bit rate
budget between source and channel coding [3], [4].

Designs based on JSCC had been the subject of much
research since they can improve performance when Shannon’s
separation principle [5], [6] does not hold; i.e., in cases, such
as transmission of real-time multimedia, where the assump-
tions of arbitrary large source code dimension, arbitrary long
channel code blocks, and infinite complexity and delay, do not
hold. There are many JSCC techniques, encompassing digital,
analog and hybrid digital-analog (HDA) implementations.
Among the not all-digital techniques, many are built on the
idea of designing mappings from the source space into the
channel space. While for the analog JSCC techniques the map-
ping is direct [7], [8] or through processing (iterations) over
a non-linear state space [9], in HDA techniques there may be
a quantization step that is applied to the source samples [10],
[11], [12], [13]. Another possible HDA technique sends the
coded source over two streams: a quantized and a an analog
stream [14], [15], [16], [17]. Many of the digital techniques
are reviewed in [3], [4], where they are separated between
integrated source-channel coders [18] and joint designs of
tandem source and channel codecs. This later category is
further divided in channel optimized quantization [19], index
assignment [20], unequal error protection techniques [21] and
joint bit rate allocation. Our present work is focused on this
later technique. Due to the large body of research in this area
we highlight only the representative works [22] for speech
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Fig. 1. Block diagram of the system under study

transmission in mobile channels, [23] for image transmission
and [24] for video communication.

One of the problems when studying JSCC bit rate allocation
is that it is not possible to obtain closed form solutions for the
D-SNR curves [25], which are those functions relating end-
to-end distortion with channel SNR. This is because generally
the design is based on iterative methods [26], [27], [28], [29]
or on exhaustive search over reduced spaces [30]. A simple
solution is to assume that the source is encoded optimally and
transmitted at a rate equal to the channel capacity. This results
in the OPTA (optimum performance theoretically attainable)
curve [31]. In [32], [33], performance bounds are developed
by resorting to high and low SNR approximations, error
exponents, asymptotically large source code dimension, and
infinite complexity and delay. These works are the first ones to
suggest the D-SNR relation of the type discussed in the present
work but, by their own nature, they cannot answer questions
arising in more practical designs such as if performance
can still be characterized in the same way, and how it will
change depending on the source and channel codes being used.
Still following an information theoretic approach based on
outage capacity formulation, [2] studied the concept of Source-
Channel Diversity in its traditional form, i.e. considering
parallel channels and behavior at arbitrary large SNR. In
an effort to model the D-SNR curve of video signals with
practical channel codes, in [34] a model is selected from
several candidates by choosing the best fit to measured data.
Interestingly, the chosen model is the only one that shows
similarity with the one we will show to be correct for a certain
class of practical JSCC systems.

Our main contribution is the modeling of JSCC bit rate
allocation D-SNR curves for practical source and channel
codes. We accurately approximate the D-SNR curve by using
a set of carefully selected points, which are those where the
relative contribution of channel errors to end-to-end distortion
is fixed and small. We show through this that end-to-end
distortion, D, and channel SNR, γ, are related approximately
through a function D ≈ (Gcγ)−10m. This is the same relation
between error rate and arbitrary large SNR as in systems
with channel fading. Recognizing this and resorting to the
expanded view of diversity, we propose a unified framework
for the modeling, analysis and performance measurement of
multimedia systems that uses two magnitudes: the coding
gain Gc (the translation along the axis of SNR in dBs) and
diversity gain m (the slope and, physically, the amount of
redundancy), which we choose instead of distortion exponent
so as to provide a unified view.

The approach followed to characterize the D-SNR curve
will be demonstrated to be simple and accurate in representing
the behavior of some important practical source and channel
codes without resorting to information-theoretic or asymptotic
analysis. This considers the constraints of practical real-time

multimedia communications, where delay limits the use of
ARQ techniques and channel errors have to be constrained
for the error concealment to be effective. This constitutes a
new viewpoint for the study of these systems which readily
provides important design information such as the perfor-
mance difference with ideal information-theoretical bounds,
quantitative results of how performance changes when using
stronger channel codes or less efficient source codecs and the
difference in performance behavior between using block and
convolutional codes. Finally, to illustrate how the proposed
approach can be applied in practice, we study a CDMA
network carrying speech calls encoded with the GSM-AMR
codec and distortion measured with the perceptually-based
PESQ standard.

This paper is organized as follows: In Section II, we
describe the problem of JSCC bit rate allocation. Section III
characterizes the D-SNR curves for a certain class of source-
channel coding schemes, and discusses some practical consid-
erations. Section IV applies the proposed model to assess the
impact of the source codec and channel codecs on performance
and to characterize a practical speech communication system
over CDMA. Finally, Section V summarizes conclusions and
contributions.

II. THE PROBLEM OF JOINT SOURCE-CHANNEL BIT RATE

ALLOCATION

Consider a simplified communication system as in Figure
1. We assume that the system transmits a real time (subject to
strict delay constraint) source for which end-to-end distortion
is the relevant performance measure. Unless stated otherwise,
distortion will be measured using the mean squared error. In
each transmission period the system inputs N memoryless
source samples. These samples are successively source en-
coded, channel encoded, transmitted over an additive white
Gaussian (AWGN) channel with signal-to-noise ratio (SNR)
γ, and decoded at the receiver.

The source samples are first encoded in a single description
source encoder at a rate of x bits per source sample. The
distortion-rate (D-R) function measures the codec perfor-
mance. For well-designed codecs, the D-R function is convex
and decreasing, and can be frequently considered to be of the
form

DS(x) = µ 2−2νx, (1)

since it can approximate or bound a wide range of practical
systems such as an MPEG-like video codec [35], [36], a
CELP-type speech codec [37], or when the high rate approxi-
mation holds [2]. The output of the source encoder, which we
call a “source block”, is processed in a channel encoder at a
rate r. The codewords at the output of the channel encoder
are organized into a frame and transmitted at a fixed transmit
bit rate W bits/frame using BPSK modulation.
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The design goal is, given the channel SNR, to jointly
set source and channel coding rates so as to minimize the
end-to-end distortion while not exceeding the total transmit
bit rate. The end-to-end distortion is formed by the source
encoder distortion (which depends on the source encoding
rate) and the channel-induced distortion (which depends on
the channel SNR, error protection scheme, channel coding rate
and error concealment operations). Typically both the source
and the channel coding rates are chosen from a finite set.
Each combination of a source and a channel coding rate is an
operating mode, which we denote as Ωi. We will denote the
set of all operating modes by Ω = {Ωi}. Source and channel
coding rate are related to the transmit bit rate through the
relation W ≥ Nx/r. Based on this, the problem of JSCC bit
rate allocation can be stated as

min
Ω

{
DF PΩi

(γ) + DS(Ωi)
(
1 − PΩi

(γ)
)}

, (2)

where DS(Ωi) and PΩi
(γ) are, respectively, the source codec

D-R function and the frame error probability for the operating
mode Ωi, and DF is the distortion when the frame is received
with errors and the lost data has to be replaced through error
concealment at the source decoder. The solution to (2) is the
operating mode that yields the minimum end-to-end distortion
for a given channel SNR. When considering a range of channel
SNRs, the solutions of (2) form a minimum distortion-channel
SNR function, which we call the “D-SNR curve”. Most
available operating modes do not form part of the solutions
of (2). To be part of the solution that minimizes end-to-end
distortion, the channel coding rate for a given source encoding
rate has to be chosen as the smallest possible one such that the
relation W ≥ Nx/r is as close as possible to an equality. In
practice, some bit padding of the frame is necessary because
the discrete number of choices for source and channel coding
rate prevent achieving an exact equality in W ≥ Nx/r. Good
and efficient designs minimize the amount of padding. In fact,
operating modes that use inefficient amounts of bit padding
tend to form a small part of the D-SNR curve, if any, because
they are quickly outperformed by more efficient modes. In
order to simplify the presentation, we will use these facts to
ignore frame bit-padding and approximate W ≈ Nx/r, i.e.
Ω can be described by the enumeration of any one of the
available source or channel coding rates.

III. SOURCE-CHANNEL DIVERSITY IN JSCC BIT RATE

ALLOCATION

Let dΩi
(γ) = DF PΩi

(γ)+DS(Ωi)
(
1−PΩi

(γ)
)
, as per (2),

be the D-SNR characteristic of a single operating mode. We
call dΩi

(γ) the single-mode D-SNR curve. Figure 2 (which
was created using a family of Rate Compatible Punctured
Convolutional -RCPC- codes [38], [39] and source coding
D-R function as in (1) with µ = ν = 1) shows the single-
mode D-SNR curves that are active in the solution of the
JSCC bit rate allocation problem, as well the envelope formed
by these curves, which is the D-SNR curve. The comparison
of two single-mode D-SNR curves shows the basic tradeoff
associated with JSCC bit rate allocation. Let’s consider that the
indexes of the operating modes are sorted in increasing source
encoding rate order; i.e. i > j (from Ωi and Ωj) if xi > xj .
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Fig. 2. Single mode D-SNR curves and the solution to the problem of joint
source-channel bit rate allocation.

Following W ≈ Nx/r, i > j also means that ri > rj . For
each single-mode D-SNR curve the distortion only increases
due to channel errors because source and channel coding are
fixed. Then, the single-mode D-SNR curve is practically a
constant equal to DS(Ωi) for as long as the SNR is high
enough for the channel code to correct most of channel errors.
Clearly, over the section where two single-mode D-SNR curve
are approximately constant, the one with a larger source
encoding rate will present lower distortion because DS(Ωj) >
DS(Ωi) for i > j. Let γ∗

i be the SNR value at which the
distortion of the mode-Ωi single-mode D-SNR curve starts
to noticeably increase. For well-behaved channel codes and
i > j, we have that γ∗

i > γ∗
j because ri > rj , i.e. channel

errors start to become significant at a higher SNR for weaker
channel codes. The overall effect is that for two curves dΩi

(γ)
and dΩi+1(γ), we have dΩi+1(γ) < dΩi

(γ) for γ > γ∗
i+1 and

dΩi+1(γ) > dΩi
(γ) for γ < γ∗

i . Operating modes for which
these conditions do not hold are irrelevant because either one
or both are not active in the solution to (2) or they are over
a negligible range of SNRs. The same argument carries on
to pathological configurations of the channel codec that fails
to realize the best achievable performance (for example if a
family of RCPC codes does not use the best puncturing tables).
As Figure 2 illustrates, this means that the overall D-SNR
curve is the sequential interlacing of sections of single-mode
D-SNR curves. These sections are the portion of single-mode
D-SNR curves where channel-induced distortion is such that
DS(Ωi+1) ≤ dΩi+1(γ) ≤ DS(Ωi), approximately. Note that
these observations follow from the mechanics associated with
problem (2), they can be found in applications of this problem
with setups very different from the one we are considering
[22], [23], [34]. Also note in Figure 2, that at very low SNR
(and large distortion) there is an operating region where the
smallest of the channel codes has already been chosen and
there is no more use of JSCC bit rate allocation. Performance
in this region follows that of a system with fixed channel
coding, thus it is of no interest to us.

A challenge in studying the D-SNR curves resulting from
JSCC bit rate allocation using practical source and channel
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coders is that the expressions that could be derived do not
lead to a closed form solution to (2). This is true even when
resorting to approximations using error exponents for channel
codes [40], [41]. Consequently, we study the D-SNR curve
through an approximate curve determined by a subset of its
points. Each of these points is selected from a different single-
mode D-SNR curve. The point selected from some single-
mode D-SNR curve i + 1, must belong to the section that is
part of the solution to (2), i.e. it must follow DS(Ωi+1) ≤
dΩi+1(γ) ≤ DS(Ωi), approximately. This means that a point
associated to a small relative contribution of channel errors
to the end-to-end distortion is likely to belong to the overall
D-SNR curve. Points with a relative contribution of channel
errors that is practically negligible or is large may or may not
belong to the D-SNR curve and, thus, are not good choices to
form the approximation. Then, for each single-mode D-SNR
curve, the point chosen to represent the D-SNR curve is such
that dΩi

(γ) = (1 + ∆)DS(Ωi), ∀Ωi, where ∆ is an small
number that accounts for the relative contribution of channel
errors. Formally, all points such that

D(γ) = (1 + ∆)DS(Ωi)

= DF PΩi
(γ) + DS(Ωi)

(
1 − PΩi

(γ)
)
, (3)

form the overall D-SNR curve. Equivalently, from (3), the D-
SNR curve is formed by those points where the probability of
post-channel decoding errors is

PΩi
(γ) =

∆
DF

DS(Ωi)
− 1

. (4)

The advantage offered by (4) is that it simplifies the D-
SNR curve characterization problem by translating it into a
problem essentially in error control coding. Furthermore, in
solving this problem we would also be able to use the fact
that channel-induced errors are relatively few, and thus apply
approximations that are accurate in the low BER regime.
Using this approach, we will show next that, in the region
of JSCC bit rate allocation, the D-SNR curve can be closely
approximated by

D(γ) ≈ (Gcγ)−10m
. (5)

This expression has the appeal of being of the same form as
the error rate-SNR function commonly found in the study of
communication systems [1]. The main differences are that we
consider distortion instead of average error probability, there
is no assumption of asymptotically large SNR, and that (5)
will model performance of systems with practical components
instead of being a bound. Following this similarity, we can
draw the analogy that Gc is the coding gain and m is the
diversity gain. The coding gain is the SNR value for which
the distortion reaches a reference value of 1. The diversity
gain is the slope (i.e. rate of change) of the D-SNR curve
when plotted in log-log scales, and it extends the concept of
diversity beyond the one limited to the presence of multiple
channels or fading. Note that the factor of 10 multiplying m
is used so that m is the slope when SNR is measured in dBs.
In what follows, the subscript dB will denote any magnitude
expressed in decibels, e.g. γdB = 10 log(γ).

The derivation of (5) involves finding a relation between
distortion and channel SNR. The first step in doing so is the
approximation of the D-SNR curve by choosing the subset of
points that leads to (4). As this translates the problem into
one essentially in error control coding, it becomes possible to
apply many of the techniques from error control performance
analysis. After recognizing this, the next step in deriving (5) is
to write the expression that relates the frame error probability
with channel SNR. This relation is normally expressed using
some parameters that specify the error correcting capability
of the channel code (for example, the minimum distance).
Then, the next step is to translate the relation between frame
error probability and SNR into one between source encoding
rate and SNR. This is achieved by using (4), following by
applying an expression that relates the parameters that specify
the error correcting capability with the channel coding rate.
The expression that is applied here, which would likely be
drawn from the error control performance analysis theory,
is normally a function that implicitly converts the discrete
set of channel rates into a continuous one (this has the
extra advantage of minimizing the impact of neglecting bit
padding when choosing the active operating modes). Next,
the channel coding rates are converted into source encoding
rate by applying the definitions of the operating modes and,
finally, the relation between source encoding rate and SNR
is translated into a function relating SNR with distortion by
using (2). Due to the nature of this derivation, the proof of (5)
will be dependent on the error performance characterization
of the family of channel codes in use. As a representative
illustration, we will consider systems using RCPC codes [38],
[39] and Reed-Solomon block codes [42] because they can
represent a large class of practical designs. We conjecture that
our results could also be applicable to other schemes using
channel codes not in the class represented by RCPC and RS
codes but with an error performance characterization that still
show many similarities, yet a proof of this is the subject of
future works.

A. RCPC Channel Codes Case

Let channel coding be implemented using a family of RCPC
codes. In this case, we can approximate the probability of a
source block with post-channel decoding errors as, [43],

P (γ) ≈ 1 −
(

1 −
∞∑

d=df

a(d)Pe(d|γ)
)Nx

, (6)

where df is the free distance of the code and a(d) is the
number of errors events with Hamming weight d and prob-
ability of occurrence Pe(d|γ). In the special case of BPSK
modulation, Pe(d|γ) = .5 erfc

√
dγ [38], where erfc(γ) is

the complementary error function erfc(γ) = 2/π
∫ ∞

γ
e−u2

du.
Other popular modulation schemes can be represented by a
similar form, i.e., a weighted complementary error function
with the square root of the SNR as a factor in the argument. As
a representative example, we will restrict ourselves to BPSK
in what follows. Equation (6) follows from a bound that is
tight at low BER operation. In this regime it can be assumed
that most errors events are those with d = df , in which case
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(6) can be written as

P (γ) ≈ 1 −
(
1 − a(df )

2
erfc

√
dfγ

)Nx

. (7)

As detailed in Appendix A, it follows from (7) that γdB(x) ≈
A1x + B1, or, equivalently, x ≈ A2γdB + B2. Since D(γ) =
(1 + ∆)DS = µ(1 + ∆)2−2νx, we have

D(γ) = µ(1 + ∆)10−ν(log 4)x

≈ µ(1 + ∆)10−ν(log 4)
(
A2γdB+B2

)
= µ(1 + ∆)10−νB2(log 4)γ−10νA2 log 4.

This is a relation of the form D(γ) ≈ (Gcγ)−10m with,
from (28) in Appendix A,

m =
ν log(4)

A1
=

ν

10

(
cN

W ln(4)
+

ν

Ψ

)−1

, (8)

Gc =
[
ν(1 + ∆)

]−1/(10m)10−B1/10

=
κ

Ψ
[
ν(1 + ∆)

]1/(10m)

(DS(x̄)
DF

)1/Ψ

, (9)

where Ψ = ln
(

āNDF x̄
2∆DS(x̄)

)
, x̄ is the average source encoding

rate, ā is the average of a(d) and c and κ are parameters
related to df of the family of RCPC codes being used. Also,
we have used the fact that when no source encoded bits are
available at the decoder we have DS(0) = µ ≡ DF . Note that,
per (8) and (9), the D-SNR performance is now expressed as
a function of parameters of the system (such as W and N ),
the source encoding process (such as ν and µ), the channel
encoding process (such as κ and ā) and the parameter from
the approximating process ∆.

B. Reed-Solomon (RS) Channel Code Case

Let the channel coding be implemented using a family of
RS codes operating on b-bit symbols and with parameters
(n, k), i.e. the encoder operates at a rate r = k/n, encoding
k symbols into an n-symbol codeword. The channel code rate
is controlled through the choice of k. Let L = W

nb denote the
number of codewords in the frame at the output of the channel
encoder. The probability of having a source block with post-
channel decoding errors is P (γ) = 1−(

1−q(γ)
)L

, where q(γ)
is the probability of channel decoder failure. Assuming the use
of a bounded distance decoder and denoting l = �n−k

2 �, we
have q(γ) approximated as [42],

q(γ) = P
[
codeword symbols in error > l

]
=

n∑
j=l+1

(
n

j

)
P j

s (1 − Ps)n−j , (10)

where Ps is the probability of a symbol error. For b-bits
symbols, Ps(γ) = 1 − (

1 − Pb(γ)
)b

, where Pb is the bit
error probability, which depends on the modulation and the
channel conditions. Considering that Ps and q(γ) are small
numbers because we are assuming operation in the low BER
regime, we can use a first order Taylor’s series to approximate
Ps(γ) ≈ bPb(γ), 1 − (

1 − q(γ)
)L ≈ Lq and assume that the

TABLE I

VALUES OF GcdB AND m FROM FIGURE 3

Curve GcdB m

D-SNR curve, RS code, b=5 0.05 0.49
Approximate solution, RS code, b=5 0.12 0.47
D-SNR curve, RS code, b=4 -0.38 0.43
Approximate solution, RS code, b=4 -0.46 0.43
D-SNR curve, RCPC code, M=8 7.29 0.24
Approximate solution, RCPC code, M=8 7.35 0.25
D-SNR curve, RCPC code, M=4 5.71 0.24
Approximate solution, RCPC code, M=4 5.66 0.23

first term in (10) accounts for most of q’s magnitude, which
means that

P (γ) ≈ L

(
n

l + 1

)
P l+1

s (1 − Ps)n−l−1. (11)

Appendix B shows that from this relation we can write γdB ≈
A1x + B1. Following the same steps as for RCPC channel
codes, we reach the conclusion that D(γ) ≈ (Gcγ)−10m with,

m =
W log(4)
t1(0.5)N

, Gc = (1 + ∆)−1/(10m) 10t1(0.5)/20

ln(f(0.5))
, (12)

where f(r) and t1(r) are from (37) and (38) in Appendix
B. Finally, note again that the D-SNR performance is now
expressed as a function of parameters of the system, the
source encoding process, the channel encoding process and
the parameter from the approximating process ∆.

C. Illustration

We illustrate now how the proposed framework accurately
characterizes the D-SNR curve. For illustrative purposes we
set µ = ν = 1, which corresponds to assuming that the input
signal samples follow a standard Gaussian distribution and that
long block source codes are used. For this source model, and
assuming that the error concealment replaces each lost sample
by its expected value, DF = 1 because the mean squared error
equals the variance of each sample.

It will be useful to realize that, since we have observed
a linear relation in a log-log scale between D and γ, it is
possible to obtained accurate values for m and GcdB

from
the knowledge of only two points of the D-SNR curve. Let
(D1, γdB1) and (D2, γdB2) be the coordinates of these points.
Then,

m =
log

(
D1/D2

)
γdB2 − γdB1

, (13)

GcdB
= −

(
γdB1 +

log D1

m

)
(14)

The coordinates of these points follow from considering that
they are the solution of DF PΩi

(γ) + DS(Ωi)
(
1−PΩi

(γ)
) ≈

(1 + ∆)DS(Ωi). Therefore, denoting the operating modes
associated with each of the two points as Ω1 and Ω2, the
point coordinates in (13) and (14) can be approximated as

Di =
(
1 + ∆

)
DS(Ωi),

γdBi = 10 log
[
P−1

Ωi

(
∆

DF /DS(Ωi)−1

)]
, i = 1, 2 (15)

We now consider systems using RS and RCPC codes.



KWASINSKI and LIU: TOWARD A UNIFIED FRAMEWORK FOR MODELING AND ANALYSIS OF DIVERSITY IN JOINT SOURCE-CHANNEL CODING 95

−8 −6 −4 −2 0 2 4 6 8
10

−3

10
−2

10
−1

10
0

SNR, γ, [dB]

En
d−

to
−

en
d 

di
st

or
tio

n,
 D

−3 −2 −1 0 1 2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

SNR, γ, [dB]

D−SNR curve, M=4

D(γ)=(Gc  γ)−10m, M=4

D−SNR curve, M=8

D(γ)=(Gc  γ)−10m, M=8

D−SNR curve, b=5

D(γ)=(Gc  γ)−10m, b=5

D−SNR curve, b=4

D(γ)=(Gc  γ)−10m, b=4

Fig. 3. Application of the proposed framework to systems with different RS
(top) and RCPC (bottom) codes.

Figure 3 (top) shows the D-SNR curve, and the corresponding
characterizations (5), for two systems using b = 4 and b = 5
RS codes. For the D-SNR characterization curves, the points
(D1, γdB1) and (D2, γdB2) were found by combining (11)
into (15) and solving numerically for γ. We set N = 150
samples, W = 950 bits, and, for reasons that will be explained
in the next section, ∆ = 0.1. We choose single-mode D-
SNR curves with channel coding rate approximately r = 1/2
and r = 2/3. Table I shows GcdB

and m obtained for both
curves. The results show an overall good representation of
these parameters and the D-SNR curve. Keeping the same
setup as with RS codes, we considered RCPC codes with two
families: a memory M = 8, [39], and a memory M = 4, [38],
family. Both families are based on a mother code with rate 1/4
and puncturing period 8. Figure 3 (bottom) shows the curves
obtained using the proposed approach and the D-SNR curves
obtained from Monte-Carlo simulation of each single-mode D-
SNR curve. The points (D1, γdB1) and (D2, γdB2) were found
by combining (22), from Appendix A, into (15). The D-SNR
curves are not as smooth as those for RS codes because the
possible channel coding rates in a family of RCPC codes are
more concentrated at lower rates. Also, since the complexity
of the Viterbi algorithm grows exponentially with the memory
of the code, the proposed approach has the key advantage
of providing a method that does not requires lengthy Monte-
Carlo simulations. Table I shows GcdB

and m obtained from
Figure 3 (bottom). The results again show an overall good
representation of these parameters and the D-SNR curve.

D. Choice of ∆ and Its Influence on Results

Since the above results depend on the value chosen for ∆,
it is important to study how this choice affects GcdB

and m.
Thus, we calculate the relative change in GcdB

and m as a
function of a change in ∆, denoted by δ. Denoting these results
as S∆

G and S∆
m, respectively, they equal

S∆
m

∆=
(

m(∆+δ)−m(∆)
δ

)(
∆

m(∆)

)
,

S∆
G

∆=
(

GcdB
(∆+δ)−GcdB

(∆)

δ

)(
∆

GcdB
(∆)

)
. (16)

TABLE II

RELATIVE DEVIATION OF GcdB AND m TO 100% CHANGE IN ∆.

Setup SG Sm

RCPC, M=4 0.01 0.008
RCPC, M=8 0.01 0.0053

RS, b=4 .009 .12
RS, b=5 .006 .07

By examining Figure 2, it is clear that ∆ cannot be chosen
to be large or very small, since the corresponding distortion
points may not belong to the D-SNR curve. Then, we do the
study by choosing a reasonable value for ∆ (equal to 0.1)
and then calculating S∆

G and S∆
m for relatively large changes

in ∆. Table II shows the results for different setups when ∆ is
assumed to be changed by 100%. The results show that GcdB

and m will exhibit little relative deviation to changes in the
value of ∆, as long as it follows the above guidelines. Only
GcdB

when using RS codes show relative deviations larger
than 1%, albeit still much smaller than 100 %. This is because
the actual values GcdB

in these cases are close to 0, which also
means that the actual absolute change in GcdB

is only tenths
of dBs (this can be confirmed with the results in Table I). By
examining the formulation in Section III-C and Appendices
A and B, it can be seen that any change in δ will have a
small effect in changing γdB1 or γdB2 . In practical terms,
this means that by choosing ∆ we are considering points in
the “elbow” region of the single-mode D-SNR curves where
distortion starts to rapidly increase due to channel-induced
errors. In this section, relatively large changes in distortion
translates in small changes in γdB . This is one of the reasons
why the subset of points chosen to approximate the D-SNR
curve is effective. The other is that, as argued for early in this
Section, choosing ∆ so that we are considering points in the
“elbow” region of the single-mode D-SNR curves (where the
contribution of channel-induced distortion is small) ensures
that these points either belong to or are close to the D-SNR
curve. Therefore, our results here show that ∆ have to be
chosen to be a small number that corresponds to the “elbow”
region of the single-mode D-SNR curves. When doing so, the
results show little relative deviation to changes in the value of
∆. Because of these reasons we have chosen ∆ around 0.1.

IV. APPLICATIONS OF THE FRAMEWORK

A. Assessing Performance Improvement when Changing
Channel Code

The proposed framework is useful in modeling performance
effects due to changes in channel coding without the need
for lengthy simulations. The performance difference between
two schemes could be quantified through the ratio m1/m2

and the difference GcdB1 −GcdB2. Considering the RS codes
from Section III-C and using the suffix “1” and “2” to denote
the systems with b = 5 and b = 4 codes, respectively, we get
GcdB1−GcdB2 = 0.58 dB and m1/m2 = 1.09 from the results
using (13), (14) and Table I. These results are close to the
actual values GcdB1 −GcdB2 = 0.43 dB and m1/m2 = 1.14.
For the RCPC codes discussed in Section III-C we measured
(using Table I) GcdB1−GcdB2 = 1.69 dB and m1/m2 = 1.08,
while Monte-Carlo simulations yields GcdB1 −GcdB2 = 1.58
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Fig. 4. Comparison between the considered schemes and minimum distortion
bound.

dB and m1/m2 = 1. In these results the suffixes “1” and
“2” denotes the systems with M = 8 codes and with M =
4 codes, respectively. Incidentally, we note that these results
show the accuracy and usefulness of the approximation for the
free distance of RCPC codes used in Appendix A, which has
not been found in previous published work.

Importantly, these results are useful in providing a simple
performance measure for the JSCC bit rate allocation schemes.
We illustrate this point by comparing the results with the mini-
mum distortion bound, which is the D-SNR curve for a system
where the conditions for Shannon’s separation principle hold
and where the channel is used at its capacity. Following
Goblick’s approach [44], the minimum distortion bound can
be found by simply equating channel capacity to coding rate
and applying this value in Equation (1). This bound is shown
in Figure 4 along with the approximate D-SNR curves corre-
sponding to systems using different RS and RCPC codes. As is
to expect, the use of stronger error correcting codes achieves
a performance closer to the minimum distortion bound, yet
the figure also shows the difference between the bound and
systems with practical constraints for multimedia real-time
communication such as delay and system complexity. Also
the figure shows a difference in the behavior of systems
using RS and RCPC codes. While systems using RCPC codes
show changes mostly in coding gain, those using RS codes
show changes in coding and diversity gain. This difference
is consistent with our expanded view of diversity since the
strength of different RCPC codes is controlled by changing
their memory, which does not affect the number of redundancy
bits sent. For RS codes, the strength is controlled by changing
the number of bits per symbols which does change the number
of parity symbol sent (for a fixed channel coding rate). These
types of observations, which are useful at system design time,
show the usefulness of the proposed framework.

B. Assessing Performance as a Function of Source Codec
Efficiency

Our previous setting µ = ν = 1 implicitly assumes that
the source encoder is able to compress the input samples
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perfectly. In reality, different source codecs exhibit different
compression efficiency, meaning that same distortion values
are achieved at different encoding rates. The efficiency of the
source codec can be explicitly incorporated into the formula-
tion by writing the D-R function as DS(x) = 2−2(1−λ)x =
2−λ̂x, where λ determines the inefficiency as a coding rate
loss and λ̂

∆= 2(1 − λ). By modifying (15) accordingly, i.e.

Di = (1 + ∆)2−λ̂xi , γdBi = 10 log
[
P−1

Ωi

(
∆

2λ̂xi−1

)]
, we

studied in Figure 5 the effects of source codec efficiency on
the performance.

In Figure 5 we can see that the source coding efficiency
has little effect on coding gain. Essentially, this is due to the
same reasons why the system shows little relative deviation
to changes in ∆. To understand this, consider firstly that
it is possible in (14) to accurately approximate log(D1) ≈
log(DS(x1)). Secondly, as was the case for ∆, it can be seen
in the formulation in Section III-C and Appendices A and B
that λ would have little effect on γdB (this is more clear for
RCPC codes). In contrast, larger source encoder efficiencies
translate into greater diversity gains because, since λ has little
effect on γdB , we can see from (13) that changes in m are
proportional to λ̂. This point can be verified in Figure 5 by
testing any ratio of two diversity gains. These observations are
consistent with our expanded view of diversity because the
reduction in source codec efficiency translates into sending
less redundant error correction data for a fixed end-to-end
distortion.

C. Application to Speech Communication over CDMA Cellu-
lar Network

Since our approach is based on sufficiently general dynam-
ics of the JSCC bit rate allocation problem, we conjecture
that it can be applied to many other schemes that do not
need to follow all of our initial assumptions. Next, we high-
light this point by considering a setup that only follows our
assumption for practical channel codes. Specifically, we will
consider that the source is speech, which is encoded with a
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practical and widely-used speech vocoder (the GSM AMR
codec [45]). Also, distortion is now measured differently, using
a perceptually-based measure that is intimately related to the
ITU-T PESQ quality measure standard P.862 [46]. PESQ is an
algorithm that produces measurements of quality as numbers
between 4.5 and 1 [47], where higher values means better
quality. The most important property of PESQ is that its results
accurately predict those that would be obtained in a typical
subjective test using the method of polling a panel of human
listeners (the MOS test [48]).

Consider the uplink of a CDMA cell carrying real-time
speech traffic. For illustrative purposes assume that the trans-
mit bit rate is kept fixed at 24.4 Kbps (fixed processing
gain system) and the channel code is the memory 4, mother
code rate 1/4, RCPC code family from [38]. We allow four
possible operating modes. Specifying the modes by the pair
(source coding rate, channel coding rates), the possible choices
are: (12.2 Kbps, 1/2), (10.2 Kbps,8/19), (7.4 Kbps, 4/13)
and (5.9 Kbps, 1/4). Figure 6 shows the single-mode and the
overall D-SNR curves. Each single mode D-SNR curve was
obtained through Monte Carlo simulations with 18 different
speech sequences (both male and female speakers) from
the TIMIT speech corpus [49] and 50 simulation runs. The
simulations included the use of the error concealment option
of the source codec. Distortion was measured as 4.5 − Q,
where Q is the result of the PESQ algorithm. Figure 6 shows
that the approximation (5) is very good over the range of the
Signal-to-Interference-plus-Noise ratio (SINR) where JSCC
bit rate allocation is used. This observation, highlighted by the
fact that there are very few coincidences between the current
setup and the one assumed in Section II, suggests that the
proofs in Section III could be extended to other setups and
our framework be applied in a wide range of applications.

Both the processing and the coding gains can be calculated
from the formulas already developed with minimal changes. In
(3), DF is the distortion when the speech decoder applies error
concealment. In the present case we simply assume a worst
case scenario DF = Dmax = 3.5. Of course, including a more
accurate model for DF could only improve our results, but

this is not the focus of this paper. Also, we do not assume any
particular model for the source-encoded distortion DS(xi), we
just assumed the value is known from the codec design spec-
ifications. Thus, the two point coordinates used to find m and
GCdB

are ((1+∆)DS(x1), γdB1) and ((1+∆)DS(x2), γdB2),
with γdB1 and γdB2 calculated by modifying Equation (22)
in Appendix A as

γdB = 20 log

(
erfc−1

(
2

ā

[
1 −

(
1 − ∆

3.5
DS(Ωi)

− 1

)1/x]))

− 10 log κ + 10cWx log e, (17)

where x is the source encoding rate per transmission period,
i.e. the source encoding rate for each operating mode times
20ms (the duration of a transmission period). We highlight
that to apply our framework it is necessary to only know
parameters from the source and the channel codecs that are
determined at their design times. In contrast, to find each point
of the D-SNR curves in Figure 6 it was necessary to perform
1900 simulation runs. We also note that because we assume
availability of only 4 modes, the interlacing between each
single mode D-SNR curve is much coarser than the one shown
in Figure 2. Since the effect of interlacing single-mode D-SNR
curves was used to derive our framework, it is interesting to
note that even when the interlacing is coarse the framework
still approximates well the overall D-SNR curve.

To illustrate how this result can be used in the study of
a design, assume a system with U users, BPSK modulation,
ideal power control, a matched filter at the receiver and AWGN
background noise with variance σ2. It can be shown that at
the receiver, the power assigned to user i to transmit a frame,
Pi, is related to the target SINR, γi, by [50], [51],

Pi =
Υiσ

2

1 − ∑U
j=1 Υj

, i = 1, 2, · · · , N. (18)

where Υi =
(
1 + GP

γi

)−1

and GP is the processing gain
(equal to system bandwidth over transmit bit rate). From (18),
constraints on positive power assignments and system stability
results in the limit to the number of user given by the condition∑U

i=1

(
1 + GP

γi

)−1

= 1 − ε, (19)

where ε is a small positive number set during design.
It is easy to show that assigning the same target SINRs to

all calls is optimal for the present setup [51]. Therefore, from
(19), target SINR and number of voice calls are related by,

γ =
GP

U
1−ε − 1

. (20)

Combining this result with (5) and performing some algebraic
operations yields U = (1−ε)

[
1+D1/10m10(GCdB

+GPdB
)/10

]
,

which is useful in that it relates the number of calls with the
end-to-end distortion in a simple way that uses four simple
system parameters: ε and GPdB

from the CDMA network
design, and GCdB

and m from the JSCC bit rate allocation
design. Our framework shows now it usefulness since all
the above studies can be applied to this problem, allowing
straightforward analysis of how the CDMA network behavior
would change with different source or channel coding. Also,
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note that our framework reveals that processing gain and
coding gain both have the same effect on the CDMA system
performance.

V. CONCLUSIONS

In this paper we have proposed a unified framework for
the modeling and analysis of real-time multimedia systems.
This framework is based on a general view of diversity
that is not limited to the presence of multiple channels
or fading, and that includes redundancy as an instance of
diversity. We show that the D-SNR curves resulting from
solving the JSCC bit rate allocation problem for a certain
range of multimedia systems can be accurately represented
as D(γ) ≈ (GCγ)−10m. Recognizing the linear behavior in
log-log scale of this function and its similarity to the error rate-
SNR expressions in data transmission systems, we named Gc

the coding gain and m the diversity gain. This result allows
measuring and comparing performance of JSCC multimedia
schemes with a representation in unison with the one used for
traditional diversity.

In our presentation we have explained why and how the
D-SNR curve can be characterized by a subset of points
where the relative contribution of channel errors to the end-
to-end distortion is fixed and small (mathematically, D(γ) ≈
(1 + ∆)Ds). This is the basis of our approach, which avoids
the use of information-theoretic analysis such as assuming
infinite complexity and delay, and which results in a tight and
simple approximation to the D-SNR performance curves for
systems with practical multimedia sources, source codecs and
channel codecs. The proposed approach allowed us to quantify
how performance changes when a stronger channel code is
used and the performance difference between practical systems
and an ideal information-theoretical bound. Also, by using
the proposed approach we were able to study and measure
the different behavior between block and convolutional codes
and we related the results to the unifying view of diversity.
In addition, we also study and measure the effects that the
efficiency of the source codec has on system performance and

we show that it affects only the diversity gain (not the coding
gain) reducing it proportionally to the codec loss of efficiency.
Also, as a side contribution, we presented a useful relation that
links error performance with channel coding rate in families
of RCPC codes.

We have characterized the D-SNR curve for systems using
RCPC and RS codes. These codes were chosen due to their
popularity in multimedia systems with variable-rate channel
coding and as representatives of a large class of channel
codes that share the same performance characterization (e.g.
block channel codes), to which our approach can also be
applied. Then, we believe that our approach could be used
to characterize a wide range of practical JSCC multimedia
systems. This is emphasized by showing the accuracy of
the proposed approach when applied to a CDMA network
carrying speech calls encoded with the GSM-AMR codec
and distortion measured with the perceptually-based PESQ
standard. Based on its simplicity, flexibility and accuracy, the
proposed approach opens the possibility of studying other
JSCC systems from a new and important viewpoint.

APPENDIX

A. Channel SNR as a function of source encoding rate for
RCPC codes

In this appendix we show that the channel SNR can be
approximated as γdB ≈ A1x + B1 for RCPC codes. First,
consider that Equation (7) shows an implicit dependence,
through df and a(df ), between P (γ) and the rate of the
channel code, i.e. the particular operating mode. To make
this dependence explicit, we study next the relation between
df and a(df ) with r. Figure 7 shows how df changes as
a function of the code rate r for two representative RCPC
codes families: one from [38] and the other from [39]. It
can be seen that the free distance can be approximated by
a function of the form df ≈ κe−cr ≈ κe−cNx/W , where κ
and c are two constants. A similar study for a(df ) shows that
it is not possible to find a practical functional approximation.
Therefore, we will roughly approximate a(df ) by taking its
average value , ā =

∑
π aπ(df )/|π| , where π is an index into

each of the members of the family of RCPC codes used for
error protection and |π| is the number of codes in the family.
This approximation will prove to yield good results. Using the
approximations for df and a(df ), Equation (7) becomes

P (γ) ≈ 1 −
(
1 − ā

2
erfc

√
κe−cNx/W γ

)Nx

. (21)

Using (4), Equation (21) can be solved for γ to show the
explicit relation between γ and source coding rate x.

γ(x) ≈ 1
κecNx/W(

erfc−1

(
2
ā

[
1 −

(
1 − ∆

DF
DS(x)−1

)1/(Nx)]))2

. (22)

Equation (22) shows that two factors contribute to γ: the
inverse of the free distance and the square of an inverse
complementary error function. Let’s denote this second factor
by g(x). Using the approximation erfc−1(y) ≈ √− ln(y),
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[52], yields

g(x) ≈ ln
( ā

2
) − ln

(
1 −

(
1 − ∆

DF

DS(x) − 1

)1/(Nx))
. (23)

Before continuing, we note that the approximation
erfc−1(y) ≈ √− ln(y) is not tight, yet it is very good

in representing the behavior of the inverse error function,
which justifies its use. In essence, this means that the
modulation scheme has a probability of error that behaves
approximately as e−x2

with respect to SNR. Working with
the second term of the right hand side of (23),

θ = − ln
(

1 −
(

1 − ∆
DF

DS(x) − 1

)1/(Nx))
(24)

⇒ ln
(
1 − e−θ

)
=

1
Nx

ln
(

1 − ∆
DF

DS(x) − 1

)
(25)

⇒ −e−θ ≈ 1
Nx

(
− ∆

DF

DS(x) − 1

)
(26)

⇒ θ ≈ ln
(

N

∆
x
( DF

DS(x)
− 1

))

≈ ln
(

N

∆
x

)
+ ln

(
DF

DS(x)

)
, (27)

where (26) follows from the fact that both logarithms in (25)
are of the form ln(1 − y) with y 
 1, which can be seen
from (24) and (4) considering that PΩi

(γ) is typically small.
The approximation in (27) follows from recognizing that in
general DF /DS(x) − 1 ≈ DF /DS(x), i.e. the reconstructed
source error after transmission errors is typically much larger
than the quantization distortion. From (27), θ is the sum of
ln(Nx/∆) and a term that, following (1), is approximately
linear in x. Since generally N/∆ � x, we can approximate
ln(Nx/∆) ≈ ln(Nx̄/∆), with x̄ being the average value
of x, and consider that the approximately linear term would
determine the overall behavior of θ(x). Using (1) and (23),
it follows that g(x) ≈ ln

(
āNDF x̄

2∆µ

)
+ 2νx ln(2). Furthermore,

through algebraic operations it can be shown that the coeffi-
cients of Taylor’s expansion of log(g(x)) around x̄ are of the

form ti/i!, with t = ν ln(4)
(
ln( āNDF x̄

2∆DS(x̄) )
)−1

being much
smaller than 1 for typical system parameters. This means that
the weight of coefficients in Taylor’s expansion falls quite
rapidly and log(g(x)) can be accurately approximated through
a first order expansion. Combining these facts with (22) and
(23), and denoting Ψ = ln

(
āNDF x̄
2∆DS(x̄)

)
, γ in decibels can be

approximated as

γdB(x) ≈ 10cNx

W
log(e) − 10 log(κ)

+ 10
(

log(Ψ) +
ν log(4)

Ψ
(x − x̄)

)
, (28)

which is a linear function in x.

B. Channel SNR as a function of source encoding rate for RS
codes

In this appendix we show that the channel SNR can be
approximated as γdB ≈ A1x + B1 for RS codes. Let

a = n
l+1 − 1,

Q =
(

L
∆

(
n

l+1

)[
DF

DS(Wr/N) − 1
])− 1

l+1

. (29)

Combining (4) and (11) leads to Ps(1 − Ps)a ≈ Q, which
can be approximated as aP 2

s −Ps + Q = 0 by using a Taylor
series expansion. This approximation is accurate because Ps

is a small number. The second order equation has solution
Ps = (1 − √

1 − 4aQ)/(2a). Since Ps ≈ bPb(γ), we have
b erfc(

√
γ) ≈ 1−√

1−4aQ
a . Similarly to the RCPC code case,

using erfc−1(y) ≈ √− ln(y), yields

γ ≈ ln
(
ba

) − ln
(
1 −

√
1 − 4aQ

)
(30)

Stirling’s formula n! ≈ √
2πn(n/e)n can be used to ap-

proximate factorials (error is less than 4 % for n > 1, and
decreasing in n) and to write the binomial coefficient in Q as
shown in (31). Then we have (32), (33), and (34), where the
approximation (32) follows from neglecting the terms equal
to one in l + 1, n − l − 1 and DF

DS(Wr/N) − 1, and by setting
l(n − l)/n = n(1 − r2)/4. This last equality is because
l = �n−k

2 � = n−k
2 = 1−r

2 , which follows from the fact
that in order for each value of k to yield a different error
performance, it is best to choose k of the same type odd/even
as n. While the approximations in (32) have a negligible effect,
the approximation in (33) changes the value of 4aQ by adding
a small constant value. Yet, this is not a problem since our
goal here is to highlight the functional relations with r, which
is maintained in (33). Also, in (34) we have used (1) and the
fact that when there are uncorrected channel errors we have
DS(0) = µ ≡ DF . Next, to simplify notation let’s denote

h(r) =
(1 + r

2

)n
√

π

2
n

∆
L

2−2νWr/N , (35)

u(r) = 1 − 4h(r)
2

n(1−r)+2 , (36)

f(r) =
bn−l−1

l+1

1 − √
u(r)

≈ bn−l
l

1 − √
u(r)

≈ b 1+r
1−r

1 − √
u(r)

. (37)

Consider Taylor’s series for γdB(r) = 10 log(ln(ba)−ln(1−√
1 − 4aQ)) around r = 0.5. Figure 8 shows, on top, γdB(r)

for different RS codes and their approximations using Taylor’s
first order series around r = 0.5. It can be seen that the
approximation is quite good for channel coding rates up to
approximately 3/4. Channel codes rates much larger than
this value are not normally seen in practice because, given
the complexity and weakness of high rate codes, the choice
is frequently to leave the system uncoded. Furthermore, the
bottom of Figure 8 shows that the contribution of higher
order terms decreases rapidly and never exceeds 10% of the
magnitude of the first order approximation. This can be shown
to be due to the rapid decrease in the weight of the factors
(r − 0.5)p, where p is the term order. Therefore, we can
approximate γdB ≈ rt1(0.5) + t0(0.5) − t1(0.5)/2, where
t0(r) = 10 log(ln(f(r))) and (38). Using r ≈ Nx/W , it
follows that γdB ≈ A1x + B1.
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(
n

l + 1

)
≈

√
n nn√

2π(l + 1)(n − l − 1) (l + 1)l+1 (n − l − 1)n−l−1
(31)

4aQ ≈ 4

⎛
⎝(n − l − 1

n

)n
√

2π(l + 1)(n − l − 1)
n

∆

L
[

DF

DS(Wr/N) − 1
]
⎞
⎠

1/(l+1)

≈ 4
((n − l − 1

n

)n
√

π

2
n(1 − r2)

∆DS(Wr/N)
LDF

)1/(l+1)

(32)

≈ 4
((n − l

n

)n
√

π

2
n

∆DS(Wr/N)
LDF

)1/(l+1)

(33)

= 4
((1 + r

2

)n
√

π

2
n

∆
L

2−2νWr/N

) 2
n(1−r)+2

(34)

t1(r) =
10f(r)′

f(r) ln(f(r)) ln(10)

=
10/ ln(10)
ln(f(r))

[
2

1 − r2
+

1 − 1/u(r)√
u(r)[n(1 − r) + 2]

(
n ln(h(r))

n(1 − r) + 2
+

n

r + 1
− W ln(4)

N

)]
. (38)
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Fig. 8. Top: γdB as a function of channel coding rate r and its approximation
using Taylor’s first order series around r = 0.5. Bottom: Higher order terms
in Taylor’s series.
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