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Abstract—In this paper, an optimal transmission policy for
two-way relay networks is investigated by using a stochastic
energy harvesting (EH) model. Considering the channel and finite
battery conditions, we propose an optimal relay transmission
policy to maximize the long-term achievable sum rate of the
network. The design problem is formulated as a Markov decision
process (MDP), and the well-known value iteration approach is
used to find the optimal policy. Based on the optimal transmission
policy, we analyze the expected achievable sum rate and point out
a spreading structure for the optimal relay power with respect
to the solar panel size. Simulation results demonstrate that our
proposed optimal transmission policy outperforms other policies.

I. INTRODUCTION

Recently, energy harvesting (EH) cooperative communica-
tions have attracted significant attentions due to its effective-
ness in resolving energy supply problems in wireless sensor
networks. In this problem, the EH source and/or relay nodes
can make use of renewable energy sources, e.g., solar, wind
and vibration, to replenish their power supply and fulfill data
transmission. Although an inexhaustible energy supply from
environments enables EH nodes to communicate for an infinite
lifetime, power management and transmission scheduling re-
main a crucial issue because of the randomness and uncertainty
of the harvested energy.

One-way EH relay networks were introduced in [1] and
[2]. The authors in [1] designed the optimal transmission
scheme for the EH half-duplex relay in the two-hop net-
work when the source has a single or two energy arrivals.
By considering delay and non-delay constrained traffic, the
optimal power allocation for the classic three-node Gaussian
relay network with EH nodes was investigated in [2]. Recently,
power allocation algorithms for maximizing short-term sum
rates in the two-way EH relay networks were proposed in
[3]-[5] using deterministic EH models, i.e., the energy state
information (ESI) is non-causal and the energy arrival profile
is known prior to transmission scheduling. No data buffer
in the relay was assumed in [3], while the data buffer of
the relay was considered in [4], which means the relay can
cache data and exploit more flexible scheduling policies. In
[5], an optimization framework assuming the uncertainty of
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the channel state information (CSI) was proposed. However,
the deterministic EH models need accurate EH prediction,
and modeling mismatch usually occurs when the prediction
interval is enlarged or the model does not conform with re-
alistic conditions. Furthermore, none of these EH cooperative
communication works linked the real solar irradiance data to
the design of the optimal transmission policies.

Motivated by the aforementioned discussions, we propose
an optimal relay transmission policy for the two-way EH
relay network using stochastic EH models, where there is no
need for energy arrival profiles prior to data transmission.
The relay is solar-powered, and the long-term achievable
sum rate of the two-way relay network is maximized by
adapting the relay transmission power to its current battery
state, CSI and ESI. We exploit the stochastic EH model in [6]
whose underlying parameters are directly trained by a real
data record of solar irradiance [7]. Meanwhile, the fading
channels between the sources and relay are formulated by
a finite-state Markov model [8]. The optimal and adaptive
relay transmission problem is then formulated as a discounted
Markov decision process (MDP) [9] and solved by a value
iteration approach. Furthermore, the expected achievable sum
rate associated with the optimal relay transmission power
is analyzed. We also point out a spreading structure of the
optimal relay transmission power with respect to the solar
panel area size, which can help reduce the computational
complexity in obtaining the optimal relay power.

II. TWO-WAY ENERGY HARVESTING RELAYING

In Fig. 1, we consider a two-way EH relay network with
the analog network coding (ANC) protocol, where two tradi-
tional wireless source nodes, A and B, exchange information
simultaneously via an EH relay node, R, within multiple access
(MA) and broadcast (BC) phases. The relay can harvest energy
from the solar and store energy in the rechargeable battery
to supply the forthcoming communications. It is assumed
that all nodes are half-duplex and there are no direct links
between two source nodes. Without loss of generality, it is
assumed that the wireless channels are reciprocal, quasi-static
and Rayleigh flat fading. The channel fading coefficients, k.
and hy,, are independent and identically distributed (i.i.d.)
complex Gaussian random variables CA(0, 1).
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Fig. 1.

The two-way EH relay network

In the MA phase, A and B transmit their signals to R
simultaneously. In the BC phase, R exploits the amplify-and-
forward (AF) protocol to broadcast the superimposed signal.
A and B extract the desired signal from the received signal by
subtracting their own self-interference. Thus, the achievable
rates of the A-to-B link and the B-to-A link can be expressed
as [10]
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where P is the transmission power of A and B, P, is the
transmission power of R, the additive white Gaussian noise
of each node is given by CA'(0, No), 71 = |har|* and 4o =
|hb,,A|2. Therefore, the achievable sum rate of the network is
defined as R; = R4 + Ryq, and its upper bound in the high
signal-to-noise ratio (SNR) region can be derived as [11]
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where P, = (P + P,)/P.

I1I. MARKOV DECISION PROCESS WITH
STOCHASTIC MODELS

In this section, we attempt to find the optimal transmission
power for the relay in order to maximize the achievable sum
rate. The design of the relay transmission policy depends
on several factors, like the channel conditions among the
three nodes, and the finite battery capacity and the solar
EH conditions at the relay. The design framework is for-
mulated as an MDP with the goal of maximizing the long-
term achievable sum rate. The MDP is mainly composed of
the state space, the action space, the state transition prob-
abilities and the reward function. Let S = Q. X Hgr X
Hpr x Qp be a four-tuple state space, where X denotes
the Cartesian product, Q. = {0,1,---, N, — 1} represents
the solar EH state, H,. = {0,1,---,N.— 1} and Hp, =
{0,1,---, N. — 1} are the states of h,, and hy, respectively,
and Qp = {0,1,--- , N, — 1} denotes the relay finite battery
state. Meanwhile, let S = (Q., Hyr, Hpr, Qp) € S represent
the stochastic state of the MDP. The detailed descriptions of
all the elements in the MDP are provided as follows.

R; < Rt_up =

A. Relay Actions of Transmission Power

The action space is defined as the relay transmission power
W = {0,1,--- ,N, — 1} where N, < N,. When the action
w € W is chosen by the relay, the relay transmission power P,
is set as wP, during one transmission period 7', where P, is

a basic transmission power level corresponding to one energy
quantum F, during the transmission period, i.e., £, = P,T.
If w = 0, it means that the relay remains silent during the
transmission period.

B. Solar Energy Harvesting States

We exploit a discrete stochastic EH model, N,-state Gaus-
sian mixture hidden Markov chain [6], to mimic the evolution
of the solar EH conditions. This EH model is real-data-driven
and its underlying parameters are extracted using the solar
irradiance data collected by a solar site in Elizabeth City
State University from 2008 to 2010 [7]. When the relay is
at the it solar state, the solar power per unit area, P,
follows the Gaussian distribution N (i, pi), and thus, the
harvested energy during one transmission period 7' is given
by E; = P,Tsn, where s denotes the solar panel area
size and 7 represents the energy conversion efficiency. More-
over, each state is governed by a state transition probability
P(Q. =j|Qe =1), fori,j € Qe, and can be described by an
EH probability in terms of the number of harvested energy
quanta, i.e., P(E =¢|Q.=1) [6] for ¢ € {0,1,---,00},
through the parameters p; and p;.

C. Channel States

The instantaneous channel power, v; and v, is quantized
into several levels using a finite number of thresholds, given
by ' = {0=T0,Ty, - ,I'y, = 00}, and formulated as a
finite-state Markov chain. If the channel power belongs to
the interval [I';,T’;41), for i € {0,1,--- , N. — 1}, the fading
channel is in the i*" channel state. Thus, the stationary
probability of the i*" channel state can be expressed as

i+1
=1) / lexp d'y—exp( %) —exp( FZ-H) , 4

where A is the average channel power. It is assumed that
the channel can only transit from the current state to its
neighboring states, and the channel state transition proba-
bilities P (H = j|H =), for i € {0,--- ,N.—1}, j €
{max (0, —1),--- ,min (i + 1, N, — 1)}, can be defined as
in [8].

D. Relay Battery States

The relay battery storage capacity is finite and uniformly
quantized into several levels in units of E,,. When the relay is
in the bt battery state, it means that the number of available
energy quanta in the battery is b.

Since the relay battery state transition is related to both
the transmission action and the number of harvested energy
quanta, the battery state transition probability at the i** EH
state can be explicitly represented as

Py (Qp =V[Qp = b, Qc = 1) Q)
PE=V—-b+w|Q.=i), b =(b-w), ,Ny—2
_ Np—2—b+w
1— > PE=jlQ=i), V'=N,-1
7=0

where b € Qp and w € {0,1,--- ,min (b, N, — 1)}.
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E. State Transition Probability
Since the transition probabilities of the solar EH states and
channel states are independent, the state transition probability
from the state S = (4,7, k,b) to the state S = (¢/, 5, k', v')
with respect to the action w can be given by
P’UJ (S = (i,mj,?k/’b,) |S = (i7j’ kvb)) (6)
=P (Qe=17|Qc =1) - P (Har = j'|Har = j)
'P(Hbr - k:/|Hbr - k) - Py (Qb :b/‘Qb = b7 Qe :Z) .

F. Reward Function

The upper bound of the achievable sum rate, [y .y, is
adopted as the reward in the MDP, and the reward function at

the state S = (4, j, k,b) with respect to the relay action w is
denoted as
Ry (8 = (.4, kb)) (N

P (H, =j)- P(Hp =k)

Substituting (3) and (4) into (7) yields the reward function as
(8). By using (8) and (9), the reward function can be calculated
in (10), for which the involved integral is given as
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where Fi (-) is the exponential integral function [12], and
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IV. OPTIMIZATION OF RELAY TRANSMISSION ACTIONS

Define the policy 7 (s) : S — W as the action that specifies
the relay transmission power. The goal of the MDP is to find
the optimal 7 (s) in the state s to maximize the expected
discounted long-term reward as follows

b= S

where sg is the initial state and 0 < \ < 1 is a discount factor.
It is known that the optimal value of the expected long-term
reward is unrelated with the initial state if the states of the
Markov chain are assumed to be recurrent [9]. The optimal
policy can be found through the Bellman equation, given by
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The well-known value iteration approach can be applied to find
the optimal policy [13]. In practical applications, the solar EH
state can be updated using real data of solar irradiance and
Bayes’s rule at the relay [6], and the current channel state and
finite battery state can be easily acquired by the relay. Thus,
after obtaining the optimal transmission policy, the relay can
make full use of the state information and exploit the look-up
table method to decide its optimal transmission power in every
transmission period 7.

V. EXPECTED REWARD ANALYSIS

In this section, we will discuss the expected achievable sum
rate for the optimal policy. First, the battery state transition
probability with respect to the optimal relay action w* at the
state S = (4, J, k,b) can be given by

P (Qp=10"1Qp =)
0, 0<V <b—w"—1;
PE=V-b+w*Q.=1), b—w* <V <N, —2;

Np—2
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where b,b' € {0,---,N, —1}. Thus, the state transition
probability associated with the optimal policy is expressed as

P(S = (i/’jlvklvb/) |S = (ivja k‘,b))

= P(Qe = il‘Qe = Z) . P(Har = j/|Har = ])
- P (Hyy = K'[Hpr = k) - P j 1. (Qp = V'|Qy = 1),

(16)

where i,i' € {0,1,--- ,N. —1}, j,k € {0,--- , N, —1},
j € {max(0,j—1),--- ,min(j+1,N.— 1)} and k' €
{max (0,k —1),--- ,min(k + 1, N. — 1)}. Let p(; j ».5) T€P-

resent the stationary probability of the state S = (i, j, k, b) for
the optimal policy, and it satisfies Z(i,j,k,b)es Diig k) = L
Meanwhile, since p; ;1) and the state transition probability
have the relation as follows

Z P((i/ajlv kl7 b/)|(Z,], k7 b)) P(i,j,k,0)=DPG" 5 k" ,b") > (17)
(i,4,k,b)ES

D(i,j,k,b) €an be easily computed by solving linear equations.
Therefore, the expected reward can be computed by taking
the expectation of the reward function in (10) as follows
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VI. SIMULATION RESULTS

In this section, the performance of our proposed optimal
policy based on the stochastic EH model in [6] is evaluated by
computer simulations. The irradiance data from 2011 to 2012
measured by the solar site in Elizabeth City State University
are applied for simulations [7]. The numbers of the solar EH
states, channel states and relay battery states are four, six and
twelve, respectively. The solar irradiance measurements are
taken at five minute intervals, the solar panel area size s is
set from lcm? to 10cm?, and the solar energy conversion
efficiency n = 20%. In the channel model, the channel is
quantized as I' = {0,0.3,0.6,1.0,2.0,3.0, 00}, the average
channel power A = 1 and the channel power is formulated
using Jakes’ model with the normalized Doppler frequency
fp = 0.05 [8]. Meanwhile, the relay battery state is initialized
randomly, the relay transmission action is changed every five
minutes, the basic transmission power P, = 40 x 103uW, and
the transmission power of two source nodes P = P,,.
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Fig. 2. Achievable sum rates of our proposed optimal policy and two naive
policies (s = 1cm?)

Fig. 2 shows the achievable sum rates of our proposed
optimal policy and two naive policies when the normalized
SNR is defined with respect to P,. In these two naive policies,
the relay transmission power is set without concern for the
system states. Instead, if the relay battery storage is non-empty,
the relay attempts to exploit the lowest power and the largest
available battery power to transmit data in Naive Policy One
and Naive Policy Two, respectively. The difference between
the expected reward and average reward of proposed optimal
policy lies in: the former is calculated according to (18) and
derived by the EH model based on the solar irradiance data
from 2008 to 2010, while the later exploits this stochastic EH
model to decide the optimal relay power in the following two
years, 2011 and 2012, and average the rewards in (10) of all
decisions. It can be seen that the achievable sum rate of our

proposed optimal policy is superior to those of the two naive
policies. Moreover, the average reward of the optimal policy
is very close to the expected reward since the solar irradiance
is relatively stable from 2008 to 2012.
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Fig. 3. Spreading structure of optimal relay power actions with respect to
solar panel area sizes (normalized SNR = 10dB)

Fig. 3 demonstrates the probability distribution of the opti-
mal relay transmission power actions in all states with respect
to the solar panel area size. The bar height represents the
probability density corresponding to the optimal relay power
and solar panel size, and the probability density of white bars
is zero. A spreading structure is observed in this figure, and
it can be seen that the optimal relay power with the highest
probability density, and the maximal power of optimal relay
actions, are both non-decreasing with respect to the solar panel
size. This is because if the solar panel size becomes larger, the
relay is prone to obtain more energy quanta under the same
solar state, and the relay power corresponding to the maximal
battery transition probability in (5) is bigger under the same
MDP state. Thus, the optimal relay power becomes bigger
according to the Bellman equation in (14). This property can
help to reduce the computational complexity in obtaining the
optimal relay actions.

VII. CONCLUSION

In this paper, the optimal and adaptive relay transmission
policy for maximizing the long-term reward in the two-way
EH relay network is proposed. Unlike previous works, we
exploit stochastic models to formulate the solar irradiance state
and fading channel state. An MDP framework is designed to
obtain the optimal relay transmission power based on the solar
ESI, CSI and relay finite battery status. Moreover, the expected
achievable sum rate is theoretically analyzed, and the result
exhibits an elegant spreading structure of the optimal relay
power with respect to the solar panel size.
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