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ABSTRACT

Digital ngerprinting is an emerging technology in media secu-
rity to identify the source of illicit copies and trace traitors. Collu-
sion is a powerful attack, in which a group of attacker collectively
mount attacks against digital ngerprinting. In multimedia nger-
printing, there exists complex dynamics between the colluders and
the ngerprint detector, who have con icting objectives and in u-
ence each other’s performance and decisions. This paper proposes
a game-theoretic framework to formulate and analyze the colluder-
detector dynamics, in an effort to understand its impact on the traitor
tracing performance of multimedia ngerprints. We investigate how
colluders adjusts the collusion attacks to minimize their risk under
the fairness constraint; and study how the ngerprint detector adapts
his/her detection strategy accordingly to improve the collusion resis-
tance, which is shown to be the min-max solution.

Index Terms— Multimedia forensics, security, game theory

1. INTRODUCTION

Digital ngerprinting is an emerging forensic tool to protect multi-
media from unauthorized redistribution and illegal alteration. The
“ ngerprint” is an unique label that is embedded into every dis-
tributed copy to protectively trace the usage of multimedia data.
Multi-user collusion is a powerful attack against digital ngerprint-
ing, where a group of attackers work together to undermine the trac-
ing capability. To provide reliable traitor tracing and support mul-
timedia forensics, multimedia ngerprints should resist multi-user
collusion as well as single-copy attacks and common signal process-
ing. There has been a lot of work on anti-collusion ngerprint de-
sign [1–3], where techniques from different disciplines were applied
to resist collusion.

In multimedia ngerprinting, the colluders and the ngerprint
detector have con icting objectives. The colluders try all their means
to remove the identifying ngerprints in their copies; while the n-
gerprint detector wishes to be able to successfully capture colluders
under all circumstances. They in uence each other’s performance
and decisions, and there exists complex dynamics between the col-
luders and the ngerprint detector. It’s crucial to formulate this dy-
namics and understand how the colluders and the ngerprint detector
interact with and respond to each other. From the traitor tracing per-
spectively, such investigation helps to have a better understanding of
multimedia forensics and improve the collusion resistance.

This paper studies the game-theoretic formulation and analysis
of the dynamics between the colluders and the ngerprint detector.
We model it as a two-stage, two-person zero-sum game, where the
colluders try to minimize their probability of being detected under
the constraint that they share the same risk; while the ngerprint de-
tector probes side information of collusion and adjusts the detection
strategy to maximize the traitor tracing capability.We also analyze

whether there exists such a min-max solution for the colluders, and
investigate how to reach the solution.

The rest of the paper is as follows. We begin in Section 2 with
the introduction of the system model. Section 3 formulates the dy-
namics between the colluders and the detector using a game-theoretic
framework, and Section 4 analyzes the existence of the min-max so-
lution of this game. We show simulation results in Section 5, and
conclusions are drawn in Section 6.

2. SYSTEM MODEL
2.1. Scalable Video Coding
As we move to the digital era and experience the convergence of
network, communications and multimedia, scalability in multime-
dia coding becomes increasingly important for rich media access
from anywhere by anyone [4]. It encodes multimedia into several bit
streams (or layers) of different priorities: the base layer contains the
most important information and must be received by all users; while
the enhancement layers re ne the resolution of the receiver’s recon-
structed copy and have lower priorities. Such an encoding structure
provides exible solutions for multimedia transmission and offers
adaptivity to heterogeneous networks, varying channel conditions,
and diverse computing capability at the receiving terminals.

Following the work in [5], we consider a temporally scalable
video coding system, which encodes different frames in the video se-
quence in three different layers. De ne Fb, Fb,e1 and Fe2 as the sets
containing indices of the frames that are encoded in the base layer,
enhancement layer 1 and enhancement layer 2 respectively. F (i) in-
cludes the indices of the frames in the copy that user u(i) receives.
Ub is the subgroup of users who receive the base layer only; Ub,e1

contains all users who subscribe to the medium-resolution version
with the base layer and the enhancement layer 1; and Uall contains
the indices of the users who receive all three layers.

2.2. Scalable Multimedia Fingerprinting Forensic System
Fingerprint Embedding Given a frame Sj in the video sequence,
for each user u(i) who subscribes to that frame, the content owners
generates a unique ngerprint W(i)

j of the same length as Sj , and
additively embeds it into the host signal using spread spectrum em-
bedding [6,7]. The ngerprinted frame isX(i)

j = Sj+JNDjW
(i)
j ,

where JND is from human visual models to makeX(i)
j be perceptu-

ally the same as the original host frameSj . We generate independent
vectors from Gaussian distributionN (0, σ2W ), and then apply Gram-
Schmidt orthogonalization to generate orthogonal ngerprints.
Multi-user Collusion Let SCb be the set of the indices of the col-
luders who receive the base layer only; SCb,e1 contains the indices
of the colluders who subscribe to the medium resolution copy; and
SCall contains the indices of colluders who receive all three lay-
ers. Kb = |SCb|, Kb,e1 = |SCb,e1| and Kall = |SCall|, and
K = Kb +Kb,e1 +Kall is the total number of colluders.

Following the two-stage collusion model in [5], during intra-
group collusion, for each frame j ∈ Fb in the base layer, collud-
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ers in SCb rst generate Zb
j =

�
k∈SCb X

(k)
j /Kb; for each frame

j ∈ Fb∪Fe1 that they receive, colluders in SCb,e1 calculateZb,e1
j =�

k∈SCb,e1 X
(k)
j /Kb,e1; and for every frame in the video sequence,

the colluders in SCall generates Zall
j =

�
k∈SCall X

(k)
j /Kall.

Then, colluders apply inter-group collusion: for each frame j ∈ Fb

in the base layer, the colluded frame is Vj = β1Z
b
j + β2Z

b,e1
j +

+(1− β1 − β2)Zall
j +nj , where 0 ≤ β1, β2, 1− β1 − β2 ≤ 1; for

each frame j2 ∈ Fe1 in the enhancement layer 1,Vj2 = α1Z
b,e1
j2

+

(1−α1)Zall
j2
+nj2 where 0 ≤ α1 ≤ 1; and for each frame j3 ∈ Fe2

in the enhancement layer 2, Vj3 = Z
all
j3
+ nj3 . nj is an additive

noise to further hinder detection.
Fingerprint Detection At the detector’s side, the ngerprint de-
tector rst removes the host signal Sj from the test copyVj and ex-
tracts the ngerprintYj = (Vj −Sj)/JNDj . Then, for each user,
the ngerprint detector measures the similarity between the extracted
ngerprint and the originally embedded ngerprint, compares with

a threshold h and outputs the estimated colluder set.
Performance Criteria The commonly used criteria to evaluate a n-
gerprinting system’s traitor tracing capability are: the probability of
catching at least one colluder (Pd), and the probability of accusing
at least one innocent user (Pfp).

3. COLLUDER-DETECTOR BEHAVIOR DYNAMICS
In this “cat-and-mouse” game between the attackers and the digital
rights enforcer, colluders adjust the collusion attacks to minimize
their chance of being detected under the constraint that they have
equal risk; and the ngerprint detector adaptively select the detection
strategy to maximize his/her success rate of capturing colluders.
Colluder Identi cation with Side Information To improve the
detection performance, the work in [8] proposed a method to probe
side information and explore unique features of collusion when iden-
tifying ngerprints. One candidate of such side information is the
mean of the detection statistics that are used to measure the similar-
ity between the extracted ngerprint and the original ones.

Take user i ∈ U
all who receives all three layers as an exam-

ple, to measure the similarity between Y and W(i), the ngerprint
detector calculates

TN (i)(F̄ (i)) =
�

j∈F̆ (i)

〈Yj ,W
(i)
j 〉/
� �

j∈F̆ (i)

||W(i)
j ||2. (1)

For the simple collective detector in [5], F̆ (i) = Fb ∪Fe1 ∪Fe2 and
ngerprints extracted from all frames are used collectively to iden-

tify colluders. The ngerprint detector can also examine ngerprints
extracted from each individual layer to identify colluders. For exam-
ple, F̆ (i) = Fb if only ngerprints extracted from the base layer are
used to decide whether i ∈ SC.

To determine whether user i ∈ Uall is a colluder, the ngerprint
detector has four choices F̆ (i) ∈ {Fb∪Fe1∪Fe2, Fb, Fe1, Fe2}, and
thus four different statistics to measure the similarity betweenY and
W

(i). From the analysis in [8], the four detection statistics follow
Gaussian distribution with the same variance but different means,
and the one with the largest mean gives the best traitor tracing per-
formance. Thus, the ngerprint detector should probe information
about collusion and adapts its detection strategy accordingly to im-
prove the collusion resistance. The work in [8] proposed a method
for the ngerprint detector to estimate these means, and showed that
the performance of this self-probing detector is almost the same as
that of the optimum detector, who has perfect knowledge of the de-
tection statistics’ means and always selects the one with the best
detection performance.
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Fig. 1. Each colluder’s probability of being detected (P (i)
s )

with the self-probing ngerprint detector. (Nb, Ne1, Ne2) =
(50000, 50000, 100000). K = 250. Each point on the x axis cor-
responds to a unique triplet (Kb,Kb,e1,Kall) where Kb = 50 and
Kb,e1 = K − Kb − Kall. Colluders follow [5] to select the col-
lusion parameters {αj , βl}. The threshold h is selected to satisfy
Pfp = 10

−3. The results are based on 10000 simulation runs.

Side information about collusion not only improves the nger-
print detector’s performance, it also affects each colluder’s proba-
bility of being detected and in uences how attackers collude. Take
Figure 1 as an example, with the self-probing ngerprint detector,
improper selection of the collusion parameters may make some col-
luders take a much higher risk than the others. Thus, having knowl-
edge of what actions the ngerprint detector might take, colluders
have to adjust the collusion attacks accordingly to minimize their
risk and ensure the equal risk of all colluders.
A Game-Theoretic Framework We use game theory [9] to for-
mulate this complex dynamics between the colluders and the nger-
print detector. This game involves two players, the colluders acting
as one single player and the ngerprint detector. They have pure con-
icting objectives and one player’s gain is another’s loss. Therefore,

we can model this dynamics as a two-stage zero-sum game, where
the colluders act rst followed by the ngerprint detector.

In our game-theoretic framework, a natural and straightforward
de nition of the payoff function is the ngerprint detector’s chance
of successfully capturing the colluders, or equivalently, the collud-
ers’ risk of being detected. We use P (i)

s , which is colluder u(i)’s
probability of being detected.

Since the self-probing ngerprint detector has almost the same
performance as the optimum detector, and this information is as-
sumed to be known by the colluders, the colluders should assume
that the ngerprint detector always selects the best detection statis-
tics with the largest mean during collusion. Thus, we can model
the dynamics between the colluders and the ngerprint detector as
a minmax problem, where the colluders seek the minimum risk un-
der the optimal detector and the fairness constraint, and the detector
always has the maximum detection performance:

min
{αk,βl}

max
F̆ (i)

P (i)
s

�
F̆ (i), {αk, βl}

�
(2)

s.t. max
F̆ (i1)

P (i1)
s

�
F̆ (i1), {αk, βl}

�
= max

F̆ (i2)
P (i2)
s

�
F̆ (i2), {αk, βl}

�

for all i1, i2 ∈ SC. In (2), F̆ (i) = {Fb ∪ Fe1 ∪ Fe2, Fb, Fe1, Fe2}
for i ∈ SCall; F̆ (i) = {Fb ∪ Fe1, Fb, Fe1} for i ∈ SCb,e1; and
F̆ (i) = Fb for i ∈ SCb.

From the analysis in [8], P (i)
s is determined by the mean of the

detection statistics that are used. The larger the mean, the larger the
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value of P (i)
s . Therefore, for colluder i1 ∈ SCb, i2 ∈ SCb,e1 and

i3 ∈ SCall, (2) can be simpli ed to

min
{αk,βl}

μ = μ(i1)max = μ(i2)max = μ(i1)max,

s.t. 0 ≤ αk ≤ 1, 0 ≤ βl ≤ 1,
where μ(i1)max = μ(i1)c , μ(i2)max = max{μ(i2)b , μ

(i2)
e1 , μ(i2)c },

and μ(i3)max = max{μ(i3)b , μ
(i3)
e1 , μ

(i3)
e2 , μ(i3)c }. (3)

In (3), for user i ∈ Uall, μ(i)c = E[TN (i)(Fb ∪Fe1 ∪Fe2)], μ
(i)
b =

E[TN (i)(Fb)], μ
(i)
e1 = E[TN (i)(Fe1)] and μ(i)e2 = E[TN (i)(Fe2)].

Similarly, for i ∈ U
b,e1, μ(i)c = E[TN (i)(Fb ∪ Fe1)], μ

(i)
b =

E[TN (i)(Fb)] and μ(i)e1 = E[TN (i)(Fe1)]. From [8],

μ(i1)c =
β1
√
Nb

Kb
σW , μ

(i2)
b =

β2
√
Nb

Kb,e1
σW , μ

(i2)
e1 =

α1
√
Ne1

Kb,e1
σW ,

μ(i2)c =
β2Nb + α1Ne1

Kb,e1
√
Nb +Ne1

σW , μ
(i3)
b =

(1− β1 − β2)
√
Nb

Kall
σW ,

μ
(i3)
e1 =

(1− α1)
√
Ne1

Kall
σW , μ

(i3)
e2 =

√
Ne2

Kall
σW , and

μ(i3)c =
(1− β1 − β2)Nb + (1− α1)Ne1 +Ne2

Kall
√
Nb +Ne1 +Ne2

σW . (4)

4. MIN-MAX SOLUTION
In this section, we’ll introduce how to nd the solution to the game
under the constraint that all the colluders share the same risk. Given
(Kb,Kb,e1,Kall) and (Nb, Ne1, Ne2), to search for the min-max
solution, we need to rst analyze μ(i)max for each colluder i, then nd
all possible collusion parameters that achieve fairness of collusion.
Then, to minimize their risk, the colluders select from the feasible set
the parameters that give them the minimum risk, and the ngerprint
detector uses the detection statistics with the largest mean.

4.1. Analysis of μ(i)max

For colluder i ∈ SCb,e1 who receives a medium resolution copy,
μ
(i)
max can be either μ(i)b , μ(i)e1 or μ(i)c . If μ(i)max = μ

(i)
b , then μ(i)b ≥

μ
(i)
e1 and μ(i)b ≥ μ

(i)
c . We can show that

μ
(i)
b ≥ μ

(i)
e1 ⇔ β2 ≥ α1

√
Ne1√
Nb

, and

μ
(i)
b ≥ μ(i)c ⇔ β2 ≥ α1Ne1√

Nb(
√
Nb +Ne1 −

√
Nb)

. (5)

Since
√
Ne1 ≥

√
Nb +Ne1 −

√
Nb, so (5) can be simpli ed to

μ(i)max = μ
(i)
b if and only if β2 ≥ α1Ne1√

Nb(
√
Nb +Ne1 −

√
Nb)

. (6)

The analysis for μ(i)max = μ
(i)
e1 and μ(i)max = μ

(i)
c are similar and

detailed derivation is in [10].
For colluder i ∈ SCall who receive all three layers, μ(i)max has

four possible values: u(i)max = u
(i)
b , u(i)max = u

(i)
e1 , u(i)max = u

(i)
e2 ,

and u(i)max = u
(i)
c . The analysis is similar to (5), and detailed deriva-

tion is in [10]. From [10], if Ne2 > Nb, μ
(i)
b cannot the largest

among the four means, and μ(i)max 
= μ
(i)
e1 if Ne1 > Nb.

4.2. Feasible Set
Given the above analysis, the next step for colluders is to nd all
possible sets of {αk, βl} that satisfy μ(i1)max = μ

(i2)
max = μ

(i3)
max for

i1 ∈ SCb, i2 ∈ SCb,e1 and i3 ∈ SCall.
Without loss of generality, we consider a scalable ngerprinting

system where Nb : Ne1 : Ne2 = 1 : 1 : 2. In this scenario, from
the analysis in the previous section, for a colluder i2 ∈ SCb,e1 who
receives a medium resolution copy, μ(i2)max has three possible values:

μ
(i2)
max = μ

(i2)
b , μ(i2)max = μ

(i2)
e1 and μ(i2)max = μ

(i2)
c . Furthermore, for

a colluder i3 ∈ SCall who receives all three layers, μ(i3)max equals to
either μ(i3)e1 or μ(i3)c , while μ(i3)max 
= μ

(i3)
b and μ(i3)max 
= μ

(i3)
e1 . Thus,

there are a total of 6 possible combinations of μ(i2)max and μ(i3)max.
The rst one is μ(i2)max = μ

(i2)
b for i2 ∈ SCb,e1 and μ(i3)max =

μ
(i3)
e2 for i3 ∈ SCall. From (4), μ(i1)max = β1

√
NbσW /Kb, μ(i2)max =

β2
√
NbσW /Kb,e1, and μ(i3)max =

√
Ne2σWKall. To let μ(i1)max =

μ
(i2)
max = μ

(i3)
max, colluders should select

β1 =

√
Ne2K

b

√
NbKall

=

√
2Kb

Kall
and β2 =

√
2Kb,e1

Kall
. (7)

Because the selected β1 and β2 have the constraint 0 ≤ β1, β2 ≤
β1 + β2 ≤ 1, therefore, (Kb,Kb,e1,Kall) must satisfy

β1 + β2 =
√
2
Kb +Kb,e1

Kall
≤ 1 ⇔ Kall ≥

√
2K

1 +
√
2
. (8)

From (6), μ(i2)max = μ
(i2)
b if and only if

α1 ≤ A
�
= β2

√
Nb(
√
Nb +Ne1 −

√
Nb)

Ne1

=

√
2Nb(

√
Nb +Ne1 −

√
Nb)

Ne1

Kb,e1

Kall
. (9)

A = (2−√2)Kb,e1/Kall in our example ofNb : Ne1 : Ne2 = 1 :

1 : 2. Similarly, μ(i3)max = μ
(i3)
e2 if and only if

α1 ≥ B
�
= 1 +

(1− β1 − β2)Nb +Ne2

Ne1

−
√
Ne2 ·

√
Nb +Ne1 +Ne2

Ne1
(10)

B = 4−2√2−√2(Kb+Kb,e1)/Kall ifNb : Ne1 : Ne2 = 1 : 1 :
2. In order to be able to select a α1 that satis es both B ≤ α1 ≤ A
and 0 ≤ α1 ≤ 1, it is required that A ≥ 0 (which is always true for
all Kb,e1 ≥ 0 and Kall ≥ 0) , B ≤ 1 and B ≤ A. Consequently,
(Kb,Kb,e1,Kall) must satisfy

B ≤ 1 ⇔ Kall ≤
√
2K

3−√2 ,

and B ≤ A ⇔ Kall ≤ 2K − (2−√2)Kb

6− 2√2 . (11)

Combining (8) and (11), we have√
2K

1 +
√
2
≤ Kall ≤ min

�
2K − (2−√2)Kb

6− 2√2 ,K −Kb

�
. (12)

To summarize, if (Kb,Kb,e1,Kall) satis es (12), colluders can
ensure the equal risk by following (7)-(10) when selecting the col-
lusion parameters. In this scenario, μ(i2)max = μ

(i2)
b for i2 ∈ SCb,e1

and μ(i3)max = μ
(i3)
e2 for i ∈ SCall. The analysis for other combina-

tions of μ(i2)max and μ(i3)max are similar, and the details are in [10].
4.3. Min-Max Solution
After identify all the possible collusion parameters that satisfyμ(i1)max =
μb,e1max = μallmax, to nd the solution of this colluder-detector game,
colluders should nd collusion parameters in the feasible set that
gives them the smallest risk, and the ngerprint detector should use
the detection statistics with the largest mean.

To demonstrate this process, we use the system setup in Figure 1
as an example, where Nb = 5000, Ne1 = 5000 and Ne2 = 10000,
respectively. Among a total of K = 250 colluders, if Kb = 50,
Kb,e1 = 25, and Kall = 175, for i2 ∈ SCb,e1 and i3 ∈ SCall,
there are three scenarios where colluder can have equal risk:
• The colluders can achieve fairness of collusion by selecting β1 =
0.4594, 0.0951 ≤ α1 ≤ 0.2297 and β2 = 0.3248 − α1. In this
scenario, μ(i2)max = μ

(i2)
c = μ

(i3)
max = μ

(i3)
c = 2.0545.
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Fig. 2. Simulation results on the rst 40 frames of sequence “carphone” from 10000 simulation runs. (a): Pd of the collective ngerprint
detector, the optimum detector and the self-probing detector. (b) Each colluder’s probability of being detected (P (i)

s ) with the self-probing
detector. (Nb, Ne1, Ne2) = (42987, 42951, 85670). |Ub| = |Ub,e1| = |Uall| = 250. Pfp = 10

−3. K = 250 andKb = 50. Each point on
the x axis corresponds to a unique triplet (Kb,Kb,e1,Kall) where Kb,e1 = K −Kb −Kall. Pfp = 10

−3.

• The second scenario is when colluders select 0.4594 ≤ β1 ≤ 1,
β2 =

Kb,e1

Kb β1 and α1 = 4 − K+Kall

Kb β1. Here, μ(i2)max = μ
(i2)
b =

μ
(i3)
max = μ

(i3)
c . Among all these feasible sets of collusion param-

eters, μ(i)max is minimized when β1 = 0.4594, β2 = 0.2297 and
α1 = 0.0951, and μ(i2)max = μ

(i2)
b = μ

(i2)
c = 2.0545.

• In the third scenario, 0.4594 ≤ β1 ≤ 1, β2 = 4− K+Kall

Kb β1 and

α1 =
Kb,e1

Kb β1, which gives μ(i2)max = μ
(i2)
e1 = μ

(i3)
max = μ

(i3)
c . μ(i)max

is minimized and equals to 2.0545 when β1 = 0.4594, β2 = 0.0951
and α1 = 0.2297, which gives μ(i2)max = μ

(i2)
e1 = μ

(i2)
c .

Therefore, the solution for this example is: colluders uses β1 =
0.4594, 0.0951 ≤ α1 ≤ 0.2297 and β2 = 0.3248 − α1, and the
ngerprint detector uses ngerprints extracted from all layers col-

lectively to identify colluders. By the above analysis, colluders can’t
further reduce their risk while still achieving fairness, and the nger-
print detector can’t further improve the traitor tracing performance
neither. Thus, this solution is optimal for all the players in the game.

5. SIMULATION RESULTS
We test on the rst 40 frames of sequence “carphone” and choose
Fb = {1, 5, 9, · · · , }, Fe1 = {3, 7, 11, · · · } andFe2 = {2, 4, 6, · · · }
as an example of temporal scalability. We use human visual model
based spread spectrum embedding [7] when embedding ngerprints
into the host signal, and assign orthogonal ngerprints to different
users. During collusion, colluders apply two-stage collusion in Sec-
tion 2.2 and follow Section 4 when selecting collusion parameters.
For each frame in the colluded copy, we adjust the power of the ad-
ditive noise such that ||nj ||2 = ||W(i)

j ||2.
We simulate three different types of ngerprint detectors: the

simple collective detector in [5] which always uses ngerprints ex-
tracted from all layers to identify colluders; a optimum detector
which has perfect knowledge of the means of the detection statistics
and always selects the one with the best detection performance; and
the self-probing detector in [8] which rst probes information about
the means of the detection statistics and then selects the detection
statistics with the largest estimated mean.

Figure 2 (a) shows the performance of different detectors. From
Figure 2 (a), using side information about the means of the detection
statistics during ngerprint detection help improve the traitor trac-
ing performance, and the performance of the self-probing ngerprint
detector is approximately the same as that of the optimum detector.
Figure 2 (b) plots each colluder’s probability of being detected with
the self-probing ngerprint detector. By choosing the collusion pa-

rameters as in Section 4, all colluders have the same probability of
being detected and achieve fairness of collusion.

6. CONCLUSIONS
This paper investigates the game-theoretic formulation and analysis
of the dynamics between the colluders and the ngerprint detector.
We model this dynamics as a two-stage zero-sum game, where the
colluders select the collusion parameters to minimize their risk under
the fairness constraint, and the ngerprint detector probes side infor-
mation about collusion and adaptively adjust the detection strategy
to maximize the collusion resistance. We analyze the existence of
the optimal solution where no players in the game can further in-
crease their payoff, and derive the strategy for the colluders and the
ngerprint detector to reach if it exists.
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