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ABSTRACT

Digital fingerprinting uniquely labels each distributed copy with
user's ID and provides a proactive means to track the distribution of
multimedia. Multi-user collusion is a powerful attack against digital
fingerprinting, in which a group of attackers collectively mount at-
tacks to remove the embedded identification information. To resist
such multi-user collusion and support multimedia forensics, this pa-
per investigates the side information based multimedia fingerprint-
ing. We explore techniques to utilize side information of collu-
sion attacks during colluder identification process, and show that
the means of the detection statistics at the detector's side can sig-
nificantly improve the traitor tracing capability. We also investigate
how the fingerprint detector can probe such side information from
the colluded copy, and our simulation results show that the proposed
scheme helps the fingerprint detector achieve the optimum detection
performance.

Index Terms- security, multimedia systems, video signal pro-
cessing

1. INTRODUCTION

Digital fingerprinting is an emerging forensic tool to protect mul-
timedia from illegal alteration and unauthorized redistribution. It
seamlessly embeds a unique label, known as "fingerprint", into each
distributed copy to track the usage of multimedia data. Multi-user
collusion is a powerful attack against digital fingerprinting, where
a group of attackers collectively mount attacks to remove traces of
the identifying fingerprints. To offer consistent and reliable traitor
tracing, multimedia fingerprinting should resist such multi-user col-
lusion as well as attacks by a single adversary.

Most prior work on multimedia fingerprinting focused on collu-
sion resistant multimedia fingerprint design. A two-layer fingerprint
design scheme was proposed in [1], where an inner code from spread
spectrum embedding is combined with an outer error-correcting code.
In [2], finite projective geometry was used to generate codes whose
overlap with each other can identify colluding users. The combinato-
rial theory based Anti Collusion Code for multimedia was proposed
in [3]. In [4], prior knowledge of possible collusion patterns was
used to improve the collusion resistance.

These prior works assumed that the fingerprint detector has no
information about multi-user collusion. They considered a simple
colluder identification process, which first calculates the similarity
between the colluded copy and each of the originally distributed
copies and then estimates the identities of the colluders. If some in-
formation of collusion attacks is available during the colluder identi-
fication process, intuitively, utilizing such side information can help
improve the traitor tracing performance. It is important to investi-
gate which side information about collusion can help improve the
collusion resistance, explore techniques to probe and utilize such
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side information during fingerprint detection, and analyze its perfor-
mance. Such investigation helps formulate the dynamics between
the colluders and the detector in multimedia forensics, and enables
to offer stronger protection of multimedia.

This paper considers scalable multimedia systems where users
receive copies of different quality due to network and device het-
erogeneity, and investigates the side information assisted forensic
systems for scalable multimedia. The rest of the paper is organized
as follows. Section 2 introduces the scalable multimedia forensic
system model. In Section 3, we investigate how to probe and uti-
lize side information about collusion during colluder identification
to improve the detection performance. Section 4 shows the simula-
tion results, and conclusions are drawn in Section 5.

2. SYSTEM MODEL

2.1. Scalable Video Coding Systems

To accommodate heterogeneous networks and users with different
processing capability, scalable video coding is widely used in the lit-
erature to encode the video content into several bit streams of differ-
ent priority. The base layer contains the most important information
of the video and is received by all user. The enhancement layers
gradually refine the reconstructed sequence at the decoder's side and
are only received by users with sufficient bandwidth. Without loss
of generality, we consider a three-layer temporally scalable video
coding system that encodes different frames in different layers [5].
As an example, with MPEG-2 video coding, the base layer may in-
clude all the I frames, the enhancement layer 1 may contain all the P
frames, and the enhancement layer 2 encodes all the B frames.

Define Fb, Fei and Fe2 as the sets containing indices of the
frames that are encoded in the base layer, enhancement layer 1 and
enhancement layer 2, respectively; and we define F(i) as the set
containing the indices of the frames that user u(i) receives. Ub is the
subgroup of users who receive the base layer only; Ub,el contains
all users who subscribe to the medium quality version and receive
the base layer and the enhancement layer 1; and Uall includes users
who receive all three layers.

2.2. Scalable Multimedia Fingerprinting Systems

Spread Spectrum Fingerprint Embedding In this paper, we use
spread spectrum embedding [6,7] to embed fingerprints in the host
signal. For Sj, the jth frame in the video, and for each user u(i)
who subscribes to frame j, the content owner generates a unique
fingerprint W(i) of the same length as Sj. We let {W(i)} fol-
low normal distribution J\f(O, 'u2) in this paper since Gaussian dis-
tributed fingerprints have been proven to be robust against many at-
tacks, and fingerprints for different users are independent of each
other. The content owner then generates the fingerprinted frame
X(i) = Sj + JNDjW('), and distributes it to u(i). JND here
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is used to control the energy and achieve the imperceptibility of the
embedded fingerprints [7].
Multi-user Collusion It was shown in [8] that nonlinear collusions
can be modeled as averaging collusion followed by additive noise,
and all collusion attacks have similar performance if they generate
colluded copies of the same perceptual quality. Therefore, we only
consider averaging based collusion in this paper.

During collusion, depending on the resolution of their received
fingerprinted copies, the colluders divide themselves into three non-
overlapping subgroups: SCb contains the indices of the colluders
who receive the base layer only; SCb,el contains the indices of the
colluders who subscribe to the medium quality version and receive
the base layer and the enhancement layer 1; and SCall contains the
indices of the colluders who have sufficient bandwidth to receive all
three layers. Kb, Kb,el and Kal are the number of colluders in
SCb, SCb,el and SCall, respectively. K = Kb + Kb,el + Kall is
the total number of colluders.

Following the work in [5], the colluders first apply intra-group
collusion: for each frame j C Fb that they received, colluders in
SCb generate Zb ZkcSCb Xk) /Kb Similarly, for each frame
j C Fb U Fei that they received, colluders in SCb,el calculate
zb,el = , Xf) Kb el; and for each frame in the video
sequence, colluders in SCall generate zZallkc ll X(k) IKal l.

Then, the colluders apply inter-group collusion: for each frame
j C Fb in the base layer, the colluded frame is Vj = 3 Zb +
/32zbel + 33Zjall + nj, where 0 < 31,/32,/33 </31 +/32 +/33 1
and nj is additive noise to further hinder detection. For each frame

jC Fei in the enhancement layer 1,bV7 = lZ>el+±Z2Zall+±nj,
where 0 < avl,c2 < OvI + cv2 = 1. For each frame j C Fe2 in the
enhancement layer 2, V = Zall + nj.

The colluders seek the collusion parameters {cok, 31 } to ensure
that all colluders have the same probability of being detected. Details
of the collusion parameter selection and the constraints on collusion
to achieve fairness are in [5] and not repeated here.
Fingerprint Detection and Colluder Identification We consider
a non-blind detection scenario where the host signal is first removed
from the test copy before colluder identification. The detector then
extracts the fingerprint Yj from the jth frame Vj in the colluded
copy, compares the extracted fingerprint Y with each of the origi-
nal fingerprints {W(') }, and outputs the identities of the estimated
colluders SC.
Performance Criteria To evaluate the traitor tracing capability of
the forensic system, we use the commonly used criteria in the liter-
ature [8]: the probability of capturing at least one colluder (Pd) and
the probability of accusing at least one innocent user (Pfp). Other
criteria give the same trend.

3. MULTIMEDIA FORENSIC DETECTOR WITH SIDE
INFORMATION

This section investigates fingerprint detection with side information
for scalable multimedia. As an example, we consider the scenario
where the colluded copy contains all three layers and has the highest
quality, and we assume that the constraints on collusion to achieve
fairness are satisfied. The analysis for other scenarios is similar.
Without loss of generality, we use users in Uall as an example to
demonstrate the detection process and analyze the performance. For
users in Ub el and Ub, the colluder identification process and the
performance analysis are similar.

3.1. Different Fingerprint Detection Strategies
A Collective Fingerprint Detector The work in [5] considered a
simple fingerprint detector that uses fingerprints extracted from all
layers collectively to identify colluders. For each user u(W), the de-
tector first calculates F(i) = F 0n Fc, where F(i) contains the
indices of the frames received by u(i) and FC contains the indices of
the frames in the colluded copy. Then the detector calculates

(1)

where W is the Euclidean norm ofW Given a pre-determined
threshold h, SC = {i: TN(') > h}.

Assume that the colluders choose the parameters {cok, /31 } in the
same way as in [5] and FC = Fb U FeI U Fe2. Under the assumption
that the detection noises are i.i.d. and follow Gaussian distribution
A&(0, U2 ), from the analysis in [5], for i C U'll,

TN(i)r {Al (/c an): ilCSC: where (2)

(Nb + Nel + Ne2)J7W
[C KbVNb+Kel Nb+-Nel+Ke2 Nb ++N +Ne2

Nb, Nei and Ne2 are the lengths of the fingerprints embedded in
the base layer, enhancement layer 1, and enhancement layer 2, re-
spectively. Define PW) as the probability of successfully capturing a
colluder u(icSC) and PFi) is the probability of falsely accusing an
innocent u(i) where i , SC. With the detector in (1),

p(i) (h-/-tc ) oi C SCall,(h/c)for

and p(i) Q (h for i ,SC, (3)

where Q(.) is the Gaussian tail function.
With the collective detector in (1), PW() for i C SCb,el and

i C SCb are the same as in (3), and we can have
Pd 1- J (1 p(i)) and Pfj 1 7 (1 FP(>)) (4)

iCsc ivsc
Fingerprint Detection at Each Individual Layer To identify col-
luders, instead of using fingerprints extracted from all three lay-
ers collectively, the detector can also examine fingerprints extracted
from each layer individually.

For example, for user ui C Uall who receives all three lay-
ers from the content owner, the detector can use the fingerprints
extracted from the enhancement layer 2 only to decide if u(i) is a
colluder. Given {Yj}jCFF2, the fingerprints extracted from the en-
hancement layer 2, the detector compares {Yj }jCF2 with Wi)1}jCF,2,
calculates the detection statistics

TN(2)=( E y( ) / (5)e2 Jj
iCF,2 3CF,2

and decides that i E SC if TN(2 > h where his the predetermined
threshold. The analysis of the detection statistics TN(') in (5) is
similar to that of TN(') in (1). If the detection noises are i.i.d. and
follow distribution AV(O, ao2), with TN(') in (5), for i C SCall,
following the same analysis as in [5], we can have

p(i) Q (h 112) where J42) W(J. (6)

Similarly, for ut C Ual , the detector can also use fingerprints
extracted from the enhancement layer 1 only to determine if u(i) is
a colluder. The detector uses the following detection statistics

2294

.i) IIW (')112,TN(')= 1: (Y., W, ) / i
jcp(i) jcp(i)



3.5F

C)

w

25o 2.5

.2

i6 2-

aD 1.5

aD

s 1 -

co

: 0.5

I(') in (6)e2

1tcin (2)
[() in (8)e,l

Il(b) in (10)

Lb
(I)
e 1

(i)"Ill~
e2

0
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Kall/K

Fig. 1. Comparison of ,u in (2), e2) in (6), ,u$'l) in (8) and 4(i) in
(10) for i C SCall. (Nb, Ne,l Ne2) (50000, 50000, 100000).
K = 250 and Kb 50.

TN(') = wE7II7()) $E lW(')112, (7)
i EFelI EFeI

to measure the similarity between the extracted fingerprint and the
original fingerprints embedded in X(i), and outputs i C SC ifTN() >
h for a predetermined threshold h. If the detection noises are i.i.d.
Gaussian JV(O, o2), then we can show that

p(i h "Nei (8pQ where / 1 (8)s ~ ~~~~~eKall
For u' C Uall, if the detector uses fingerprints extracted from

the base layer only during colluder identification, he calculates

TN(') (- Y W,W ))) / 11 2, (9)
EFb EEF

compares with a given threshold h, and considers u(i) as a colluder
if TN(') > h. Under the assumption that the detection noises are
i.i.d. and follow distribution JV(0, o2 ), using TN(') in (9),

)Q ( )where (i) 3 Kall uw (10)

For detectors (5), (7) and (9), the analysis of p(') and that offa
(Pd, Pfp) are the same as in (3) and (4), and are not repeated.

3.2. Performance Comparison

This section compares the performance of the four detectors (1), (5),
(7) and (9) when identifying colluders in SCall . From the above
analysis, for a given h and a fixed P(>), comparing P(i) is equivalent
to comparing the means of the detection statistics.

For a colluder i C SCall, Figure 1 shows an example of the
means of the detection statistics in (1), (5), (7) and (9). In Figure 1,
W(i) follow Gaussian distribution J\f(O, 1), and fingerprints for dif-
ferent users are independent of each other. The lengths of the finger-
prints embedded in the base layer, enhancement layer 1 and enhance-
ment layer 2 are Nb = 50000, Nel = 50000 and Ne2 100000,
respectively. We fix the total number of colluders K 250, and
Kb = 50 of them receive the fingerprinted base layer only. Each
point on the X axis corresponds to a unique triplet (Kb. Kel. Ke2).
The colluders follow the work in [5] to select the collusion param-
eters and generate a colluded copy with all three layers under the
fairness constraints.
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Fig. 2. Probability of selecting the optimum detection statistics when
identifying colluders in U'll for the example in Figure 1. ht is cho-
sen to let p(i) 10-2 for an innocent user i f SC.
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From Figure 1, TN(') in (1) has the best performance when
more than 60% of the colluders receive a high-quality copy with
all three layers. This is because in this scenario, u(O's fingerprints
are spread all over the entire colluded copy V and, therefore, from
detection theory [9], fingerprints extracted from all layers should be
used during detection to improve the performance. When K allIK <
0.6, due to the selection of the collusion parameters to achieve fair-
ness of the attack, a significant portion of W(')'s energy is in the
enhancement layer 2, while the other two layers of the colluded copy
contain little information of u(i) 's identity. Thus, TN(') in (5) gives
the best detection performance.
3.3. Colluder Identification with Side Information
The four detection statistics in Section 3.1 do not consider how at-
tackers collude when identifying colluders and neither of them can
achieve the optimum performance in all scenarios. Intuitively, if
some information about collusion can be made available to the de-
tector, utilizing such side information during colluder identification
will help improve the detection performance.

From the above sections, the selection of collusion parameters
determines how the energy of each colluder's fingerprint distributes
in the colluded copy and has significant impact on the detection per-
formance. Thus, one candidate of such side information about collu-
sion is the selected collusion parameters, or equivalently, the means
of different detection statistics. For each subgroup of colluders, if
the exact values of the means of the detection statistics are available
to the detector, the colluder identification process can always select
the detection statistics with the largest mean and, therefore, achieves
the optimum detection performance.

If the detector does not have perfect knowledge of the means of
the detection statistics, he/she has to examine the colluded copy and
probe such side information himself/herself. To identify colluders in
Uall, the key steps in probing the means of the detection statistics
and selecting the optimum detection statistics are:
* For every user u(i) in Uall, the detector first calculates TN('),
TN('), TN('l) and TN(') as in Section 3.1, and outputs SCC

e2el b ~ ~ 2 Ce{i : TN(') > ht}, SCe = i :TN(') > ht}, SC,, = {i
TN(') > ht}, and SCb= {i : TN(') > ht} for a given ht.
* The detector combines the above four sets of estimated colluders
in Uall and lets SC = SCC U SCe2 U SCel U SCb
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* Given SC , the detector estimates the means of the four detec-
tion statistics in Section 3.1:

TN(k) I

AUC = E -all,II7 e2 =

kESCtt
TN(k)

,Ael = E el and, bl --all b

kcC~~tal IS

ESC~H

TN(k)e2
~-all

TN,(k)

kcS-al l

* The detector compares /Lic, -e2, Ui-el and fib and selects the de-
tection statistics with the largest estimated mean. For example, the
collective detector in (1) is chosen if ji, has the largest value.

For the example in Figure 1, based on 10000 simulation runs,
Figure 2 plots the probability that the above algorithm selects the
optimum detection statistics when identifying colluders in U'll. We
only choose between TN(') and TN(') since TN(') and TN(')e2 el1 b
never outperform the other two in Figure 1.

From Figure 2, the above algorithm selects the optimum detec-
tion statistics with probability 0.6 when K'll K 0.6; while in
other scenarios, the detector always picks the best detection statis-
tics. From Figure 1, when Kll lK 0.6, p,i j4(i) and TN(')
and TN(') have approximately the same performance. Therefore,e2
choosing the sub-optimum detection statistics does not significantly
deteriorate the detection performance. When p, and (L2) differ sig-
nificantly from each other, the detector always chooses the optimum
detection statistics when identifying colluders in U'll.

4. SIMULATION RESULTS

Figure 3 shows the simulation results based on 10000 simulation
runs. In our simulations, we assume that each frame has 5000 em-
beddable coefficients and test on a total of 40 frames. We consider a
temporally scalable video coding system with Fb = {1, 5, 9, . }, Fe,
{3, 7, 11, . } and Fe2 = {2, 4, 8, . }. {W(i)} follow distribu-
tion J\f(O, 1) and fingerprints for different users are generated in-
dependently. The lengths of the fingerprints embedded in the three
layers are Nb = 50000, Ne = 50000 and Ne2 = 100000, respec-
tively. lUbl = lUb,ell = jUalll = 250.

There are a total of K = 250 colluders, and Kb = 50 of them
receive the fingerprinted base layer only. Each point on the X axis

in Figure 3 corresponds to a unique triplet (Kb, Kb,el Kall ). The
colluders select {OZk, f1 } in the same way as in [5] and generate a
colluded copy with all three layers under the fairness constraints.
For each frame j in the colluded copy, we adjust the power of the
additive noise such that Inj 112 = IIW(i)112. Other values give the
same trend.

We simulate three different fingerprint detectors: the simple col-
lective detector in 1; the optimum detector with perfect knowledge
of the means of the detection statistics; and the self-probing detec-
tor, who first uses the algorithm in 3.3 to select the detection statistics
and then follows Section 3.1 to identify colluders.

From Figure 3, compared with the simple collective detector, the
means of the detection statistics help the fingerprint detector signif-
icantly improve the performance, especially when KallIK is small
and the colluders' fingerprints are not evenly distributed in the three
layers of the colluded copy. In addition, the side information prob-
ing algorithm in Section 3.3 helps the detector choose the best de-
tection statistics to identify colluders and achieve the optimum de-
tection performance.

5. CONCLUSIONS

This paper studies multimedia forensics with side information, in-
vestigates which side information about collusion attacks can help
improve the forensic system's traitor tracing capability, and explores
techniques to probe and utilize such side information during col-
luder identification. We show that the means of the detection statis-
tics can help significantly improve the collusion resistance. We also
propose a method for the fingerprint detector to probe such side in-
formation from the colluded copy himself/herself, and show that the
proposed method helps the detector achieve the optimum detection
performance.
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