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ABSTRACT

In this digital era, digital multimedia contents are often trans-
mitted over networks without any protection. This raises serious
security concerns since the receivers/subscribers do not know what
processes have been applied to multimedia data, and neither do they
know whether this copy comes from a trusted source. Therefore, it is
critical to provide forensic tools to identify the history of operations
applied to multimedia data. In this paper, we focus on the identifica-
tion of source coding techniques applied to multimedia, and we in-
vestigate the forensic analysis of transform based coding (both DCT
and DWT based), subband coding, and linear predictive coding. Us-
ing the intrinsic fingerprints as trace of evidences, we construct an
image source coding forensic system that analyzes which source en-
coder is used to compress the image and provides confidence mea-
surements. Our simulation results show that the proposed system
provides trustworthy performance: the probability of detecting the
correct source encoder is 0.82 when PSNR = 40 dB, and it can cor-
rectly identify the source encoder with probability 0.98 with PSNR
= 20 dB.

Index Terms— Multimedia forensics, security, image coding

1. INTRODUCTION

Recent development in multimedia processing and network tech-
nologies has facilitated the distribution and sharing of multimedia
through networks, and the security demands increase with the grow-
ing of the network and multimedia technologies. The creation, cod-
ing, and delivery of multimedia data constitutes a unique data path.
Every processing that has been applied to the multimedia data has its
own trace, which uniquely identifies the processing. To ensure that
the received data has been processed by the appropriate trusted enti-
ties, we must validate the data path by identifying each of its steps:
acquisition, source coding, channel coding, and transmission. We
assess the authenticity of the received data by identifying the par-
ticular mechanism used in each step of the data path along with its
parameters.

The very first step of distributing or storing the multimedia is
to compress it via source coding to reduce the amount of data. The
content can be decoded later to reconstruct and recover the origi-
nal signal to the degree that the distortion is mostly invisible to hu-
man eyes/ears. Most existing source coding schemes explore human
perceptual systems and apply lossy compression to achieve higher
compression efficiency while minimizing the perceptual distortion.
Although the distortion is perceptually unnoticeable to human, it is
still in the multimedia data and gives us the ”trace” of the source
coding scheme. This source coding distortion, which is naturally
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and inherently generated through out the chain of processing in con-
tent generation, can be considered as a kind of fingerprint. Since it
is not explicitly added to the image by the owner, we call it intrinsic
fingerprint. This is to differentiate it from the traditional extrinsic
fingerprint which is intentionally embedded into the host data using
data hiding and watermarking techniques [1].

The differences between the extrinsic and the intrinsic finger-
prints are not only how they are generated, but also the detection
scheme. Since the intrinsic fingerprint is not added by the content
owner intentionally and the content owner does not know the ground
truth, detection of intrinsic fingerprints is much harder than those
used to detect the extrinsic ones. A general method that can be taken
under the phenomenon of detecting without ground truth is the blind
detection, but since we only care about multimedia security, we can
go much further than blind detection. Although there are numerous
source coding methods, they can be grouped into a few categories,
where all methods in the same category share similar characteristics
in their traces of coding evidence. For example, we can group dif-
ferent image coding methods into transform coding, vector quanti-
zation, sub-band coding, linear predictive coding, embedded coding,
etc. In this paper, we analyze the intrinsic fingerprints of different
types of image coding methods, and propose an image source coding
forensic system to identify the type of the source coding scheme.

The rest of the paper is as follows. Section 2 introduces the
source coding forensic system, and Section 3 analyze the trace of
several image coding scheme, containing the sub-band coding, trans-
form coding, including discrete cosine transform (DCT) based, dis-
crete wavelet transform (DWT) based and linear predictive coding.
In Section 4 we will give the performance of our image coding foren-
sics system based on simulations, and the conclusions are drawn in
Section 5.

2. SYSTEM MODEL

2.1. Image Distribution Over Communication Networks

Figure 1(a) shows the sequence of processes that an image goes
through when transmitted over the communication networks. First,
the original image is source-encoded and entropy coded to reduce the
total number of bits. Then, channel coding is applied to give more
error protection during transmission. After modulation, the signal
goes through the channel. At the receiver side, the end user applies
the inverse of the encoding process to recover the image: demodula-
tion, channel decoding, entropy decoding and source decoding. The
output is the image that the subscriber or the source-coding forensic
detector has in hand.

2.2. Image Source Coding Forensic Detector

In the literature, there are many image source encoders, and Figure
1(b) shows the three main categories of image source coding: trans-
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Fig. 1. The flowchart and tree-structure of the image coding foren-
sics system.

form coding, subband coding, and linear predictive coding. All these
source encoders may divide the image into blocks before encoding.
Our previous work in [2] developed a forensic system to determine
whether the blocking process has been applied and to estimate the
block size. Transform based encoders first transform the image to
other domains using DCT or DWT, and then quantize or truncate the
signal. Subband coding schemes divide the image into different fre-
quency bands, and then apply other coding methods, for example,
DCT or linear predictive coding, to the lowest frequency subband.
Linear predictive encoder uses linear combination of the adjacent
pixels to estimate the current pixel, and stores these estimation coef-
ficients and quantizes the residue.

Given the input image of the source coding forensic detector,
we develop an iterative scheme to gradually improve the detection
performance. We set our stop criteria based on the idea that the re-
encoded image should be similar with the original one in pixels and
size. As shown in Figure 1(c): once we have an estimate of the image
coding scheme, we re-apply it to our image and determine whether
the re-encoded image is similar to the input image. If not, we take
this coding scheme out of our search space and run the above steps

again till we find one that satisfies the stop criteria. If we search
over our whole image coding sets and none of them can pass the
verification step, our system will return ”not available”.

3. INTRINSIC FINGERPRINTS OF DIFFERENT IMAGE
SOURCE CODING SCHEMES

In this section, we analyze the traces of subband coding, transform
coding, and the linear predictive coding. For each type, we will de-
fine a similarity measure to determine the sequence of image encoder
verification. The most important point of our method is that we as-
sume the very first original image before image encoder in Figure
1(a) has good image quality. If we apply the proper trace-removing
procedure to the test image, the extracted trace will be similar to the
intrinsic fingerprint. Furthermore, we will define an overall confi-
dence measure to be output with the estimated image coder at the
same time.

3.1. Subband Coding
Intrinsic Fingerprint Analysis The common procedure for all kinds
of subband schemes is filtering , down sampling, and reconstruction.
There are four kinds of sources that will leave traces in the subband
coding system: lack of perfect reconstruction, aliasing, quantization,
and the signal ringing effect.

When designing the filter banks, perform perfect reconstruction
is the most important issue, so the first type of error is insignificant
and can be discarded. Since quantization will cause random patterns
while human eyes are sensitive to flat regions of images, the encoder
would try to reduce these random patterns to keep the image quality.
Therefore, the quantization error is not a significant source of trace
for subband coding. When choosing the filter banks, the longer the
filters, or the more overshoots the filter, the more serous the ringing
effect. However, there is a tradeoff between the aliasing and the ring-
ing effect: the longer the filters, the less serious the aliasing. Usually,
the alias is much less desired than the ringing effect. Therefore, most
subband coding schemes use longer filters, that result in more traces
of the ringing effect.
Similarity Measure: By the previous analysis, ringing effect is the
most significant trace of all kinds of subband coding. There have
been many works on removing the ringing effect. Here, we apply
the method in [3]. The ringing effects happen on the edge of the
image. So the energy of the extracted trace should be concentrated
in the edge of the image, if the image encoder is a subband encoder.
Let S be the received image and Sr be the image after the ringing
effect has been removed. Se is the binary edge map from the edge
detection method in [4], where a pixel equals to 1 if it is detected as
an edge position and is 0 otherwise. Ne is the number of pixels that
are detected as an edge. Then, the similarity measure Msubband of
the subband coding category is defined as

Msubband =
||(S − Sr) ∗ Se||�

Ne||S − Sr|| . (1)

Ms can be viewed as an indicator of how concentrated the intrinsic
fingerprint is on the edge, normalized by the length of the edge for
fair comparison with other similarity measurements.

The typical subband coding will further encode the lowest fre-
quency subband (let it be the LL band) by using other image coding
methods, and the trace of the LL band encoder will also hide in the
image. In our system, we include two LL-band encoders: the DCT
encoder and the linear predictive encoder, as shown in Figure 1(b).
So we will apply the analysis in Section 3.2 and Section 3.3 based on
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Fig. 2. Histogram of 256x256 Lena using DCT coding with quanti-
zation step =10

Sr , to give the similarity measure of the two leaves in the subband
category.

3.2. Transform Coding

3.2.1. Discrete Cosine Transform Based

Intrinsic Fingerprint Analysis: A DCT-coded image will have peaks
in the coefficient histogram at multiples of the quantization step size
due to its nature of the procedure of zig-zag quantizing. An im-
age without DCT coding will resemble a smooth distribution with-
out such peaks. The coefficient histogram of the DCT-coded image
is mainly like a down sampled and zero-interpolated signal, where
most of the energy concentrate in the multiple values of the step size.
Figure 3.2.1 shows the histogram of Lena with step size 10. It is clear
that the the energy of this histogram concentrate in the multiples of
10.
Similarity Measure: From the previous analysis, the trace of the
DCT coding is the discrete-like behavior of its coefficients. There-
fore, we need to estimate the quantization table of the image first.
Here, we adopt the method in [5]. And then, similar to Section 3.1,
we get the binary histogram peak signal He: He equals to 1 if the
histogram is greater than 1 and it is zero otherwise. Let H be the
original histogram, then we define the similarity measurement of the
DCT coding MDCT be:

MDCT =
||H ∗ He||�||H|| ∗ ||He||

(2)

MDCT corresponding to how similar the histogram is to the trace of
DCT coding. Note that if the image is not DCT encoded, |He| will
be the total range of the coefficient, which will much larger than the
DCT encoded ones.

3.2.2. Discrete Wavelet Transform Based Coding

Intrinsic Fingerprint Analysis A DWT-coded image will have a
significant number of zeros in the high frequency subbands, which
is similar to the subband coding. In fact, DWT-coding can be viewed
as a special case of subband coding. But due to the large family of
DWT-coding families, here we address it as a separate category. The
intrinsic fingerprints have some common features with other sub-
band encoders as discussed in Section 3.1, but the uniqueness of the

DWT encoders is that there are only a finite number of commonly-
used wavelet bases. Thus we can try all the wavelet bases, and de-
termine how likely it is to be a DWT based encoder.
Similarity Measure: The similarity measure of the DWT-encoder
is a little bit more complex than the previous ones. This is because it
combines the similarity measure and the wavelet basis estimation to-
gether. For each wavelet basis (each one can be viewed as a leaf node
following in the DWT category in Figure 1(b)), we calculate the en-
ergy in the high subbands using a candidate wavelet basis. We iterate
over a number of wavelet decomposition levels until it yields suffi-
ciently low energy in the high subbands. If no decomposition levels
yields low enough energy in high subbands, the similarity measure
for this wavelet basis will equal to ε, where ε is a small number de-
fined by the system. Otherwise the similarity measureM (i)

DWT of the
ith wavelet basis will be the square root of the ratio of the energy in
the lowest subband to the total energy.

3.3. Linear Predictive Coding
Intrinsic Fingerprint Analysis: Linear predictive coding is one of
the very first image encoding methods. The basic idea is to represent
a pixel as a linear combination of the neighboring pixels, which is
similar to the speech coding. Generally speaking, the prediction co-
efficients change dynamically to satisfy the fast changing nature on
the boundaries for images. The trace of the linear predictive coding
comes from the quantization loss. If the linear predictive encoder de-
signs the prediction coefficients properly and removes the correlation
between adjacent pixels as much as possible, which is a reasonable
assumption for our purpose, the pattern of the loss cause by uniform
quantizer will be white. Even with a nonlinear quantizer, it is also
approximately white in the flat region.
Similarity Measure: Thus, to trace the evidence of linear predictive
coding, we first need to apply the image denoising for white noise.
In the literature, there has been many works in this area, and here we
use the method in [6]. Let Sd be the image after denoising, and Fd

be the spectrum of S − Sd, and F be the spectrum of a white noise
with the same power as Fd, then the similarity measure MLPC is:

MLPC =
||Fd ∗ F ||

�||F || ∗ ||Fd|| (3)

3.4. Full Forensic System Scheme

So now we have all the similarity measures of all nodes in Figure
1(b), so we can construct our image coding forensics system. The
system flowchart is as shown in Figure 1(a). 0≤TH≤1 is the thresh-
old and Cmax is the maximum size of the output candidate set, and
where both of them are set by the system designer. The system works
according to the following procedure:

• Step 1: Test whether the size of the output candidate set equals
to Cmax, if yes, compute the confidence measure and output
the one with lowest noise variance as calculted in Section3.5

• Step2: If there is no more source encoder in the tree, and no
the output candidate set is empty, return N/A, if it’s not empty,
compute the confidence measure and output

• Step 3: Choose the node in the tree with the highest similarity
measure and estimate the coding parameters

• Step 4: Calculate the similarity K between the re-encoded
image and the received image

• Step 5: If K ≥ TH , add this source coding scheme into
the output candidate, if not, then discard this source coding
scheme and go back to step 1
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3.5. System Confidence Measure
In addition to identifying the image source encoders and the param-
eters, it is also important to know the confidence level on the estima-
tion result. A higher confidence value in estimation would increase
the trustworthiness of the decision made by a forensic analyst. We
propose a noise variance based measure to quantify the confidence
level on the estimation result: let I be the received image, Ii be the
encoded image of I by the ith estimated source coding scheme, c is
the size of the output candidate set, and σ2

1 , σ
2
2 ..., σ

2
C be the variance

of I − I1, I − I2, ..., I − IC , then our confidence measure is:

1−
H([ 1

σ2
1
, 1
σ2
2
..., 1

σ2
C
]/ΣC

i=1
1
σ2

i
)

log2 C
(4)

Where H(P) = Σc
i=1Pi log2(1/Pi) is the entropy of the normal-

ized variance reciprocal vector. The basic idea of designing the con-
fidence measure is that, the re-encoded image Ic should be the same
as the received image I if our estimated source coding scheme is ex-
actly the same as the one that the image distributor used. Therefore,
if we treat the difference between I and Ic as noise, and the lower
the variance, the better the estimation. So among all the candidates
in the output candidate set, the one with the highest noise variance
reciprocal (1/σ2

min) is the best estimation, and if 1/σ2
min is much

larger than other variance reciprocal, we are more certain about the
estimated source encoder.

4. SIMULATION RESULTS

We collect the pictures that commonly used in image analysis: Lena,
Baboon, Barbara, Couple, Man, Boat, and Tank. We test over five
different categories of image encoder as shown in Figure 1(b), and
within every category, we have many different sets of parameters
(different block size, transform basis, filters, and prediction param-
eters), which results in a database of 427 images. And we test over
PSNR from 20 to 40 dB, where the difference between the original
image and the coded image is treated as noise. Figure 3.5 is the
probability of choosing the correct category of source encoder (DCT
based, DWT based, DCT subband, LP Subband and LPC). The re-
sult shows that our method works quite well, with accuracy over 90
percent when PSNR is less then 36 dB. And not surprising, the result
degrades when PSNR goes higher, it comes that if the error, i.e. the
”trace” of the image coding is lighter, it is harder for us the determine
what has been done on this image.

Table 4 shows the confusion matrix between the four source en-
coders when PSNR = 36dB, here, where the DCT subband and the

DCT
Encoder

DWT
Encoder

Subband
Encoder

Linear
Predictive
Encoder

DCT Encoder 91.7% 1.1% 3.9% 1.3%

DWT Encoder 1.3% 90.6% 7.2% 0.9%

Subband
Encoder

4.1% 2.5% 88.4% 5.0%

Linear Predictive
Encoder

2.4% 1.7% 7.6% 89.3%

Table 1. Confusion Matrix when PSNR = 36 dB

LP subband are combined together to show the trend. The first row
shows the percentage of the DCT encoded picturers being estimated
to the four encoders. The two highest error occurs for the DWT-
based encoder is easily to be estimated as a subband encoder, for
DWT-based encoder do have the common trace of the subband en-
coders. And the high percentage of LPC being estimated as subband
encoder is that it’s mixed up with the LP subband, because the trace
of LPC is not as strong as DCT, do DCT is not so likely to be mixed
up with the DCT-subband, but LPC does.

5. CONCLUSIONS

In this paper we study the intrinsic fingerprint forensic on image
coding, which enable us to follow the trace hides in the image and
what processes has been applied to the multimedia content which
is an important issue in the multimedia forensics and security. We
construct a image coding forensics system to estimate which kind
of source encoder has been applied on the input image, and also
gives the confidence measure of the output estimated encoder. The
system can choose the correct image encoder with probability higher
than 90 percent when PSNR ≤ 36dB. Even with PSNR of 40dB, the
probability of correct estimation is still 80 %.
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