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Abstract—In multimedia social networks, there exists compli-
cated dynamics among users who share and exchange multimedia
content. Using multimedia fingerprinting as an example, this paper
investigates the human behavior dynamics in the multimedia so-
cial networks with side information. Side information is the in-
formation other than the colluded multimedia content that can
help increase the probability of detection. We study the impact
of side information in multimedia fingerprinting and show that
the statistical means of the detection statistics can help the finger-
print detector significantly improve the collusion resistance. We
then investigate how to probe the side information and model the
dynamics between the fingerprint detector and the colluders as a
two-stage extensive game with perfect information. We model the
colluder-detector behavior dynamics as a two-stage game and find
the equilibrium of the colluder-detector game using backward in-
duction and show that the min-max solution is a Nash equilibrium,
which gives no incentive for everyone in the multimedia fingerprint
social network to deviate. This paper demonstrates that the pro-
posed side information can significantly help improve the system
performance to almost the same as the optimal correlation-based
detector. Such result opens up a new scope in the research of fin-
gerprinting system that given any fingerprint code, leveraging side
information can improve the collusion resistance. Also, we provide
the solutions to how to reach optimal collusion strategy and the cor-
responding detection, thus lead to a better protection of the multi-
media content.

Index Terms—Behavior forensics, collusion attack, multimedia
fingerprinting, side information, social networks.

I. INTRODUCTION

A SOCIAL network is a structure of nodes, which are usu-
ally individuals or organizations, that are connected with

each other via certain types of relations, such as values, friend-
ship, conflict, financial exchange, trade, etc. A multimedia so-
cial network is a social network in which a group of users share
and exchange multimedia content, as well as other resources,
e.g., Napster, Youtube, etc. By participating in multimedia so-
cial networks, users exchange resources with others. Since these
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multimedia social networks include millions of people, a cru-
cial issue there is to understand the user dynamics that influence
human behavior [1], such as how users interact with and respond
to each other. Research on human behavior provides funda-
mental guidelines to better design of multimedia systems and to
offer more reliable and personalized services. For example, the
performance of a peer-to-peer system fully depends on how co-
operative the users are. If the designer of a peer-to-peer system
can analyze the user behavior, he/she can predict the perfor-
mance and design mechanisms to construct a better system.

In this paper, we illustrate how to model and analyze user
dynamics in multimedia social networks using multimedia
fingerprinting as an example. Multimedia fingerprinting is
an emerging forensic tool to protect multimedia from illegal
alteration and unauthorized redistribution. It uses traditional
data-hiding techniques [2] to embed a unique label, known
as “fingerprint,” into each distributed copy to track the usage
of multimedia data. Multiuser collusion is a powerful attack
against multimedia fingerprinting, where a group of attackers
collectively and effectively mount attacks to remove traces of
the identifying fingerprints [3]. To offer consistent and reliable
traitor tracing, multimedia fingerprinting should resist such
multiuser collusion as well as attacks by a single adversary [4].

In the literature, there has been a lot of prior work on the
modelling and analysis of collusion [5]–[7]. The work in [8]
studied the relationship between the maximum allowable col-
luders by a fingerprinting system and other parameters, e.g., the
fingerprint length, the total number of users, and the system re-
quirements. Linear and nonlinear collusion attacks on orthog-
onal fingerprints were studied in [9], and the work in [10] inves-
tigated how a selfish colluder behave if he/she wants to cheat
during multiuser collusion in order to further decrease his/her
risk. Based on the above investigations, techniques from dif-
ferent disciplines, including error-correcting codes, finite-pro-
jective geometry, and combinatorial theories, have been used in
the literature to design multimedia fingerprints that can resist
collusion attacks [11]–[14].

In multimedia fingerprinting, colluders and the fingerprint de-
tector form a multimedia social network: colluders who apply
multiuser collusion attempt to remove the identifying finger-
prints in their copies, and the digital rights enforcer detects the
embedded fingerprints in the suspicious copy to capture col-
luders. It is obvious that the colluders and the fingerprint de-
tector influence each other’s performance and decision: given a
colluded copy, the detector always wants to adjust his/her de-
tection strategy to achieve the best possible traitor-tracing per-
formance. Meanwhile, during collusion, the colluders try the
best to minimize their risk based on the available information
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about the detection procedure. There are many collusion strate-
gies that the colluders can use to remove the identifying finger-
prints. Also, the detector can apply different detection strategies
to identify the colluders. Thus, the dynamics between the col-
luders and the fingerprint detector is complicated.

In this paper, we investigate two important issues in multi-
media fingerprinting social networks. First, we study the impact
of the dynamics between the two group of users (colluders and
the fingerprint detector) in the social network when side infor-
mation is available. Second, we model the user dynamics using
a game-theoretic framework and find the optimal strategies for
all users.

In multimedia fingerprinting, colluders and the fingerprint de-
tector influence each other’s decision and performance. To max-
imize their own payoff, each player should observe and learn
how others play the game and adjust his/her strategy accord-
ingly. The previous work [15] on behavior forensics assumed
that the fingerprint detector has no information about multiuser
collusion. If some information of collusion attacks can be made
available during the colluder identification process, intuitively,
utilizing such information can help improve the traitor tracing
performance. We define this information about collusion that
can improve detection probability as side information. We con-
sider the worst case for the fingerprint detector that all he/she
has for detection is the colluded copy. Unlike side channels
in digital communication, side information about collusion in
multimedia fingerprinting systems can only be extracted from
the colluded copy. In this paper, we explore techniques that en-
able the detector to probe and utilize side information and an-
alyze its performance. We find that the mean value of the de-
tection statistics of each user is a very useful side information
and can significantly improved the detection performance. Then
by formulating the colluder-detector behavior with a game the-
oretical framework, we further study the dynamics from the
opposite point of view, analyzing how colluders should adjust
the collusion attacks to minimize their probability of being de-
tected. Once the detector improves the traitor tracing perfor-
mance by utilizing side information, the colluders might also
change their collusion strategy to minimize their risk. Thus, the
optimal strategy of the users in the multimedia fingerprinting
social network will be changed and the user dynamics will also
reach a new equilibrium.

The rest of the paper is organized as follows. Section II in-
troduces the multimedia fingerprinting system. In Section III,
we investigate how the fingerprint detector probes and utilizes
side information about collusion to improve the collusion re-
sistance. In Section IV, we analyze the equilibrium of the col-
luder-detector game, study the colluders’ strategies to minimize
their risk under the fairness constraint, and finds the solution
to the min-max formulation of the colluder-detector dynamics.
Section V shows the simulation results, and conclusions are
drawn in Section VI.

II. MULTIMEDIA FINGERPRINTING SYSTEM

In this section, we will review the structure and users involved
in a multimedia fingerprinting social network.

A. Temporally Scalable Video Coding Systems

As multimedia networking develops, scalability in multi-
media coding becomes increasingly important for rich media
access from anywhere by anyone [16]. Scalable video coding
encodes multimedia into several bit streams (or layers) of
different priorities; the base layer contains the most impor-
tant information and must be received by all users, while the
enhancement layers refine the resolution of the receiver’s
reconstructed copy and have lower priorities. Such an encoding
structure provides flexible solutions for multimedia transmis-
sion and offers adaptivity to heterogeneous networks, varying
channel conditions and diverse computing capability at the
receiving terminals.

Without loss of generality, we use temporally scalable video
coding as an example which provides multiple versions of the
same video with different frame rates. Following the same
model in [15], we consider a temporally scalable video coding
system with three-layer scalability, and we use frame skipping
and frame copying to implement temporal decimation and
interpolation, respectively. In such a video coding system,
different frames in the video sequence are encoded in different
layers. Define , , and as the sets containing indexes
of the frames that are encoded in the base layer, enhancement
layer 1 and enhancement layer 2, respectively. includes
the indexes of the frames in the copy that user receives.

is the subgroup of users who re-
ceive the base layer only,
contains all users who subscribe to the medium-resolution
version with the base layer and the enhancement layer 1, and

contains the indexes of the
users who receive all three layers.

B. Multimedia Fingerprinting System and Collusion Attacks

1) Fingerprint Embedding: Proven to be robust against many
single-copy attacks and common signal processing, spread spec-
trum embedding is a popular data hiding technique to embed
fingerprints into the host multimedia signals [3], [17]. For the

frame in the video sequence represented by a vector ,
and for each user who subscribes to frame , the content
owner generates a unique fingerprint of the same length
as . The fingerprinted frame j that is distributed to is

, where ,

and are the th components of the fingerprinted frame

, the host signal and the fingerprint vector , respec-
tively. is used to control the energy and achieve the im-
perceptibility of the embedded fingerprints [17].

We consider orthogonal fingerprint modulation [5] in this
paper. We first generate independent vectors following Gaussian
distribution , and then apply Gram-Schmidt orthogo-
nalization to produce fingerprints that are strictly orthogonal to
each other with equal energies.

2) Collusion Attacks: During multiuser collusion, attackers
collectively mount attacks to effectively remove traces of the
embedded fingerprints. Since no one is willing to take a higher
risk than the others, an important issue during collusion is to
distribute the risk evenly among colluders and achieve fairness
of the attack. As studied in [9], given the same amount of noise,
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Fig. 1. Two-stage collusion for scalable-encoded multimedia content.

for Gaussian fingerprint, the nonlinear attack can be modelled as
averaging attack. The work in [15] studied how to ensure that all
attackers have the same probability of being captured when they
receive fingerprinted copies of different quality due to network
and device heterogeneity.

Let be the set with the indexes of the colluders who re-
ceive the fingerprinted base layer only; contains the in-
dexes of all colluders who subscribe to the medium resolution
copy; and contains the indexes of the colluders who re-
ceive all three layers. , , and

are the number of colluders in , and
, respectively. is the total number

of colluders.
Following the two-stage collusion model in [15], col-

luders first apply intragroup collusion as shown in Fig. 1.
For each frame in the base layer, colluders in

generate ; for each frame
that they receive, colluders in calcu-

late ; and for every frame
in the video sequence, the colluders in

generate . Then, colluders
combine these three copies, , , and

, and apply intergroup collusion. For each
frame in the base layer, the colluded frame is

(1)

where . For each frame
in the enhancement layer 1, colluders calculate

(2)

where . For each frame in the enhancement
layer 2, the colluded frame is

(3)

is additive noise to further hinder detection.
During collusion, the colluders seek the collusion parameters
, , and to minimize their risk under the constraint that all

colluders have the same probability of being detected. From the
above collusion model, the collusion parameters , directly
reflect the collusion strategy. And the side information we will
discuss in the following sections is the information hidden in

the colluded copy that can give detector better estimation of the
collusion, and lead to a better detection performance. If the de-
tector iscorrelation-based, then the mean value of the detection
statistics can be used as side information, which we will show
in Section III.

3) Fingerprint Detection and Colluder Identification: We
consider a nonblind detection scenario where the host signal is
first removed from the test copy before colluder identification.
The detector then extracts the fingerprint from the frame

in the colluded copy. Then, he/she calculates the similarity
between the extracted fingerprint and each of the original fin-
gerprints , compares with a predetermined threshold ,
and outputs the estimated identities of the colluders .

To analyze the performance of multimedia fingerprints, we
adopt the commonly used criteria in the literature [5]. In order
to measure the performance of the fingerprint system under var-
ious conditions, such as top-secret scenario in which the finger-
print detector aim to catch as many colluders as possible and
the popular commercial scenario in which the non of the inno-
cent user should be falsely accused. Let is the probability
of user being accused as a colluder, we use the following mea-
surements:

• : the probability of capturing at least one colluder. The
motivating application of is to provide digital evidence
in the court of law. When a user is identified as a colluder
and is high, the content owner can confidentially accuse
the user being guilty. From the analysis in [5], can be
formulated as , where is the set
of the colluders.

• : the probability of accusing at least one innocent user.
serves as the probability of false alarm in high-security

system. It reflects the confidence of the detector about the
accused users—the lower the is, the higher the detec-
tion confidence. can be formulated as

.
• : the expected fraction of colluders that are suc-

cessfully captured. When the digital rights enforcer’s
concern is to catch as many colluders as possible,

is a suitable performance criteria. Mathemati-
cally, , where K is the number of
colluders.

• : the expected fraction of innocent users that are
falsely accused. and are used to show the
balance between capturing colluders and placing innocents
under suspicion, where .
Here, is the total number of users.

III. ANALYSIS OF DETECTOR’S STRATEGIES WITH SIDE

INFORMATION

This section analyzes how side information about collusion
can help improve the collusion resistance and influence the de-
tector’s action. We study how to probe side information about
collusion from the colluded copy. Consider the scenario where
the colluded copy contains all three layers and has the highest
quality, and the analysis for other scenarios, such if the colluders
only have two layers of the video, is similar. Without loss of
generality, we use users in as an example to demonstrate
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the detection process and analyze the performance. For users in
and , the colluder identification process and the per-

formance analysis are similar.

A. Different Fingerprint Detection Strategies

As we discussed in Section II-B-3, when detecting finger-
prints, there are many different ways to measure the similarity
between the extracted fingerprint and the originally em-
bedded one .

1) A Collective Fingerprint Detector: The work in [15] con-
sidered a simple fingerprint detector that uses fingerprints ex-
tracted from all layers collectively to identify colluders. For each
user , the detector first calculates , where

contains the indexes of the frames received by and
contains the indexes of the frames in the colluded copy. Then,
the detector calculates

(4)

where is the Euclidean norm of . Given a prede-

termined threshold , .
Assume that the colluders choose the parameters in

the same way as in [15]. Without loss of generality, we consider
the scenario where the colluders generate a colluded copy of the
highest resolution and [18]. With orthog-
onal fingerprint modulation as in Section II-B-1, under the as-
sumption that the detection noises are i.i.d. and follow Gaussian
distribution , the detection statistics in (4) are
independent Gaussian with marginal distribution

if

if

where

, , and are the lengths of the fingerprints embedded
in the base layer, enhancement layer 1 and enhancement layer 2,
respectively. For a given user , define as the probability
of successfully capturing him/her if he/she is guilty, and is
the probability of falsely accusing him/her if he/she is innocent.
With the detector in (4), we have

if

and

if (5)

where is the Gaussian tail function. Therefore, the four
criterions for the fingerprint detector can be formulated as in

(6).

and

(6)

Assuming that the fingerprint detector will always use (5) and
fingerprints extracted from all layers collectively to determine
if participates in collusion, the work in [15] studied how
the colluders should select the parameters , and such
that are the same for all colluders and will be
compared with the results in Section IV.

2) Fingerprint Detection at Each Individual Layer: Given
, and which are the fingerprints extracted from

the enhancement layer 2, enhancement layer 1 and the base
layer, respectively, in addition to the collective detector (4) in
Section III-A-1, the digital rights enforcer can also examine

, and independently and use the detection results at
each individual layer to estimate the colluders’ identities. There-
fore, in addition to the collective detector, the digital rights en-
forcer can also use detectors at base layer, enhancement layer1,
and enhancement layer 2. To demonstrate this colluder identi-
fication process and analyze its performance, we use users in

who receive all three layers as an example. The analysis
for users in and is similar and thus omitted.

Let be the set of indexes of the frames in layer in which
represents base layer, enhancement layer 1, and

enhancement layer 2, respectively. For user who
receive all three layers from the content owner, given ,
the fingerprints from layer of the colluded copy, the detector
at layer calculates the detection statistics

(7)

to measure the similarity between the extracted fingerprint and
the originally embedded fingerprint. The detector at layer ac-
cused as a colluder if , and sets , which
is the suspicious-colluder set. Here, here is a predetermined
threshold.
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The analysis of the detection statistics in (8) is similar
to that of in (4). If the detection noises are i.i.d. and follow
Gaussian distribution , for user , are
independent Gaussian with marginal distribution

if

if
where

and (8)

Therefore, for user , the probability of successfully
capturing him/her if he/she is guilty is

(9)

and the probability of falsely accusing him/her if he/she is in-
nocent is

(10)

The analysis of , , and is the same as that in
Section III-A-1 and not repeated. It is clear from (9) and (8) that
the higher the is, the better the traitor-tracing performance.

B. Performance Comparison

This section compares the performance of the four detection
statistics (4) and (8) when identifying colluders in . From
the above analysis, for a given and a fixed , comparing
of different detection statistics is equivalent to comparing their
means.

For a colluder , Fig. 2 shows an example of the
means of the detection statistics in (4) and (8). In Fig. 2, we
first generate independent vectors following Gaussian distri-
bution , and then apply Gram-Schmidt orthogonaliza-
tion to generate orthogonal fingerprints for different users. The
lengths of the fingerprints embedded in the base layer, enhance-
ment layer 1 and enhancement layer 2 are ,

and , respectively. In Fig. 2, we fix the
total number of colluders , and of them re-
ceive the fingerprinted base layer only. Each point on the X axis
corresponds to a unique triplet . The colluders
follow the work in [15] to select the collusion parameters and
generate a colluded copy with all three layers under the fairness
constraints.

From Fig. 2, in (4) has the best performance when
more than 60% of the colluders receive a high-quality copy with
all three layers. This is because in this scenario, ’s finger-
prints are spread all over the entire colluded copy , and ’s
energy is evenly distributed in the three layers of . There-
fore, from detection theory [19], fingerprints extracted from all
layers should be used during detection to improve the perfor-
mance. When , due to the selection of the col-
lusion parameters, a significant portion of ’s energy is in
the enhancement layer 2, while the other two layers of the col-
luded copy contain little information of ’s identity. Thus, in

Fig. 2. Comparison of � in (5), � , � , and � in (9) for � � �� .
�� �� �� � � ��� �����������������.� � ��� and� � ��. Each
point on the X axis corresponds to a unique triplet �� �� �� �. � �
� � � � � .

this scenario, in (8) gives the best detection performance.
Also, since larger introduces smaller fingerprint energy in
enhancement layer 2 for , and the total number of col-
luders remains the same, thus smaller and result in
higher fingerprint energy for and in base layer and
enhancement layer 1. Therefore, , , must be lower to en-
sure equal probability of being detected for every user. Hence,

and for may increase as increases.

C. Colluder Identification With Side Information

For the four detection statistics in Section III-A, their traitor
tracing capability is determined by their statistical means. The
larger the statistical mean is, the better the performance. Note
that from the above analysis, the collusion parameters ( and

in the two-stage collusion model) determine the means of
the detection statistics. Thus, if side information about the sta-
tistical means of different detection statistics (or equivalently,
the collusion parameters) is available to the fingerprint detector,
he/she should select the detection statistics that has the largest
statistical mean to improve the traitor-tracing capability.

During the fingerprint detection and colluder identification
process, the fingerprint detector should first examine the col-
luded copy and probe such side information, then select the
best detection statistics and identify colluders. As an example,
to identify colluders who receive all three layers, the key steps
in probing the means of the detection statistics and selecting the
optimum detection statistics are as follows:

• For every user in , the detector first calculates
, , and as in Section III-A, and

obtains

and

(11)

for a given .
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Fig. 3. Performance of the self-probing fingerprint detector for the example in Fig. 2. (a) Probability of selecting the optimum detection statistics when identifying
colluders in� . (b) � of the collective detector, the optimum detector with perfect knowledge of the detection statistics’ means, and the self-probing detector
that probes the side information itself. � is chosen to let � � �� for an innocent user � �� �� . � � �� . The result is based on 10 000 simulation runs.

• The detector combines the above four sets of estimated
colluders in and lets

.

• Given , the detector estimates the means of the four
detection statistics in Section III-A

(12)

• The detector compares , , , and and selects
the detection statistics with the largest estimated mean. For
example, the collective detector in (4) is chosen if has
the largest value.

When identifying colluders in , the side information
probing process is similar and not repeated. Then, the finger-
print detector follows Section III-A and estimates the identities
of the colluders.

D. Performance Analysis and Simulation Results

In our simulations, we simulate three different fingerprint de-
tectors: the simple collective detector in (4); the optimum de-
tector with perfect knowledge of the statistical means of the four
detection statistics; and the self-probing detector, which first
uses the algorithm in Section III-C to select the best detection
statistics and then follows Section III-A to identify colluders.

The simulation setup is the same as that in Fig. 2. We choose
the parameters based on the analysis in [15], which shows the
total number of 250 colluders in a 750-user system is large
enough to effectively reduce the fingerprint energy and reduce
the probability of each colluder to be accused to around 10%,
in which the fingerprint system can barely provide protection.

Hence, under such tough scenario, we would test whether the
proposed self-probing detector can provide better collusion re-
sistance.

There are a total of colluders, and of them
receive the fingerprinted base layer only. Each point on the X
axis in Fig. 3 corresponds to a unique triplet .
The colluders select in the same way as in [15] and
generate a colluded copy with all three layers. For each frame
in the colluded copy, we adjust the power of the additive noise
such that . Other values give the same trend.

Fig. 3(a) plots the probability that the proposed probing algo-
rithm in Section III-C selects the optimum detection statistics
when identifying colluders in . In the example in Fig. 2,
we only choose between and since and

never outperform the other two. From Fig. 3(a), the pro-
posed probing algorithm selects the optimum detection statis-
tics with probability 0.6 when ; while in other
scenarios, the detector always picks the best detection statistics.
Note that from Fig. 2, when , and have
similar values and, therefore, and have approx-
imately the same performance. Consequently, in this scenario,
choosing the sub-optimum detection statistics does not signifi-
cantly deteriorate the detection performance. When and
differ significantly from each other, the self-probing detector al-
ways chooses the optimal detection statistics when identifying
colluders in .

To evaluate the traitor-tracing performance of the proposed
colluder identification algorithm with side information, we
consider the catch one scenario, where the fingerprint detector
aims to capture at least one colluder without falsely accusing
any innocents. In this scenario, the criteria used to measure the
performance is and . The analysis for other scenarios
using other performance criteria is similar and gives the same
trend. For a fixed , Fig. 3(b) shows of the three
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detectors. From Fig. 3(b), utilizing side information about the
means of different detection statistics can help the fingerprint
detector significantly improve its performance, especially
when is small and the colluders’ fingerprints are not
evenly distributed in the three layers of the colluded copy.
Furthermore, from Fig. 3(b), when the difference between
and is large, the side information probing algorithm in
Section III-C helps the detector choose the best detection statis-
tics and achieve the optimal performance. When and are
approximately the same, the performance of the self-probing
fingerprint detector is almost the same as that of the optimal
detector with perfect knowledge of the means of the detection
statistics, and the difference between these two is no larger than
0.005 and can be ignored.

E. Impact of Side Information on Fairness of Multi-User
Collusion

Without probing side information, the detector will always
use all the frames collectively to identify the colluders, hoping
that more frames will give him/her more information about col-
luders’ identities. On the other side, colluders adjust the collu-
sion parameters and to seek the collective fairness.
Under such circumstances, the colluders and the fingerprint de-
tector reaches the collective fairness equilibrium. However, side
information about collusion not only improves the fingerprint
detector’s performance, it also affects each colluder’s proba-
bility of being detected and influences how they collude [20].
Thus, side information breaks the collective fairness equilib-
rium between the colluders and the fingerprint detector, and both
sides need to search for a new equilibrium.

To demonstrate how side information breaks the collective
fairness equilibrium, Fig. 4 shows each colluder’s probability
of being detected with the self-probing fingerprint detector. The
simulation setup is the same as that in Fig. 3. In Fig. 4, col-
luders follow [15] to select the collusion parameters and

during the two-stage collusion, and we adjust the power of

the additive noise such that for each frame
in the video sequence. From Fig. 4, when , those
colluders who receive all three layers have a much larger proba-
bility of being detected than the others. In this example, during
collusion, attackers only consider the collective detector in (5),
and they select the parameters and such that
in (5) have the same statistical mean for all attackers. However,
during the colluder identification process, the fingerprint de-
tector considers all possible detection strategies in Section III-A,
probes side information about detection statistics, and uses the
one that gives the best collusion resistance. Therefore, with the
self-probing fingerprint detector in Section III-C, colluders have
to find a new set of collusion parameters to ensure the equal risk
of all attackers.

IV. EQUILIBRIUM OF THE COLLUDER-DETECTOR GAME WITH

SIDE INFORMATION

In this section, we will model the behavior dynamics with side
information between the two group of users in the multimedia
fingerprinting social network as a two-person two-stage game.
We formulate the equilibrium of this colluder-detector game as

Fig. 4. Each colluder’s probability of being detected �� � with the
self-probing fingerprint detector. The simulation setup is the same as that in
Fig. 3, and colluders follow [15] when selecting the collusion parameters �� �
and �� �. The threshold � is selected to satisfy � � �� . The results are
based on 10 000 simulation runs.

a min-max problem and find the optimal strategy of all users in
the social network.

A. Game-Theoretical Modelling of Colluder-Detector
Dynamics

In the multimedia fingerprint social network, different mem-
bers have different goals and utilities: the colluders mount at-
tacks to generate the colluded copy for redistribution, and the
forensic detector try to identify the colluders from the redis-
tributed colluded copy. The colluders gain rewards by redis-
tributing the colluded content and they take the risk to be caught
by the digital rights enforcer. In this game, the colluders’ gain
is the detector’s loss, thus the two group of members in the fin-
gerprinting social network have totally conflicting objectives.

1) Stackelberg Game Model: To capture users’ behavior in
strategic situations, in which an individual’s success in making
choices depends on the choices of others, game theory [21], [22]
is a useful tool to model the complex dynamics among multi-
media social network members. Hence, to analyze the optimal
strategies of both fingerprint detector and the colluders, we for-
mulate the interaction between the two groups of social network
members as a game with two players: the colluders acting as one
single player and the fingerprint detector as the other.

• Players: There are two players: colluders who make deci-
sion first as the leader, followed by the fingerprint detector
who apply detection as a follower.

• Payoff Function Definition: To analyze the dynamic be-
tween colluders and the forensic detector, we assume all
the colluders have the same objectives and agree to share
the same risk and reward. Therefore, during the fair col-
lusion, every colluder has the same goal of minimizing
his/her risk of being detected under the constraint that

are the same for all colluders. Thus, a natural defi-
nition of colluder ’s payoff function is , the
probability that each colluder successfully removes traces
of his/her fingerprint during collusion. From the detector’s

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 24, 2009 at 13:53 from IEEE Xplore.  Restrictions apply. 



918 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

point of view, the colluders’ gain is the loss of the digital
rights enforcer, so we can define the detector’s payoff as

.
• Colluders’ Strategies: Each set of the collusion parame-

ters that achieves equal probability of detec-
tion for each colluder leads to one strategy for the colluders
in the colluder-detector game.

• Detector’s Strategies: As discussed in Section II-B-3, the
detector’s strategies include the collective detector, single-
layer detector, and the self-probing detector. We assume
the detector can probe the side information (the mean of
the detection statistics) when he/she chooses the strategy.

In this game, there are multiple detection statistics that the
fingerprint detector can use to identify colluders. However, by
the analysis and simulation results shown in Section III-C, the
self-probing detector can always achieve better or equal perfor-
mance as all other detectors (collective detector and single-layer
detector). Thus, to maximize his/her payoff, the fingerprint de-
tector always probes side information about collusion and se-
lects the detection statistics that has the largest chance of suc-
cessfully capturing colluders. From the angle of game theo-
retical analysis, probing side-information is equivalent to ob-
serving the colluders’ action. This scenario implies that the de-
tector (follower in this game) can observe the colluders’ action,
and the colluders (leader) know that the detector observes their
action. Hence, colluders as the leader have perfect knowledge
of the detection strategies that the fingerprint detector will use,
because the detector has no incentive to deviate from the self-
probing detector. Therefore, the detector has no means of com-
mitting to a follower action that deviates from the self-probing
detector which is the best response, and the colluders know this.
Therefore, the colluder-detector game is a Stackelberg game
[22] with perfect information.

2) Equilibrium Analysis: As shown in Fig. 4, with side in-
formation available to the fingerprint detector, the selected col-
lusion parameters in [15] cannot guarantee the fairness of collu-
sion. Therefore, the colluders need to find new sets of collusion
parameters to achieve fairness.

With the proposed self-probing fingerprint detection process
in Section III-C, for every type of collusion, the fingerprint de-
tector will always choose the detection statistics that gives the
best traitor-tracing performance which can be illustrated as the
game tree shown in Fig. 5. In this game, assuming that there are
N possible collusion strategies under the fairness constraint, the
colluders first choose the collusion strategy, and then the finger-
print detector selects the optimal detection statistics.

Since the follower (detector) can observe the leader’s (col-
luders’) strategy, the game model can be solved by backward
induction. The backward induction starts from the last stage
of the game, which is the detector’s strategy. As shown in
Section III-C, the self-probing detector is the optimal strategy
for all the fair collusion. Hence, we can move forward to the
previous stage in the game, which is the colludes’ strategy.
Since both the colluders and the fingerprint detector know that
the optimal detection statistics will be used to identify colluders,
once attackers determine the collusion strategy, their payoff is
fixed and the colluders can accurately estimate their payoff. The
colluders consider what the best response of the detector is, i.e.,

Fig. 5. Game tree illustration of the colluder-detector dynamics.
� �� � � � � � � are the N possible sets of collusion parameters that
achieve absolute fairness when the fingerprint detector uses the optimal
detection statistics to identify colluders; while � �� � � � � � � are the
corresponding optimal fingerprint detection strategies. For the example of
�� �� �� � � ���� ������� in Section IV-E, 	 � 
, � set of
parameters satisfies (37), � set of parameters satisfies (38), and � set of
parameters satisfies (39). In � , the fingerprint detector uses �� for
� � � and �� for � � � . In � , the fingerprint detector uses
�� for � � � and �� for � � � . In � , the fingerprint detector
uses �� for � � � and �� for � � � .

how the detector will respond once he/she observes the leader’s
strategy. The colluders then pick a strategy that maximizes
its payoff, anticipating the predicted response of the detector.
Hence, during collusion, colluders should consider the worst
case scenario where the fingerprint detector always makes the
right decision when selecting which detection statistics to use.
They select the collusion parameters to minimize their risk
under the constraint that all colluders have the same probability
of being detected. Thus, the equilibrium of this game can be
modelled as a min-max problem.

As we discussed in Section III-E, without side information,
the colluders and the detector achieve the collective fairness
equilibrium: the fingerprint detector uses the collective detec-
tion statistics in (4), and the colluders select the collusion pa-
rameter as in [15] to ensure the same risk under the collective
detector. Probing and utilizing side information moves the equi-
librium of the colluder-detector game from the collective one to
the min-max solution as discussed in Section IV-C.

B. Min-Max Problem Formulation of the Equilibrium

For each user , define as the set including all pos-
sible detection statistics that can be used to measure the simi-
larity between the extracted fingerprint and ’s fingerprint

. For example,
for a colluder who receives all three layers, while

for user who re-
ceives a medium resolution copy. Define
as the probability that colluder is captured by the dig-
ital rights enforcer.

Consequently, we can model the problem as a min-max
problem:

(13)

From the analysis in the previous section, for a given threshold
and fixed , is determined by the mean of the detection
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statistics that are used. Therefore, for colluder ,
and , (13) can be simplified to

where

and

(14)

In (14)

and

(15)

from the analysis in Section III-A.
Given and , for colluder

, and who receive fin-
gerprinted copies of different resolutions, they first find all
possible sets of collusion parameters that satisfy

. Then, they select the one that gives
them the minimum risk of being detected.

C. Analysis of

To solve the problem of (14), we first need to analyze
for each colluder and study which detection statistics have
the maximum mean under which condition.

1) For Colluder : For colluder who
receives a medium resolution copy, there are three possibilities:

, and .
: If , then and

. Thus, from (15)

if and only if

(16)
: In this case, and . Thus,

if and only if

(17)

: This scenario happens if and
. Following the same analysis as in the previous two

scenarios as in Appendix, if and only if

(18)

Detailed proofs of (16), (17), (18) are in Appendix A, B, C,
respectively.

2) For Colluder : For Colluder , if the
colluded copy includes all three layer, there are four possibili-
ties for : , , , and

.
: Following the same analysis as the previous

section

and

where

and

(19)

Note that we have the constraint
in (14) when selecting the collusion parameters. There-
fore, from (19), in order to satisfy and let

, must be true.
This observation explains why in the example shown in Fig. 2
where , among the four detection statistics,
never achieves the best performance.

: In this scenario

and

where

and

(20)
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From (20), must hold in order to let
, which is the reason that in Fig. 2

with , never gives the best traitor-tracing
performance.

: See (21) at the bottom of the page.
: Following the same analysis as in the previous

section, see (22) at the bottom of the page.

D. Analysis of the Feasible Set

Given the above analysis on , for each given
and , the next step is to

study how attackers achieve fairness of collusion and let
be the same for all colluders. This section investigates the
constraints on collusion to ensure the fair play of the attack.

Without loss of generality, in this section, we use
as an example to illustrate how colluders

achieve fairness of the attack and analyze the constraints on
collusion. We assume that colluders generate a high-resolution
colluded copy including all three layers. In this scenario, from
the analysis in the above section, for a colluder
who receives a medium resolution copy, has three pos-
sible values: , , and .
Furthermore, for a colluder who receives all three
layers, equals either or , and and

. Thus, there are a total of 6 possible scenarios,
which are as follows:

1) for and for

2) for and for

3) for and for

4) for and for

5) for and for

6) for and for

1) Scenario 1 for and
for : In this scenario, for three colluders

, and , from (15)

(23)

To achieve fairness of the attack, colluders select the collusion
parameters such that . There-
fore, we have

(24)

In this scenario, since is the largest among
, from (16), the selected collusion

parameters must satisfy

(25)

in our example of
. Define , and
as the percentages of colluders who are in , ,

and , respectively. Following the same analysis, scenario
1 will happen if only if

(26)

and

(21)

and

(22)
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To summarize, if satisfies (26), colluders
can achieve fairness of the attack by following, and the re-
sulting feasible set is the black area in Fig. 6(a). In this scenario,

for and for .
Fig. 6(a) plots all the that satisfy (26). The
black area in Fig. 6(b) to (f) shows the feasible region of
scenario 2 to 5, respectively (the analysis of scenario 2 5 is in
Appendix D). Given any triple describing
the number of colluders who have lowest to highest resolution
copies, Fig. 6 provides the feasible strategies of collusion.

2) Scenario 2 for and
for : Following the same analysis as in

Section IV-D-1, for the example of ,
if satisfied

(27)

colluders can guarantee the equal risk of all attackers by se-
lecting

(28)

Fig. 6(b) shows all the that satisfy (27).
3) Scenario 3 for and

for : Given , if
satisfies

(29)

and colluders select

and

(30)

then for and for
, and all colluders have the same probability of

being detected by the fingerprint detector. Fig. 6(c) plots all the
that satisfy (29).

4) Scenario 4 for and
for : Given , if

(31)

holds, by choosing the collusion parameters as

(32)

colluders achieve fairness of collusion and for
and for in this scenario.

Fig. 6(d) plots all the that satisfy (31).
5) Scenario 5 for and

for : Here, under the constraint
that satisfies

(33)

all colluders have the same probability of being detected if they
select

and (34)
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Fig. 6. �� �� �� � that satisfy (a): (26) in Scenario 1. (b): (27) in Scenario 2. (c): (29) in Scenario 3. (d): (31) in Scenario 4. (e): (33) in Scenario 5, and
(f): (35) in Scenario 6. Here, � � � � � � � � � � �.

during collusion. In this scenario, for
and for . Fig. 6(e) shows all the

that satisfy (33).
6) Scenario 6 for and

for : If satisfies the constraint (35)
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and if the selected parameters are

and

(36)

then all colluders have the same risk and for
and for . Fig. 6(f) plots

all the that satisfy (35).

E. Min-Max Solution

Given the analysis in Section IV-D, for three colluders
, and , the colluders first identify all

the possible collusion parameters that satisfy
under the constraints, and then select the one that

gives them the minimum risk of being detected.
To demonstrate this process, we use the system setup in Fig. 3

as an example, where the lengths of the fingerprints embedded
in the base layer, the enhancement layer 1 and the enhancement
layer 2 are , , and , respec-
tively. When generating fingerprints, we first generate indepen-
dent Gaussian vectors following distribution and then
apply Gram-Schmidt orthogonalization to produce fingerprints
that have equal energies and are strictly orthogonal to each other.

Assume that there are a total of colluders. Among
the 250 colluders, if , , and ,
i.e., , then from Section IV-D,

satisfies (31) in Scenario 4 as in Appendix, the
constraint (33) in Scenario 5, and the one (35) in Scenario 6.

• Since satisfies the constraint (31) in Sce-
nario 4, colluders can guarantee the equal risk of all col-
luders if they choose

and (37)

Here, for colluder and
for colluder . For any colluder ,
has the smallest possible value of 2.0545 when
, , and .

• Following (34), when colluders select parameters

and (38)

they have the same probability of being detected. Here,
for colluder and

for colluder . For any colluder ,
reaches its minimum value of 2.0545 when ,

, and .
• Following (36), colluders can also achieve fairness of col-

lusion by selecting

(39)

during collusion. In this scenario, for col-
luder and for colluder

, and for all colluders.
The means of the detection statistics in these three scenarios

are the same; therefore, colluders can choose either (37), (38) or
(39) during collusion. [In fact, (37) and (38) are the two bound-
aries of (39).]

In the example of , the con-
straints (27) in Scenario 2 and (29) in Scenario 3 are satisfied,
and the minimum value of equals to 2.5298, when col-
luders select ( , , ) or use
( , , ) during collusion.

If , none of the six con-
straints in Section IV-D are satisfied, and colluders cannot gen-
erate a high-resolution colluded copy while still achieving fair-
ness of the attack. They have to lower the resolution of the at-
tacked copy to medium to guarantee the equal risk of all col-
luders.

V. SIMULATION RESULTS

In our simulations, we test over the first 40 frames of “car-
phone,” and use , and
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Fig. 7. Simulation results on the first 40 frames of sequence “carphone” from 10000 simulation runs. (a) and (b): Probability that the self-probing detector selects
the optimum detection statistics with the largest mean. (c) and (d): � when � � �� . (e) and (f): ��� � with ��� � fixed as �� . In (a), (c), and (e),
� � ��� and each point on the x axis corresponds to a unique triplet �� �� �� � where � � 	� and � � � �� �� . In (b), (d), and (f),
� � ���	, and each point corresponds to a unique triplet �� �� �� � where � � 
�, and � � � �� �� .

as an example of the temporal scalability.
The lengths of the fingerprints embedded in the base layer, en-
hancement layer 1 and enhancement layer 2 are ,

and , respectively. We assume that
there are a total of users and

. We first generate independent vectors following
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Fig. 8. Each colluder’s probability of being detected �� � when they follow Section IV to select the collusion parameters. The simulation setup is similar to that
in Fig. 7. There are a total of � � ��� colluders. In (a), � � �� of them receive the fingerprinted based layer only, and each point on the x axis corresponds to
a unique triplet �� �� �� � where � � �� and � � � �� �� . In (b), � � ��. Results are based 10 000 simulation runs. (a) � � ����.
(b) � � ����.

Gaussian distribution , and then apply Gram-Schmidt
orthogonalization to generate orthogonal fingerprints for dif-
ferent users.

We assume that are the number
of colluders in subgroups , and , respectively,
and the total number of colluders is fixed to 250. During collu-
sion, the colluders apply the intragroup collusion followed by
the intergroup collusion, and follow Section IV when choosing
the collusion parameters. In our simulations, we adjust the

power of the additive noise such that
for every frame in the video sequence.

The fingerprint detector follows Section III-C when identi-
fying selfish colluders. The detector first estimates the means of
different detection statistics, selects the detection statistics with
the largest estimated mean, and then identifies the colluders.

In Fig. 7, we compare the performance of three detectors: the
simple collective detector in (4), the optimum detector which
always selects the detection statistics with the largest mean, and
the self-probing detector in Section III-C. Similar to Fig. 3,
when the means of different detection statistics differ signifi-
cantly from each other, the proposed self-probing detector in
Section III-C always selects the optimum detection statistics
with the largest mean. When the difference between different
means is small, the optimum and the suboptimum detection sta-
tistics have approximately the same performance. Thus, even
though the proposed method may make errors when deciding
which detection statistics give the best performance, selecting
the suboptimum detection strategy does not significantly deteri-
orate the detection performance when compared with the op-
timum detection statistics. In Fig. 7, the performance gap is
smaller than and can be ignored. Exploring side in-
formation about collusion can significantly help improve the de-
tection performance, and the proposed self-probing detector has
approximately the same performance as the optimum detector
with perfect knowledge of the detection statistics’ means. Such
result is a supportive evidence that the self-probing algorithm
can correctly estimate the mean value of the detection statistics

an help choose the detector with best performance. It is clear
from Fig. 7 that the probability of catching at least one colluder
has been improved by 17% when , , 12%
when , and the improved probabilities
are closed to 1 in both cases.

Fig. 8 plots each colluder’s probability of being detected
when they follow Section IV to select the collusion parameters.
It is obvious that in this example, all colluders have the same
probability of being detected and this multiuser collusion
achieves fairness of the attack.

In order to show that the self-probing detector can be ap-
plied to various types of videos, we also run the simulation on
“tennis,” which is a fast-motion video. We use the first 28 frames
of “tennis,” and use , ,
and as an example of the temporal scal-
ability. The lengths of the fingerprints embedded in the base
layer, enhancement layer 1 and enhancement layer 2 are

, and , respectively. Other
settings are the same as above. Fig. 9 shows and of
the optimal detector, self-probing detector and the collective de-
tector when . It is clear from Fig. 9 that the pro-
posed self-probing detector also achieves almost the same per-
formance as the optimal detector which has perfect information
about the mean value. Such result shows that the detection per-
formance of the self-probing detector is not influenced by the
video characteristics.

VI. CONCLUSION

This paper studies user behavior in the multimedia fingerprint
social networks. We model the complex dynamics of the users
in the social network using game theory and find the optimal
strategies of both players in the game. We study how side infor-
mation about collusion can help the fingerprint detector increase
the traitor-tracing capability, and influence the strategies of the
colluders and the forensic detector.

We first investigated multimedia forensics with side informa-
tion. Our analysis and simulation results show that the side in-
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Fig. 9. Simulation results on first 28 frames of “tennis” from 1000 simulation runs. ��� � with ��� � fixed as �� and � when � � �� .

formation about the means of the detection statistics can help
the detector significantly improve the collusion resistance. We
then propose a method for the detector himself/herself to probe
such side information from the colluded copy. Our simulation
results demonstrate that the proposed self-probing detector has
approximately the same performance as the optimal fingerprint
detector, and the difference between these two can be ignored.

Side information not only improves the fingerprint detector’s
collusion resistance, but it also affects each colluder’s proba-
bility of being detected and makes some colluders take a larger
risk than others. Thus, it breaks the collective fairness equilib-
rium between the colluders and the fingerprint detector, and they
have to choose different strategies. We model the colluder-de-
tector dynamics with side information as a zero-sum game. We
show that under the assumption that colluders demand absolute
fairness of the attack, the min-max solution achieves the equilib-
rium which is the optimal strategy of all users in the multimedia
fingerprint social network. Neither the colluders nor the finger-
print detector can further increase their payoff and, therefore,
they have no incentive to move away from this equilibrium.

APPENDIX

PROOF OF (16), (17), (18), AND FEASIBLE SETS

A. Proof of (16)

If , then and . Thus, from
(15)

(40)

Similarly, we have

(41)

Note that . Thus,
and

. Therefore, combining (40) and (41), for col-
luder

if and only if

(42)

B. Proof of (17)

If , and . Thus,

and

(43)

It is straightforward to show that
and .
Thus, combining the results in (43), we have

if and only if

(44)

C. Proof of (18)

When , , and . Following
the same analysis as in the previous two scenarios

and

(45)

Note that . Therefore, we have
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and

(46)

Consequently, if and only if

(47)
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