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Abstract—Multimedia social networks have become an emerging
research area, in which analysis and modeling of the behavior of
users who share multimedia are of ample importance in under-
standing the impact of human dynamics on multimedia systems. In
peer-to-peer live-streaming social networks, users cooperate with
each other to provide a distributed, highly scalable and robust plat-
form for live streaming applications. However, every user wishes to
use as much bandwidth as possible to receive a high-quality video,
while full cooperation cannot be guaranteed. This paper proposes a
game-theoretic framework to model user behavior and designs in-
centive-based strategies to stimulate user cooperation in peer-to-
peer live streaming. We first analyze the Nash equilibrium and
the Pareto optimality of two-person game and then extend to mul-
tiuser case. We also take into consideration selfish users’ cheating
behavior and malicious users’ attacking behavior. Both our ana-
lytical and simulation results show that the proposed strategies can
effectively stimulate user cooperation, achieve cheat free, attack re-
sistance and help to provide reliable services.

Index Terms—Cooperation strategy, game theory, multimedia
live streaming, peer-to-peer, social network.

I. INTRODUCTION

W ITH recent advance in networking, multimedia signal
processing, and communication technologies, we wit-

ness the emergence of large-scale multimedia social networks,
where millions of users form a distributed and dynamically
changing infrastructure to share media content. Peer-to-peer
(P2P) live streaming using the mesh-pull architecture [1] is one
of the biggest multimedia social networks on the Internet and
has enjoyed many successful deployments to date, for example,
CoolStreaming, pplive and SopCast [2]–[5]. Users in a P2P
live-streaming system watch live broadcasting TV programs
over networks simultaneously. The system relies on voluntary
contributions of resources from individual users to achieve
high scalability and robustness and to provide satisfactory
performance. Cooperation also enables users to access extra
resources from their peers and thus benefit each individual user
as well.

Manuscript received May 30, 2008; revised November 25, 2008. Current ver-
sion published March 18, 2009. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Lexing Xie.

W. S. Lin and K. J. R. Liu are with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, MD 20742 USA (e-mail:
wylin@umd.edu; kjrliu@umd.edu).

H. V. Zhao is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 2V4, Canada (e-mail: vzhao@ece.
ualberta.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2009.2012915

However, due to the voluntary participation nature and the
limited resources, full user cooperation cannot be guaranteed.
A recent study showed that many users in Napster and Gnutella
are free riders and 25% of them share no files at all. Therefore,
an essential issue to be resolved first is to stimulate user co-
operation. In addition, users in P2P live streaming systems are
strategic and rational, in that they are likely to manipulate any
incentive system (for example, by cheating) to maximize their
payoff. As such, in large-scale social networks, users influence
each other’s decisions and performance, and there exist compli-
cated dynamics among users. It is of ample importance to inves-
tigate user behavior and analyze the impact of human factors on
multimedia social networks.

In the literature, there have been a lot of work on providing
incentives for cooperation in P2P file sharing. BitTorrent [6],
one of the most popular peer-to-peer file downloading system,
adopts the tit-for-tat strategy to motivate user cooperation
and prevent free riding [7]–[9]. A micro-payment mechanism
was proposed in [10], where users earn rewards by uploading
to others and pay for downloading. Using a game-theoretic
model, the work in [10] showed that there exists equilibrium
for micro-payment mechanisms. The work in [11] used game
theory to model the interactions of peers and proposed a
differential service-based incentive scheme, and in [12], the
generalized prison’s dilemma was used to model the P2P
system.

However, designing incentive mechanisms for live video
streaming is more challenging. Different from prior work on
P2P file-sharing, P2P live streaming has many unique issues
that need to be addressed. First, users receive payoff not only
from the availability of files, but also from the ability to obtain
high-quality streams. In addition, the delay constraint is much
more stringent in P2P streaming, and a packet must arrive
before its playtime to contribute to the increment of user’s
payoff.

To address the unique challenges in providing incentives in
P2P live streaming, a rank-based peer-selection mechanism
was introduced in [13], and in [14], a payment-based incentive
mechanism was proposed, where peers pay points to receive
data and earn points by forwarding data to others. Both work
above use reputation or micro-payment based mechanisms,
which often demand a centralized architecture thus hinder their
scalability. The work in [15] proposed a distributed incentive
mechanisms on mesh-pull P2P live video streaming systems.

The above prior work on incentive mechanisms for P2P live
streaming either relied on trusted central billing services to im-
plement micro-payment, or they assumed that all users are ra-
tional and honest. In real-world social networks, there are al-
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Fig. 1. User dynamics in real-world social networks.

ways users with different objectives and everyone wants to max-
imize his or her own payoff as in Fig. 1. Some users will try by
all means to achieve maximum utility, and they will cheat other
users if they believe cheating can help improve their payoffs.
In addition, there might also exist malicious users who aim to
exhaust others’ resources and attack the system. For example,
they can tamper the media files with the intention of making the
content useless (the so-called “pollution” attack) [16]. They can
also launch the denial of service (DoS) attack to exhaust other
users’ resources and make the system unavailable [17]. There-
fore, cheat prevention and attack resistance are fundamental re-
quirements in order to achieve user cooperation and provide re-
liable services.

In this paper, we will focus on designing distributed,
cheat-proof and attack-resistant cooperation stimulation strate-
gies for P2P live streaming social networks under a game
theoretic framework. We first consider a simple scenario with
nonscalable video coding and study a game with only two
players. We investigate the Nash equilibriums of the game
and derive cheat-proof stimulation strategies. This analysis
aims to stimulate each pair of users in P2P live streaming to
cooperate with each other and achieve better performance.
Then, we address the issue of cooperation stimulation among
multiple users with nonscalable video coding, and investigate
cheat-proof and attack-resistant incentive mechanisms. Finally,
we design a chunk-request algorithm to maximize users’ video
quality when the layered video coding is used, which is the
unique issue in P2P live streaming. We combine the algorithm
together with our proposed cheat-proof and attack-resistant
strategies to provide incentives for cooperation. Our proposed
cheat-proof and attack-resistant mechanism rewards users who
contribute more with more video chunks and thus better quality.
It includes a request-answering algorithm for the data supplier
to upload more to the peers from which it downloads more,
and a chunk-request algorithm for the requestor to address the
tradeoffs among different quality measure and to optimize the
reconstructed video quality.

There are several major differences to distinguish our work
from existing works listed above. First, we model the P2P live
streaming as a multimedia social network, use game theory
to model the dynamics among social network members, and
propose cooperation stimulation strategies based on the anal-
ysis of behavior dynamics. Secondly, we address these issues
under more realistic scenarios where the quality of the Internet
connections among different users may vary, and provide a fully
distributed solution while most existing cooperation schemes

enforce every user to cooperate through central authorities.
Thirdly, we fully explore potential cheating and malicious
behavior, and derive cheat-proof and attack-resistant strategies
while most existing work require nodes to honestly report their
private information.

The rest of this paper is organized as follows. Section II
introduces the mesh-pull P2P live streaming system model,
studies the two-player game model, and analyzes the Nash
equilibriums. In Section III, we propose a cheat-proof and
attack-resistant strategy to stimulate user cooperation among
all peers in P2P live streaming, and prove that it achieves
Nash equilibrium, Pareto optimality, and subgame perfectness.
Section IV proposes a cheat-proof and attack-resistant incen-
tive mechanism with layered video coding. Section V shows
simulation results to evaluate the performance of the proposed
strategies. Finally, Section VI concludes this paper.

II. OPTIMAL STRATEGIES IN A TWO-PLAYER

P2P LIVE STREAMING GAME

In this section, we first describe how two users in a P2P live
streaming social network cooperate with each other. We then
define the payoff function and introduce the game-theoretic for-
mulation of user dynamics.

A. Mesh-Pull P2P Live Streaming

We first introduce the basic protocol and streaming mecha-
nisms of mesh-pull P2P live streaming system as in Fig. 2(a).
In a mesh-pull delivery architecture for live video streaming
[18], a compressed video bit stream of bit rate bps is divided
into media chunks of bits per chunk, and all the chunks are
available at the original streaming server. When a peer wants to
view the video, he/she obtains a list of peers that are currently
watching the video, and establishes partnership with several
peers. At any instance, a peer buffers up to a few minutes worth
of chunk within a sliding window. Each user keeps a “buffer
map,” indicating the chunks that he/she has currently buffered
and can share with others, and they exchange their buffer maps
with each other frequently. For example, in Fig. 2(b), peer 1
has first two chunks, while peer 2 has last two chunks, indi-
cated by grey blocks in their video buffer maps. After peer 1
receives peer 2’s buffer map, peer 1 can request one or more
chunks that peer 2 has advertised in his/her buffer map. Time
is divided into rounds of seconds. Fig. 2(b) shows how the
peers cooperate with each other: at the beginning of each round,
every user sends a chunk request either to one of his peers or to
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Fig. 2. Mesh-pull P2P Live Streaming Model. (a) Overall system. (b) Peer cooperation.

the original streaming server. Then, the supplier either replies
with the requested chunk or rejects the request.

B. Two-Player Game Model

We assume that there are totally users in the live streaming
social network and every user buffers chunks. The video
stream is originally stored in the streaming server whose upload
bandwidth can only afford transmitting chunks in one round
( seconds) with . The server has no information of
users’ network topology, and the peer-to-peer system is infor-
mation-pull, which means that the server only sends chunks that
are requested by some users, and it replies the chunk requests
in a round robin fashion. Due to the playback time lags among
peers [18], different users request different chunks, and the
server cannot answer all users’ requests. In such a scenario,
peers have to help each other to receive more chunks and thus
better-quality videos.

This section investigates the incentive mechanisms for peer
cooperation in live streaming. We start with a simple scenario
with two cooperating users and nonscalable video coding struc-
ture. To simplify the analysis, in this paper, we consider a simple
scenario where in each round, every peer can only request one
chunk from the other peer and also uploads at most one chunk
to the other.

We first define the utility (payoff) function of the two-player
game. In each round, if player answers the other player ’s
request and sends the requested data chunk to , we define ’s
cost as the percentage of his/her upload bandwidth used to
transmit the requested chunk. That is, , where

is player ’s total available upload bandwidth, is the size
of the chunk and is the time duration of the round. If player
forwards the data that requested and player receives the chunk
correctly, then receives a gain of , which is a user-defined
value between 0 and 1. Every user in the P2P live streaming
social network defines his/her own value of depending on
how much he/she wants to watch the video. For instance, if
all the user does is watching the live streaming and not dis-
tracted by other activities, can be chosen as 1, which also
implies that the user is willing to cooperate with others to get the
better-quality video. On the other hand, if the user is watching
several videos, browsing the Internet, or downloading files si-
multaneously, he/she will not value the live streaming much thus
set lower value . Intuitively, if the user does not care about the

video quality, would be set to 0 and the user will download the
video directly from the server and not join the live streaming so-
cial network, since by joining the live streaming social network,
some of his/her upload bandwidths would be occupied. We as-
sume that is upper bounded by , which is the same as
if there exists a minimum upload bandwidth for all users
such that . The minimum upload bandwidth con-
straint is necessary since if the user cannot even completely up-
load a chunk in one round period, other users have no incentive
to cooperate with him/her. Here, and are player ’s pri-
vate information, and it is not known to the other player unless
player reports them.

Let the action of player takes at each round be . In each
round, player can choose its action from , where
means in this round, player chooses not to respond to the other
player’s request, while indicates that player is willing
to cooperate at this round. Let denote the probability that the
chunk is successfully transmitted from user 1 to user 2, and
is defined as the probability that user 2 successfully transmits the
requested chunk to user 1. Then, for each round, provided that
the action profile being taken, player 1 and 2’s payoffs
are calculated as follows:

(1)

The above payoff function consists of two terms: the first term
in denotes the gain of user with respect to the other’s ac-
tion, and the second term denotes his/her cost with respect to
his/her own action. From (1), it is reasonable to assume that

and , since users will only cooperate
with each other if cooperation can benefit both users and give
them positive payoffs. Let
be the payoff profile.

It is easy to check that, if this game will only be played for
onetime, the only Nash equilibrium (NE) is (0,0), which means
no one will answer the other’s request. According to the back-
ward induction principle [20], this is also true when the repeated
game will be played for finite times with game termination time
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known to both players. Therefore, in such scenarios, for each
player, its only optimal strategy is to always play noncooper-
atively. However, in live streaming systems, these two players
will interact many rounds and no one can know exactly when
will the other user quit the game. Next, we show that coopera-
tive strategies can be obtained under a more realistic setting. Let

denote player ’s behavior strategy in the
infinitely repeated game, where be the action that player
takes at the th round, and is the strategy profile.
When the game is played more than one time, sum of payoff in
every time should be considered as each players utility. How-
ever, in infinite time game model, sum of payoff usually goes to
infinity, therefore, averaged payoff is considered instead. This
means that we consider the following utility function of the in-
finitely repeated game:

(2)

Let us analyze the NEs for the infinitely repeated game with
utility function defined as above. According to the Folk the-
orem [20], there exists at least one NE to achieve every feasible
and enforceable payoff profile. A feasible payoff profile is the
payoff that can be achieved; an enforceable payoff profile is the
payoff that can be enforced by any mechanism to be achieved,
which is, a feasible payoff profile that every players payoff is
larger than or equal to zero. The set of feasible payoff profiles
for the above game is

(3)

and the set of enforceable payoff, denoted by

(4)

Fig. 3 illustrates the feasible and the enforceable regions of
the above infinitely repeated game. The feasible region is inside
the convex hull of

.
is the gray region shown in Fig. 3, which is the intersection

of the feasible region and the first quadrant. It is clear that there
exists an infinite number of Nash equilibriums. To simplify our
equations, in this paper, we use to denote the set
of NE strategies corresponding to the enforceable payoff pro-
file

. Intuitively, the NE strategy can be viewed
as the averaged action that player takes over all rounds in the
infinite game. Thus , and

.

C. Nash Equilibrium Refinement

From the above analysis, one can see that the infinitely
repeated game has infinite number of Nash equilibriums, and
apparently, not all of them are simultaneously acceptable.
For example, the payoff profile (0,0) is not acceptable from

Fig. 3. Feasible and enforceable payoff profiles.

both players’ point of view. Therefore, in this section, we will
discuss how to refine the equilibriums based on new optimality
criteria to eliminate those less rational Nash equilibriums and
find out which equilibrium is cheat-proof. In this section,
we consider the most widely used optimality criteria in the
literature [21], [20]: Pareto optimality, proportional fairness,
and absolute fairness.

1) Pareto Optimality: A payoff profile is Pareto op-
timal if and only if there is no such that for all

[21]. Pareto optimality means no one can increase his/her
payoff without degrade other’s, which the rational players will
always go to. It is clear from Fig. 3 that the line segment between

and
in the first quadrant and the line segment between

and
in the first quadrant is the Pareto-optimal set.

2) Proportional Fairness: Next, we will further refine the so-
lution set based on the criterion of proportional fairness. Here,
a payoff profile is proportionally fair if the product
can be maximized, which can be achieved by maximizing the
product in every round. It has been shown that the
proportional fairness solution is always Pareto optimal. The pro-
portional fairness point can be derived by solving

(5)

In (5), same as in (1), for . It can be
easily shown that the objective function and the con-
straint functions are continuously differentiable at any feasible
points, satisfying the Karush–Kuhn–Tucker conditions [23].
Thus the maximizer either satisfies
or is on the boundary of the feasible region. If ,
then satisfies

(6)
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which has only one solution with
. Apparently, it is not a desired solution. If is on the

boundary of the feasible region, then it satisfies

(7)

Combining (6) and (7), we can obtain the unique proportional
fairness point in (8) at the bottom of the page.

3) Absolute Fairness: Although absolute fairness solution
is not always Pareto-optimal, it is also an important criteria
in many situations. Here we consider the absolute fairness in
payoff, which refer to intuitively the most direct fairness cri-
teria that the payoff of every player in the game is the same. By
solving , we can get the unique absolute fair-
ness solution as in (9) at the bottom of the page.

D. Optimal and Cheat-Proof Strategies

In Section II.C,we obtained several unique equilibriums with
different optimality criteria. However, as in (8) and (9), all
these solutions involve some private information
reported by each player. Due to players’ greediness, honestly
reporting private information cannot be taken for granted and
players may tend to cheat whenever they believe cheating can
increase their payoffs.

1) Cheat on Private Information : One way of
cheating is to cheat on the private information .
First, let us examine whether the proportional fairness solution
in (8) is cheat-proof with respect to .

From (8), when

(10)

is fixed and

(11)

From (11), if user 2 reports false and lower values of the product
, he/she can lower and, therefore, further increase

his/her own payoff . Sim-
ilarly, when

(12)

is fixed and

(13)

By falsely reporting lower values of the product , user
1 can lower and thus further increases his/her own payoff

. Therefore, the propor-
tional fairness solution in (8) is not cheat-proof. Applying sim-
ilar analysis on the absolute fairness solution in (9), we can also
prove that the absolute fairness solution is also not cheat-proof
with respect to private information. Therefore, players have no
incentives to honestly report their private information. On the
contrary, they will cheat whenever cheating can increase their
payoff.

From the above analysis, to maximize their own payoffs, both
players will report the minimum value of the product .
Since we have assume that and

, both players will claim , and the solu-
tion (8) and (9) becomes

(14)

and the corresponding payoff profile is

(15)

It implies that both players should always cooperate with each
other. It is clear that the solution in (14) forms an Nash equilib-

(8)

(9)
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rium, is Pareto-optimal, and is cheat-proof with respect to pri-
vate information and .

2) Cheat on Buffer Map Information: Here we assume every
user has a buffer with fixed length , which means the buffer
stores future chunks. At the beginning of each round, each
player has to exchange his/her own buffer information with the
other player, that is, telling the other player which chunks he/she
has in the buffer. The other way of cheating is to cheat on the
buffer map information, that is, although player has the th
chunk, , in the buffer, he/she tell the other player, player ,
that he/she does not have . By reporting this wrong buffer
map information, the cheating user can reduce the number of
requests from user since user will never ask for the cheated
chunk . As a result, increasing the cheating player’s own
payoff by lower .

The only circumstance that cheating on buffer information
is effective is that, when the cheated chunk is the only
chunk that the honest player needs, and the honest user has other
chunks that the cheater needs. Which means, the cheater can
ask the honest user for help, but the honest user cannot ask the
cheater for help because there is no chunk in the cheater’s buffer
that the honest user need. Under this circumstance, the cheater
get the reward, but the honest user gets nothing. To prevent this
kind of cheating, each player should not send chunks more than
the other one sent.

To summarize, our two-player cheat-proof P2P live
streaming cooperation strategy is as follows: in the two-player
P2P live streaming game, in order to maximize each user’s
own payoff and be resistant to possible cheating behavior, a
player should not send more chunks than its opponent does
for it. Specifically, for each player in each round, it should
always agree to send the requested chunk unless its opponent
refused it in the previous round or there’s no useful chunk in
the opponent’s buffer.

E. Performance of Two-Person Cheat-Proof Cooperation
Strategy

Here we study the performance of the two-player cheat-proof
P2P live streaming cooperation strategy proposed above. In our
simulation setting, there are totally 500 users in the network, and
everyone is downloading chunks directly from the server. Each
peer is either a DSL peer with 768 kbps uplink bandwidth, or
a cable peer with 300 kbps uplink bandwidth. We fix the ratio
between DSL peers and cable peers as 4:6. The video is ini-
tially stored at an original server with upload bandwidth of 3
Mbps. The request round is 1 second and each peer has a buffer
that can store 30 s of video. We choose the “Foreman” video se-
quence with 352 288 spatial resolution at frame rate 30 frames
per second and padding the video by another to two-hour long.
A MPEG-4 video codec [24] is used to encode the video se-
quence into a nonscalable bit stream with bit rate 150 kbps. We
divide the video into 1-s chunks, thus each chunk has
K bits. Among those peers, we randomly choose two who co-
operate with each other using the proposed two-player cheat-
proof P2P live streaming cooperation strategy. We set

, and every peer claims the lowest band-
width kbps.

Fig. 4. Simulation results on two-person cheat-proof P2P live streaming coop-
eration strategy.

In our simulations, user 1 always reports accurate private in-
formation to user 2, and user 2 cheats on his/her buffer map
information. Among all the chunks that user 2 received, he/she
randomly selects percent of them, manipulates his/her buffer
map, and tells user 1 that he/she does not have those selected
chunks in the buffer. Fig. 4 shows the utility of user 2 with dif-
ferent gain , where the x axis is and the y axis is the utility

. From Fig. 4, for a given , a higher value of gives the
cheating user a lower payoff. In addition, when g2 is small (for
example, when ), if the cheating user selects a larger

, then he/she receives a zero payoff. That is, cheating cannot
help a user increase his/her payoff, but rather reduces his/her
utilities. It clearly demonstrates the cheat-proof property of our
proposed strategy in Section II-D. In addition, from our simu-
lations, by cooperating with each other, both peers double the
number of chunks that they receive, which is 278 without coop-
eration and 542 after cooperation. Therefore, users can recon-
struct a better-quality video.

III. P2P LIVE STREAMING GAME

A. Multiuser Game Model

Next, we will investigate how to stimulate cooperation for all
members in peer-to-peer live streaming over heterogeneous and
error-prone networks, and analyze users’ behavior dynamics.
We focus on the scenario that video streaming will keep alive for
a relatively long time, and there exist a finite number of users,
for example, people watch live Super Bowl over the Internet.
Each user will stay in the social network for a reasonably long
time, for example, from the beginning to the end of the game.
They are allowed to leave and reconnect to the network when
necessary. For each user, uploading chunks to other users will
incur some cost, and successfully receiving chunks can improve
the quality of his/her video and thus brings some gain. To sim-
plify the analysis, in this section, we assume the video stream
is encoded using nonscalable video codec. Therefore, for each
user , each received chunk gives the same gain , whose value
is specified by the user individually and independently. As dis-
cussed in Section II-B, , the gain of receiving a chunk for the
live video, is evaluated by user by how much he/she wants to
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watch the video. For instance, should be set to 1 if at this
moment, all user wants to do is watch the live streaming. The
more activities user is doing simultaneously using the network
bandwidth, the lower the is. If user is utilizing lots of his/her
upload bandwidth and does not care about the quality of the live
video stream, should be set to 0, and user will not join the
P2P live stream social network.

In a real-world social network, some users may be malicious,
whose goal is to cause damages to other users. In this paper, we
focus on insider attackers, that is, the attackers also have legiti-
mate identities, and their goal is to prevent the selfish users from
getting chunks. In P2P live streaming social networks, there are
two ways to attack the system.

1) Incomplete chunk attack: The malicious user agrees to
send the entire requested chunk to the peer, but sends only
portions of it or no data at all. By doing so, the requesting
peer wastes his/her request quota in this round, and has to
request the same chunk again in the next round.

2) Pollution attack: The other kind of attack in peer-to-peer
live streaming is pollution [16]. In P2P streaming system,
a malicious user corrupts the data chunks, renders the con-
tent unusable, and then makes this polluted content avail-
able for sharing with other peers. Unable to distinguish
polluted chunks from unpolluted files, unsuspecting users
download the polluted chunks into their own buffers, from
which others may then download the polluted data. In this
manner, polluted data chunks spread through the system.

Instead of forcing all users to act fully cooperatively, our goal
is to stimulate cooperation among selfish users as much as pos-
sible and minimize the damages caused by malicious users. In
general, not all cooperation decisions can be perfectly executed.
For example, when a peer decides to send another peer the re-
quested chunk, packets of the chunk may be dropped due to the
overloaded routers. It is also possible that the chunk may fail to
be completely received in one round due to the significant delay
caused by the congested network. In this paper, we assume that
the requesting peer gives up the chunk once it does not arrive in
the round, and we use to denote the probability of successful
transmission of a chunk from peer i to peer j in one round of
second. At the beginning of every round, each user will send
only one chunk request to one user. Each user will respond to
only one request. We assume every chunk request can be re-
ceived immediately and perfectly.

In order to formally analyze cooperation and security in such
peer-to-peer live streaming networks, we model the interactions
among peers as the following game:

• Server: The video is originally stored at the original
streaming server with upload bandwidth , and the
server will send chunks in a round-robin fashion to its
peers.

• Players and player type: There are finite number of
users/peers in the peer-to-peer live streaming social net-

work, denoted by . Each player has a type
. Let denote the set of all

selfish players and is the set including all
insider attackers. A selfish user aims to maximize his/her
own payoff, and may cheat other peers if cheating can
help increase his/her payoff. A malicious user wishes to
exhaust other peers’ resources and attack the system.

• Chunk requesting: In each round, each player has one
chunk-request quota, where he/she either requests a chunk
from a peer, requests a chunk from the video streaming
source, or does not request any chunks in this round.

• Request answering: For each player, after receiving a re-
quest asking for the upload of a chunk in its buffer, it can
either accept or refuse the request.

• Cost: For any player , uploading a chunk to another
player incurs cost , where is player ’s
upload bandwidth and , same as in
Section II-B.

• Gain: For each selfish user , if he/she requests a data
chunk from another peer , and if an unpolluted copy is
successfully delivered to him/her, his/her gain is , where

.
• Utility function: We first define the following symbols: for

each player
— is the total number of chunks that has

requested from by time . Here, can be ei-
ther a peer or is the streaming server.

denotes the total
number of chunks that has requested by time .

— By time , peer has successfully received
chunks from peer in time (a chunk is received in time
if and only if it is received within the same round that
it was requested).
is peer ’s total number of successfully received chunks
by time .

— By time is the total number of polluted
chunks that peer received from peer . The total
number of successively received unpolluted data chunks
that peer received from peer is ,
and each successfully received unpolluted chunk gives
peer a gain of .

— denotes the number of chunks that
has uploaded to player by time .

. The cost of uploading each
chunk is for peer .

Let be the lifetime of the peer-to-peer live streaming social
network, and denotes the total time that peer is in the
network by time . Then, we model the player’s utility as fol-
lows.

1) For any selfish player , its utility is defined
as (16) at the bottom of the next page, where the numerator

(16)
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denotes the net profit (i.e., the total gain minus the total
cost) that the selfish peer obtained, and the denominator
denotes the total number of chunks that has requested.
This utility function represents the average net profit that
can obtain per requested chunk, which aims to maximize.

2) For any malicious player , its objective is to maxi-
mize its utility in (17) at the bottom of the page. The numer-
ator in (17) represents the net damage caused by j: the first
term describes the total costs to other peers when sending
the requested chunks to the malicious user ; the middle
term evaluates other selfish peers’ potential loss in gain due
to the incomplete chunk attack by peer ; and the last term
is peer ’s cost by uploading chunks to other peers. We nor-
malize it using the lifetime of peer . Now, this
utility function represents the average net damage that
causes to the other nodes per time unit.

B. Cheat-Proof and Attack-Resistant Cooperation
Stimulation Strategies

Based on the system description in Section III-A, we can see
that the multiple player game is much more complicated than
the two-person game as in Section II, and pose new challenges.
Thus, direct application of the two-player cooperation strategies
to multiple player scenarios may not work.

1) Challenges in Multiple User Scenario: For peer-to-peer
live streaming networks in heterogeneous Internet traffic envi-
ronments, user cooperation stimulation has the following chal-
lenges.

• Repeated game model is not applicable. For example,
a peer may request chunks from different peers at dif-
ferent times to maximize the utility. A direct consequence
of such a nonrepeated model is that favors cannot be si-
multaneously granted. This makes cooperation stimulation
in peer-to-peer live streaming networks an extremely chal-
lenging task.

• Packet delay is inevitable in Internet can cause se-
vere trouble. For the two-player cheat-proof cooperation
strategy, if the link between users is too busy that some
packets of the chunk cannot arrive within a round time, the
game will be terminated immediately and the performance
will be degraded drastically. In addition, the malicious
users can claim it was due to the erroneous Internet traffic
and pretend to be nonmalicious. Distinguishing misbe-
havior caused by bit errors and packet loss from that
caused by malicious intention is a challenging task.

2) Credit Mechanism for Malicious User Detection: To dis-
tinguish “intentional” malicious behavior from “innocent” mis-
behavior caused by packet delay, we introduce the credit mech-
anism. Addressing the pollution attack, for any two peers

(18)

calculates the total number of unpolluted chunks that peer has
uploaded to peer by time . If the chunk is unpolluted, and
is received before its playback time, then the chunk is useful.
Note that for a selfish user , as discussed in the previous
section, he/she has no incentives to intentionally send others
polluted data chunks, since doing so will ultimately hurt him-
self/herself and lower the quality of his/her own video. How-
ever, since peer cannot identify a chunk as a polluted one until
he/she starts decoding and playing that chunk, it is possible that
user unintentionally forwards a polluted chunk to other peers.
In this paper, addressing the above issue, we include the term

in (18) and consider the potential unintentional for-
warding of polluted data chunks.

Given (18), we then define

(19)

which is the difference between the number of useful chunks
that peer has sent to peer and the number of useful chunks
that peer uploaded to peer . Now, similar to the two-player co-
operation-stimulation strategy in Section II-D, we consider the
following strategy: each selfish peer limits the number
of chunks that he/she sends to any other peer such that by any
time , the total number of useful (unpolluted) chunks that has
forwarded to should be no more than

, that is

(20)

Here, is the “credit line” that user sets for user
at time . The credit line is set for two purposes: 1) to prevent
egoism when favors cannot be simultaneously granted and to
stimulate cooperation between and , and 2) to limit the pos-
sible damages that can cause to . By letting

agrees to send some extra, but at most chunks to
without getting instant payback. Meanwhile, unlike acting fully
cooperatively, the extra number of chunks that forwards to is
bounded to limit the possible damages when plays noncoop-
eratively or maliciously.

Player ’s goal of setting the credit line is to avoid helping
player much more than player helps in long term’s view,
and vice versa, since neither of has incentive to send more
chunks than the other does. Meanwhile, due to the dynamically
changing network conditions, the request rates between and
may vary from time to time. In this case, the credit line has to be
large enough since a small credit line will refuse some requests
even when the long-term average request rates between and
are equal. The ultimate goal of setting the credit line is to make

(17)
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sure that player and send asymptotically equal number of
unpolluted chunks to each other, and

(21)

Combining the definition of with (21),
must satisfy

(22)

which also implies that arbitrarily increasing credit lines cannot
always increase the number of accepted requests. Equation (22)
provides an asymptotic upper bound for . Based on
the above analysis, to stimulate cooperation in the first few
rounds, should be large enough in the first few
cooperating rounds between user and . On the other hand,

[total number of rounds after time ] should be
closed to 0 to prevent decreasing the utility of user . Therefore,
when choosing , user should first estimate the
number of remaining rounds for the live streaming, and choose
a relatively small number . Then compare with
the reciprocal of , so that should be larger than

to stimulate the cooperation. A simple solution to this is
to set the credit lines to be reasonably large positive constants,
as in our simulations in Section V.

3) Malicious User Detection: Malicious attacks, such as the
incomplete chunk attack and the pollution attack, exhaust other
peers’ resources and cause damages to the P2P live streaming
system. Thus, it is of critical importance to implement a mon-
itoring system to detect and identify misbehaving users, and a
challenging issue is to differentiate “innocent” misbehavior (due
to erroneous and congested networks) from “intentional” ones
(for example, intentional pollution attacks).

If the credit line is set properly to satisfy (22), the damage of
the pollution attack can be controlled to 0 asymptotically. Since
the pollution attack will not effect honest users’ utility by the
credit line mechanism, in this section, we propose a malicious
user detection algorithm that can differentiate the incomplete
information attack to ensure the attack-resistance of the P2P live
streaming social network.

is the probability of successful transmitting one chunk
within round period . Hence when player decides to send a
chunk to player , with probability , this chunk transmis-
sion cannot be completed within one round because of packet
dropping or delay caused by high traffic internet. That is, we
use a Bernoulli random process to model the unsuccessful trans-
mission of a chunk due to high traffic internet connection. Re-
call that denote the number of chunks that has re-
quested from and has agreed by time t, and is the
number of chunks that peer successfully receives from in one
round. Given the Bernoulli random process, if user does not
intentionally deploy the incomplete chunk attack, based on the
Central Limit Theorem [25], for any positive real number , we
can have

(23)

where is the Gauss tail func-
tion. If user does not intentionally sends incomplete chunks,
(23) indicates that when the peer-to-peer live streaming game
keeps going and is large enough, then

can be approximated by a Gaussian random vari-
able with zero mean and variance , that
is

(24)

Therefore, based on (24), given a predetermined threshold
, every selfish peer can identify peer as a malicious user by

thresholding as follows:

(25)

In (25), is the set of peers that are marked as malicious
by peer at time , and is the set of peers that are marked
as selfish by peer at time . Based on (25), if the malicious user
is always sending incomplete chunks to other users, then the
probability of correctly identify the malicious user and the
probability of falsely accusing a nonmalicious user as malicious

can be written as

(26)

4) Cooperation-Stimulation Strategies: In reality, the inter-
actions between peers are determined by the Internet topology
and the communication pattern in the network. To analyze the
effect of internet topology, we define as the probability that
peer successfully receives a chunk from peer in one round
period denotes the probability of successfully receiving
a chunk from the streaming server in one round period
denotes the percentage of requests that the streaming server can
answer in one round. These probabilities, , can be
probed or estimated [15].

Theorem 1: For a selfish peer , if

(27)

then his/her optimal strategy is to always download the live
video from the streaming server and to reject all chunk requests
from other peers.

Proof: First, consider the optimal strategy for each round.
At each round, peer has one chunk-request quota by which
can ask a chunk either from the source or one peer . The
probability that peer will successfully receive the requested
chunk if sends request to source is , while the prob-
ability that peer will successfully receive the requested chunk
if sends request to is probability of j agrees to send the
chunk. Obviously the probability of j agrees to send the chunk
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is less than or equal to one, and since (27) holds, sending re-
quest to the source will give highest probability of getting the
chunk/reward, which is the optimal chunk-request strategy in
each round. Therefore, always asking chunks from the source
is the optimal chunk-request strategy in the whole game. Also
since peer always requests chunks from the original source, it
does not have incentive to send any chunks to other peers in the
network since it cost to send a chunk which decreases
peer ’s utility as in (16). From the above analysis, peer will
always operate noncooperatively.

Theorem 1 suggests that if a peer has a very good connec-
tion with the original streaming server, which is much better
than the connections with all the other peers, then he/she will
always refuse to cooperate. Cooperation cannot be enforced
to these peers. But in real-world case, there are usually very
few peers that can meet the above condition since peer-to-peer
live streaming social networks are usually very big. Thus, the
streaming server is often very busy with low , and makes the
condition for all in Theorem 1
very difficult to satisfy.

The other extreme scenario is when peer is has the worst
connection with other peers, that is, for every ,
there always exists another peer such that

. In this scenario, will all the other peers in the
network refuse to cooperate with him/her? The answer is no
because of the dynamics in peer-to-peer social networks and
the assumption of a busy server. Note that in peer-to-peer live
streaming, different users have different playback time. If peer
’s playback time is earlier than all the other peers in the net-

work, then it is very likely that his/her buffer has chunks that no
other peers have, which is the incentive for other peers to coop-
erate with under the constraint that .

5) Multiuser Attack-Resistant and Cheat-Proof Cooperation
Strategy: By summarizing the above results, we can arrive at
the following cooperation stimulation strategies in peer-to-peer
live streaming social networks.

Multiuser attack-resistant and cheat-proof cooperation
strategy: in the peer-to-peer live streaming game, for any
selfish peer who does not meet the necessary condition
(27) of Theorem 1, he/she initially marks every other user

as selfish. Then, in each round, uses the
following strategy.

• If has been requested by to send a chunk, will accept
this request if has not been marked as malicious by and
(20) holds; otherwise, will reject the request.

• When is requesting a chunk, he/she will send the request
to peer who satisfies

(28)

• Let be the maximum allowable false positive
probability from ’s point of view, then, when
is large enough for any users will apply the detec-
tion rule (25) to detect malicious behavior after each chunk
request initiated by .

C. Strategy Analysis Under No Attacks

This section analyzes the optimality of the above proposed
strategy for peers who do not satisfy the necessary conditions in

Theorem 1 when there are no malicious users. We first consider
an infinite-lifetime situation with as ,
and the finite-lifetime situation will be discussed later. First, we
assume satisfies (22), which is to guarantee at most
a finite number of ’s requests will be refused by , and ensure

needs ’s help the same as helps averagely.
Lemma 1: In the peer-to-peer live streaming game where

some chunks may be dropped or delayed due to high traffic
volume in the Internet, for a selfish player , if all other users
follow the multiuser attack-resistant and cheat-proofing cooper-
ation strategy, then playing noncooperatively and sending only
part of the requested chunks will not increase ’s payoff.

Proof: If user has agreed to upload a chunk to another
user , by transmitting only part of the requested chunk
will help reduce his/her cost. However, even though agrees
to upload the chunk, it does not count as a successfully received
chunk. In addition, player follows the multiuser attack-resis-
tant and cheat-proof cooperation strategy, and always tries to let

(29)

Since (22) is satisfied, thus by sending partial of the requested
chunk, player loses one chance to request a chunk from player
. To get this one-chunk-request chance back, player has to

send another chunk completely and successfully to player .
Therefore, intentionally sending partial information of the re-
quested chunks cannot bring any gain to player .

Lemma 2: For a selfish peer in the peer-to-peer live
streaming game with no malicious attackers, once has received
a chunk request from another node , if (20) holds and if
follows the multiuser attack-resistant and cheat-proofing coop-
eration strategy, then accepting the request is always an optimal
decision from player ’s point of view.

Proof: From player ’s point of view, if (22) is satisfied,
agreeing to send the requested chunk will not introduce any
performance loss, since the average cost of helping goes
to zero when . Meanwhile, refusing the request may
cause and thus forbids user to request
chunks from player in the future. Therefore, accepting the
request is an optimal decision.

Lemma 3: In the peer-to-peer live streaming game with no
malicious attackers, a selfish peer has no incentive to
cheat on his/her buffer map information.

Proof: From player ’s point of view, cheating on
his/her buffer information will prevent other peers from re-
questing chunks from him/her, and thus will decrease the
total number of chunks he/she needs to upload .
However, since other users always enforce (22) and

, decreasing
will also decrease the chance of getting chunks from other peers
and lower player ’s overall payoff, similar to the two-player
game in Section II-B. Therefore, selfish peers have no incentive
to cheat on buffer information.

Theorem 2: In the peer-to-peer live streaming game without
malicious attackers, if all the selfish players who do not sat-
isfy the necessary conditions in Theorem 1 follow the mul-
tiuser attack-resistant and cheat-proofing cooperation strategy
forms a equilibrium with following properties: subgame perfect,
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cheat-proof, and if for
any , this equilibrium is also strongly Pareto optimal.

Proof:
1) Cheat-proof: Similar to the analysis of the two-person

game in Section II, since no private information is involved
in the game and Lemma 3 says that selfish users have
no incentive to cheat on buffer information, we can con-
clude that the proposed cooperation-stimulation strategy is
cheat-proofing.

2) Nash equilibrium: To prove that this strategy profile
forms a subgame perfect equilibrium, note that this mul-
tiuser game can be decomposed into many two-player
subgames. Therefore, we only need to consider the
two-player subgame between player and . Suppose that
player does not follow the above strategy: either refuses
to send chunks to player when (20) is satisfied; or
intentionally sends only part of the chunk requested by
player ; or sends more chunks than it should for player
, that is, agrees to send the requested chunks even (20) is

not satisfied. First, from Lemma 1 and 2, neither refusing
to sending chunks for other players when (20) is satisfied
nor intentionally sending incomplete chunks will give
player any performance gain. Secondly, sending many
more chunks (i.e., more than ) than player
has sent to will not increase player ’s own payoff either.
This is because according to the assumption of credit line
selections, will always cooperate with since has sent
chunks less than . Therefore, giving more favor will
only cost more bandwidth. Based on the above analysis,
we can conclude that the above multiuser attack-resistant
and cheat-proofing cooperation strategy forms a Nash
equilibrium.

3) Subgame perfectness: In every subgame of the equilib-
rium path, the strategies are: if player is marked mali-
cious by peer , player will play noncooperatively forever,
which is a Nash equilibrium; otherwise, player follows
the multiuser attack-resistant and cheat-proofing strategy,
which is also a Nash equilibrium. Therefore, the proposed
cooperation-stimulation strategy is subgame perfect.

4) Strong Pareto optimality: From the selfish user’s utility
function in (16), a player can either try to increase

or decrease to increase his/her own
payoff. However, from the above analysis, further de-
creasing of will reduce other peers’ successfully
received useful chunks and therefore lower their payoff.
In order to increase his/her payoff, the only thing that
player can do is to increase ,
which means that some other players will have to send
more chunks to player . Since all s are in the
same order, increasing (and
thus improving player ’s payoff) will definitely decrease
the other players’ payoff. Therefore, the above strategy
profile is strongly Pareto optimal.

Until now, we have mainly focused on the situation that the
game will be played for an infinite duration. In most situations,
a peer will only stay in the network for a finite period of time,
for example till the end of the video streaming. Then, for each

player , if is too large, he/she may have helped other
users much more than his/her peers have helped . Meanwhile,
if is too small, he/she may lack enough peers to send
chunks to him/her. How to select a good is a chal-
lenging issue. Section V will study the trade-off between the
value of and the peers’ utility through simulations.
It is shows there that under given simulation scenarios, a rela-
tively small value is good enough to achieve near-op-
timal performance, when compared to setting to be
infinity. Here, it is also worth mentioning that the optimality of
the proposed strategies cannot be guaranteed in finite-duration
scenarios. However, we will show in the simulation results that
the performance our cheat-proof and attack-resistant coopera-
tion strategies is very closed to optimal.

D. Strategy Analysis Under Malicious Attacks

In this section, we focus on the following two widely used
attack models, the incomplete chunks attack and the pollution
attack, and analyze the performance of the proposed coopera-
tion-stimulation strategy when there exist malicious users. To
simplify our analysis, we assume that , and

for all .
Pollution Attack: We first study the performance of the pro-

posed strategy under the pollution attack. By always accepting
selfish users’ requests and sending polluted chunks to the selfish
nodes, the malicious attackers can waste the selfish users’ quota
and prevent them from obtaining the gain of receiving useful
chunks in that round. Note that every selfish user forces

, calculates as in (19), and
does not include the polluted chunks in . Thus, for
every selfish peer , the damage cased by one pollution attacker
is upper bounded by . Since , as

(30)

and therefore, the overall damage due to pollution attacks be-
comes negligible.

Incomplete Chunk Attack: By sending incomplete chunks
to others, malicious users inject trash traffic into the net-
work and waste other peers’ limited upload bandwidth. With
the proposed attacker detection strategy in (25), for a ma-
licious attacker to maximize the damages to the system,
always sending incomplete chunks may not be a good strategy
since it can be easily detected. Instead, to avoid being de-
tected, attackers should selectively send incomplete chunks
and send complete chunks in other time. According to the
multiuser attack-resistant and cheat-proofing cooperation
strategy in Section III-A, peer identifies as malicious if

.
Assume that by time , user has agreed to upload a total
of chunks to user . Therefore, to avoid being marked
as malicious by has to successfully forward at least

complete chunks, and the max-
imum number of incomplete chunks that can send to is
upper bounded by . Note
that among these incomplete
chunks, of them are dropped or delayed by the
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network due the high Internet traffic volume, and the actual
number of intentional incomplete chunks sent to by is
bounded by . Therefore, for user , the
extra damaged caused by attacker ’s intentional malicious
attack is upper bounded by . Further-
more, to avoid being identified as malicious, attacker has
to successfully forward at least
complete chunks to user , which costs attacker a utility of

. Thus, following (17),
the utility that attacker receives from intentionally sending
incomplete chunks is at most

. Since for any real positive

(31)

selectively sending incomplete chunks can bring no gain to
the attackers if they want to remain being undetected. In other
words, if the game will be played for an infinite duration,
sending incomplete chunks attack cannot cause damages to
selfish nodes.

In summary, when the multiuser attack-resistant and cheat-
proofing strategy is used by all selfish users, malicious attackers
can only caused limited damage to the system. Further, the rela-
tive damage caused by the incomplete chunk attack will asymp-
totically approach zero when the game will be played for an
infinite duration of time. Therefore, except some false alarm
of identifying selfish users as malicious, selfish players’ overall
payoff will not be affected under attacks. From the above anal-
ysis, we can also see that no matter what objectives the at-
tackers have and what attacking strategies that they use, as long
as selfish peers apply the multiuser attack-resistant and cheat-
proofing cooperation strategy, the selfish users’ payoff and the
overall system performance can be guaranteed.

Optimal Attacking Strategy: Based on the above analysis on
the pollution attack and the incomplete chunk attack, we can
conclude that, for the infinite-duration game, an attacker ’s
overall payoff is upper bounded by

(32)

provided that all selfish users follow the multiuser attack-resis-
tant and cheat-proof cooperation strategy. This upper bound can
be achieved by the following optimal attacking strategy in infi-
nite game model: in the peer-to-peer live streaming game, upon
receiving a request an attacker should always reject
the requests; the attackers should always send requests to selfish
users, until they do not agree to help.

When the game will only be played for a finite period of time,
the above attacking strategy is not optimal any more. In addition
to the pollution attack, the attackers can also send incomplete
chunks without being detected. This is because the malicious
attacker detection algorithm in Section III-B3 requires that the
game has been played for a long time and peer and have
interacted for a large number of times to provide an accurate es-
timation, and it will not be initiated unless is large

enough to avoid high false alarm rate. In such a scenario, dif-
ferent from the asymptotic analysis in (31), selfish users’ per-
formance will be degraded because of the incomplete chunk at-
tack. However, in this paper we focus on the scenario the game
will be played for a reasonably long time. Thus the users would
have enough rounds to interact with each other and correctly es-
timate the statistics of chunk transmission, the relative damage
is still insignificant.

IV. P2P LIVE STREAMING GAME WITH

MULTIPLE LAYERED CODING

The previous section discussed the cheat-proofing and
attack-resistant multiuser peer-to-peer live streaming coopera-
tion-stimulation strategy with nonscalable video coding. In this
section, we will extend the cooperation strategy to the scenario
with layered video coding, where different chunks may belong
to different layers and thus have different gain to the peers.
In this scenario, an important issue is to schedule the chunk
requests to maximize each peer’s utility. We first investigate the
chunk-request algorithm for a two-person P2P live-streaming
social network that optimizes three different video quality
measures in Section IV-B. We then propose a two-person
chunk request algorithm considering tradeoff between these
measures and extend it to N-person case. Then we will discuss
the request-answering strategy when a peer receives more than
one chunk requests at one round, and propose a cheat-proofing
and attack-resistant cooperation strategy for P2P live streaming
social networks.

A. P2P Live Streaming With Scalable Video Coding

In P2P live streaming social networks, peers belong to
different domains with different upload/download bandwidth,
where scalable video coding is widely adopted to accommodate
heterogenous networks [15], [26]. [15] shows that layered
video coding provides higher quality of service in peer-to-peer
live streaming social networks than multiple description coding
(MDC) [27], thus we only consider the layered video coding.
It decomposes the video sequence into different layers of
different priority. The base layer contains the most important
information of the video and is received by all users, and the
enhancement layers gradually refine the reconstructed sequence
at the decoder’s side. Although scalable video coding provides
service depending on peers’ bandwidth capacity, it also has
its unique challenges when used in P2P live streaming social
network: the importance of different layers is unequal since
higher layers cannot be decoded without successful decoding of
lower layers. Therefore, in a P2P live streaming social network
with scalable video coding, chunk-request algorithms need to
assign higher priorities to the lower layers than to the higher
layers.

In this paper, we encode a video into layers, and assume that
the bit rate of every layer is the same bits/second. We further
divide each layer into layer chunks (LCs) of seconds. Fig. 5
shows an example of the buffer map at one user’s end. The grey
blocks represent the chunks in buffer, while the white blocks
denote the chunks that are not in the buffer, and “D” stands
for layer chunks that are directly decodable after arriving. For
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Fig. 5. Buffer map at a given time t.

example, this user only has the chunks in base layer with time
index and , and the chunk in layer 2 with time index

in buffer. A chunk is decodable if and only if all the lower
layers in the same chunk time have been decoded correctly.

For user , we define as the number of decodable layer
chunks at time . For example, in the example in Fig. 5,

, and .
Let denote the duration that peer is in this network, then
we define as a vector containing all
the . is the number of all (decodable
and successfully received nondecodable) chunks peer receives
during his stay in the P2P live streaming social networks.

B. Video Quality Measure

This paper focuses on investigating the best chunk-request
strategy for each user in the peer-to-peer live streaming social
network to optimize his/her own received video quality. In the
literature, there are many video-quality measures. In this paper,
we consider the following three popular criteria to evaluate our
algorithms:

Chunk Decodable Rate: Every member in the P2P
live-streaming social network has stringent bandwidth avail-
able, and every peer wants to use it as efficiently as possible.
The chunk decodable rate of peer measures the band-
width-efficiency of the chunk-request algorithm, and it is
defined as

(33)

Video Smoothness: Intuitively, a video stream with nearly
constant quality will be more pleasant to view than one with
large swings in quality. Video smoothness measure (S) is de-
fined as follows:

(34)

where is the absolute value operator. increases when
the variance of goes up, and decreases when the dif-
ference between adjacent is lowered. To improve the

quality and maximize the smoothness of the received video, user
should request the chunks to minimize .
Video Discontinuity Ratio: Discontinuity ratio of peer

is defined as the percentage of times that a video is undecodable
and unplayable. In a scalable video coding scheme, if all frames
in the base layer are available, then the video is decodable and
playable. Note that stands for the number of chunks that
is decodable at chunk time . Therefore, if , peer ’s
video is unplayable at chunk time . is defined as

(35)

where when , otherwise .

C. Optimal Chunk-Request Algorithms

In this subsection, we will propose three optimum chunk-re-
quest algorithms subject to the three video quality measures dis-
cussed in the previous section.

• Maximizing Chunk-Decodable Rate: We first discuss
the chunk-request algorithm which aims to maximize
the chunk decodable rate. According to the definition
of chunk-decodable rate in (33), chunks that are not de-
codable do not give any gain to the player, thus gain of
receiving the requested chunk for player is

(36)

where is a constant, is the time index of the re-
quested layered chunk and stands for the layer index of the
requested chunk. Therefore, maximizing payoff function in
(1) is equivalent to making , and it is to always re-
questing chunks that are directly decodable after arriving.
In the example in Fig. 5, at the current state, requesting
any one of the “D” chunks,

and , will
maximize the player’s payoff.

• Maximizing Video Smoothness: If the player concerns
more about the video smoothness as defined in (34), the
gain of receiving a requested chunk for player is
defined as the increment of smoothness after receiving the
requested chunk as (37) at the bottom of the page, where

is the number of decodable layers in chunk time
after receiving the requested chunk , and is the
current playback time. The first term of the summation,

represents the difference between the number
of decodable layers in chunk time and then in , hence

denotes the smoothness of the
buffer map if the chunk LC(t’,l) is not received. Similarly,

denotes the video smoothness
if the requested chunk is successfully received.

(37)
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Therefore, to maximize the video smoothness, player
should choose the decodable chunk that maximizes the
difference (with
maxima greater than 0). If the maxima is less than 0, the
peer should always choose undecodable chunks. Using the
buffer map in Fig. 5 as an example, the peer should request

.
• Minimizing Video Discontinuity Ratio: If the peer wants

to minimize video discontinuity ratio, the base layer is the
most important and every chunk in base layer has equal
importance according to the discontinuity definition in
(35). Therefore, the gain of receiving a requested chunk

for player should be

(38)

To maximize , the peer should request chunks in base
layer. For the example in Fig. 5, requesting either

or will maximize .
The above three algorithms use different video quality mea-

sures defined in Section IV-B and select different chunks to
maximize each individual criteria. To address the tradeoff be-
tween different video quality measure, we combine the above
three chunk-request algorithms as follows.

Step 1: For user , for each chunk that is not in ’s
buffer but is available at other peers’ buffers, user assign a
score as follows.

• first assigns an original score
to the chunk , where is the current time

and is user ’s buffer size. It addresses the stringent time
constraint in video streaming, and gives the chunk
a higher score (thus higher priority for requesting) when it
is closer to the playback time.

• If is decodable after arriving, then the score is
updated as .

• If , then
updates .

• If , then .
Here, are the
weighs that the peer can adjust depending on the importance of
each video-quality measure.

Step 2: Then, for each that is not in ’s buffer but
is available at other peers’ buffers, let be the set of all
users that who are not identified as malicious by user , those
who satisfy (20), and those who have in their buffers.
Then, user further updates the score of each chunk
as

(39)

Step 3: Finally, user selects the chunk with the highest
score, that is, , and requests
the chunk from peer who gives the highest suc-
cessful transmission probability among all peers in ,
that is, .

Since there is no algorithm bring optimal for all the
three video quality measures, each peer can choose weights

by themselves depending on which video-quality it
concerns most.

D. Request-Answering Algorithm

According to our analysis in Section III-B4, selfish users who
do not satisfy the conditions of Theorem 1 should not reject
chunk requests from other selfish peers, some peers may receive
several chunk requests in a single round while our P2P environ-
ment assume that every user can upload at most one chunk per
round. Thus we need a request-answering algorithm to address
the above issue.

The peer-to-peer live streaming social network will last till
the end of the video and has finite life time, selfish peers tend
to consider the contributions from other peers when choosing
which request to answer. This situation will encourage the
selfish users to be always cooperative in the finite time model.
Let be the set of users who send a chunk re-
quest to peer in round and all users in are not marked
as malicious by peer , and also satisfy (22). We propose the
following request-answering algorithm: for every selfish peer ,
when he/she receives multiple chunk requests, he/she randomly
chooses one peer with probability

(40)

where is a small number that gives newcomers who have not
sent any chunks to peer a chance to start cooperation. is a
parameter that controls the sensitivity of peer to other peers’
contribution. If , every peer sent a request to peer has
the same probability of being answered. On the contrary, if

, the request from peer who has send most chunks to peer
will definitely be answered.

E. P2P Live Streaming Cooperation Strategy With Layered
Video Coding

From the above discussion, the P2P live streaming cooper-
ation strategy with layered video coding is as follows: for any
selfish node who does not meet the necessary conditions
of Theorem 1, initially marks every other nodes
as selfish. Then, in round uses the following strategy.

• In the chunk-requesting stage, chooses its own
, applies the chunk-request algorithm in

Section IV-C, and sends one chunk request to one peer in
.

• In the request-answering stage, first identifies the selfish
peers that satisfies (22). Then, chooses a peer among
them based on the probability distribution in (40), and
agrees to send the requested chunk to .

• Let be the maximum allowable false posi-
tive probability from ’s point of view, then, as long as

is large enough for any node applies
the malicious user detection rule (25) after each chunk
request that is initiated by .

V. SIMULATION RESULTS

In our simulation, there are 200 DSL peer with 768 kbps up-
link bandwidth and 300 cable peer with 300 kbps uplink band-
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Fig. 6. Selfish peers’ performance under proposed strategies with and without attack. (a) Three-layer video coding with � � ��� second. (b) Four-layer video
coding with � � ��� second.

width. The video is initially stored at an original server with
upload bandwidth 3 Mbps. We choose the “Foreman” video se-
quence (352 288) resolution with frame rate 30 frame/sec and
by attaching duplicated copies to the original video, make it into
a 60 minutes video. Each user has a buffer with length 30 s. To
exam the influence of different parameters on the performance
of the proposed cooperation strategies, we run the simulations
under two settings: First, we let the round duration is 0.4 s
resulting in 9000 rounds in total for the P2P live streaming so-
cial network, and the video is coded into three-layer bitstream
with 50 kbps per layer. Then the video is divided into 1-s layered
chunks, thus chunk size kbits. In our second simulation
setup, we let second and the total number of rounds is

. The video is encoded into four-layer bitstream with
37.5 kbps per layer. Each chunk is of 1-s length and includes
M-37.5 K bits. We set the score weighing as

and the malicious peers can either mount attack
by sending incomplete or polluted chunks. The nonmalicious
(selfish) peers follow the cheat-proof and attack-resistant coop-
eration strategies in Section IV-E.

We first study how different credit lines can affect cooper-
ation stimulation. Fig. 6 demonstrates the relationship between
the credit line when the percentage of attackers are 0, 25%, 37%,
and 50%, respectively. The attackers are chosen randomly from
all the 500 peers. Selfish peers follow the attack-resistant and
cheat-proof cooperation strategy in Section IV-E, and the at-
tackers follow the attack strategy in Section III-D. From these
results, we can see that, in both simulation setups, when the
credit line is over 50, the selfish nodes’ payoffs are saturated.
As the credit line keeps increasing, selfish nodes’ utilities start
to decrease very fast under attack. The selfish users’ utilities re-
main the same if there are no attackers presented. It is clear from
(32) that the maximum damage attackers can cause is linearly
proportional to the credit line, while total number of rounds is
9000, when credit line is larger than 120 and 50% attackers, by
(32), the damages are no longer negligible. Also, Fig. 6 suggests
that setting credit line of 50 is an optimal choice for both simula-
tion settings since it stimulates the cooperation to the maximum
degree. Nevertheless, arbitrarily increasing credit line is dan-

gerous for the selfish users since they do not know how many
malicious users are in the network.

Next, we examine the robustness of our cooperation strate-
gies against attackers and free-riders in terms of PSNR. Since
from Fig. 6, both simulation settings give similar trends, here
we use simulation setting 1 to demonstrate the robustness. Also,
to show how the total number of users effects the optimal credit
line, we test our proposed cooperation schemes on 500 users and
1000 users with fixed ratio between cable and DSL peers (3:2).
We let the credit line equals to 50, 100, 200, or 300, respectively.
Selfish peers follow the cooperation strategy in Section IV-E.
Also the malicious peers are randomly selected and follow the
optimal attack strategy in Section III-D. Fig. 7(a) and (b) shows
the PSNR of a selfish user’s video versus the percentage of at-
tackers with different credit lines and different number of users.
It is clear that when the credit line is chosen correctly, and is
around 50, our cooperation strategies is attack-resistant in both
cases. Even the credit line is too large, around 100, the PSNR
of selfish users’ video does not degrade too much even there
are 60% malicious. From the above discussion, we can con-
clude that the optimal credit line is the value that just stimulates
the cooperation, which should be around several dozen. If there
are fewer users in the network, or the total number of rounds
is larger, the range of attack-resistant credit line is larger. Al-
though there is no explicit way to choose the credit line, in gen-
eral, a credit line between 50 and 100 will simulate cooperation
among selfish users, resist cheating behavior, and give good per-
formance.

Fig. 7(c) shows the video quality (PSNR) of peers who fol-
lows our cooperation strategy with 500 users in Section IV-E
and the free-riders versus percent of free riders. The credit line
in Fig. 7(b) is 50. It is clear that there is no incentive for the
peers to be free riders since their video quality is very bad, also
our attack-resistant and cheat-proof cooperation strategy guar-
antees the peers’ quality of service.

VI. CONCLUSION

In this paper, we investigate cooperation stimulation in
P2P live streaming social networks under a game theoretic
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Fig. 7. Selfish peers’ video quality (PSNR) versus the percentage of attackers and free-riders with (a) 500 users. (b) �� users. (c) Versus free-riders.

framework. Besides selfish behavior, possible attacks have
also been studied, and attack-resistant cooperation stimulations
have been devised which can work well under various traffic
network and hostile environments. An illustrating two-player
game is studied, and different optimality criteria, including
Pareto-optimal, proportional fairness and absolute fairness is
performed to refine the obtained Nash equilibriums. Finally, a
unique Nash equilibrium solution is derived, which states that,
in the two-person live streaming game, a node should not help
its opponent more than its opponent has helped it.

The results are then extended to stimulate multiuser live
streaming, and combing with the chunk-request and re-
quest-answering algorithm, a fully-distributed attack-resistant
and cheat-proof cooperation stimulation strategy has been
devised for P2P live streaming social networks. Simulation
results have illustrated that the proposed strategies can effec-
tively stimulate cooperation among selfish peers in internet
with various traffic and hostile environments, and the chunk-re-
quest algorithm with tradeoffs performs the same as optimal
algorithms when the percentage of attackers is lower than 20%.
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