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ABSTRACT

The problems of unified efficient computations of the discrete co-
sine transform (DCT), discrete sine transform (DST), discrete Hart-
ley transform (DHT), and their inverse transforms are considered. In
particular, a new scheme employing the time-recursive approach to
compute these transforms is presented. Using such approach, unified
parallel lattice structures that can dually generate the DCT and DST
simultaneously as well as the DHT are developed. These structures
can obtain the transformed data for sequential input time-recursively
with throughput rate one per clock cycle and the total number of
multipliers required is a linear function of the transform size N. Fur-
thermore, there is no constraint on N. The resulting architectures
are regular, modular, and without global communication so that they
are very suitable for VLSI implementation for high-speed applications
such as ISDN networks and HDTV systems. It is also shown in this
paper that the DCT, DST, DHT and their inverse transforms share an
almost identical lattice structure. The lattice structures can also be
formulated into pre-lattice and post-lattice realizations. Two methods,
the SISO and double-lattice approaches, are developed to reduce the
number of multipliers in the parallel lattice structure by 2N and N
respectively. The trade-off between time and area for the block data
processing is also considered. The concept of filter bank interpretation
of the time-recursive sinusoidal transforms is also discussed.

1 Introduction

Transform coding has found lots of applications in image, speech,
and digital signal transmission and processing. Due to the advances
in ISDN network and high definition television (HDTV) technology,
high speed transmission of digital video signal becomes very desirable.
Among many transforms, the discrete cosine transform (DCT), dis-
crete sine transform (DST), and discrete Hartley transform (DHT) are
very effective in transform coding applications to digital signals such as
speech and image signals. The DCT is most widely used in speech and
image processing for data compression. This is due to its better energy
compaction property and its near optimal performance which is closest
to that of the Karhunen-Loeve Transform (KLT) among many discrete
transforms for highly correlated signals, especially for the first order
Markov process [1, 2, 3]. It was shown by Jain that the performance of
the DST approaches that of the KLT for a first-order Markov sequence
with given boundary conditions, especially for signal with low corre-
lation coefficients [4, 5]. In 1983, Bracewell introduced the DHT [6]
which uses a transform kernel similar to that of the discrete Fourier
transform (DFT), except that it is a real-valued transform. There-
fore, it is simpler than the DFT with respect to the computational
complexity [7]. Like the DCT and DST, the DHT has found many
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applications in signal and image processing [6, 8, 24, 28].

In this chapter, we propose unified time-recursive lattice structures
that can be used for the discrete orthogonal transforms mentioned
above, i.e., the DCT, DST, and DHT. We consider the orthogonal
transforms from a time-recursive point of view instead of the whole

‘block of data. We do so because in digital signal transmission, data

arrive serially. Also, many operations such as filtering and coding are
done in a time-recursive way. Based on this approach, the resulting
architectures are almost identical for the DCT, DST, and DHT, and
their inverses. Qur structures decouple the transformed data compo-
nents, hence, there is no global communication needed. Besides, the
number of multipliers in these structures is a linear function of N, so
they require fewer multipliers than most other algorithms when N is
large. Therefore, our architectures are very suitable for VLSI imple-
mentation. One of the important characteristics of these structures is
that the transform size NV can be any integer, which is not the case for
most of the fast algorithms for discrete transforms which do have cer-
tain constraints on N. Another important result is that based on the
time-recursive approach, the dual generation properties of the DCT,
DST, and DHT, as well as some related inverse transforms, can be
obtained.

The rest of the chapter is organized as follows. In Section 2.2,
the dual generation of lattice structures for the DCT and DST with
the time-recursive approach is considered. The inverse discrete co-
sine transform (IDCT) and the inverse discrete sine transform (IDST)
based on the lattice structures are discussed in Section 2.3. In Section
2.4, the time-recursive lattice structure for the DHT is presented. All
the above time-recursive properties are derived by updating the time
index by one. With block data processing, the time index is updated by
more than one. The detailed effects and results of the block data pro-
cessing are discussed in Section 2.5. Denormalized methods to reduce
the number of multipliers in those lattice structures are considered in
Section 2.6. Then we compare these kinds of lattice structures with
other architectures in terms of the number of multipliers and adders in
Section 2.7. The synthesis bank structures based on the time-recursive
concept is discussed in Section 2.8. Finally, we give the conclusion in
Section 2.9.

2 Dual Generation of DCT and DST

We will show an efficient implementation of the DCT from the time-
recursive point of view as an alternative to find fast algorithms through
matrix factorizations or convert the DCT to DFT, which can be im-
plemented on various existing architectures. Focusing on the sequence
instead of the block of input data, we can obtain not only the time-
recursive relation between the DCT of two successive data sequences,
but also the fundamental relation between the DCT and DST. In the
following, the time-recursive relation for the DCT will be considered
first.



2.1 Time-Recursive Discrete Cosine Transform

The one-dimensional (1-D) DCT of a sequential input data starting
from z(t) and ending with z(¢ + N — 1) is defined as

Xk = BN ) on L0 1],
k=0,1:._.jN—1, (6]
where C(k)—{Vl? ifk=0o0rk=N,
T 11 otherwise.

Here the time index ¢ in X.(k,t) denotes that the transform starts from
z(t). Since the function C(k) has a different value only when k = 0, we
can consider those cases that C'(k)’s equal one (i.e. k = 1,2,..,N—1.)
first and re-examine the case for k£ = 0 later on. In transmission
systems data arrive seriesly, therefore we are interested in the the 1-D

DCT of the next input data vector [z(t + 1), z(t + 2), ..., z(t + N)).
From the definition, it is given by
2 N 72n—t-1)+ 1)k
Xc(k,t+1)= v ,,;.1 z(n) cos [—T] . (2)

This can be rewritten as

Xc(k,t+1) = X.(k,t+ 1) cos (%k) + X,(k,t + 1) sin (7;v—k) , (3)
where
t+N
- [2(n — t) + 1)k
Xc(k,t+1 — _, 4
(iD= 3 smeos[TEE0TW] )
and

t+N
7,(k,t+1)=% 3 a(n)sin [M] (5)

n=t+1 2N
As we can see, a DST-like term X,(k,t+ 1) appears in the equation.
This motivates us to investigate the time-recursive DST.
2.2 Time-Recursive Discrete Sine Transform

There are several definitions for the DST. Here we prefer the definition
made by Wang in {20] since it is of the form completed with the follow-

ing derivations. The 1-D DST of a data vector [z(t),2(t + 1), ..., z(t +
N —1)] is defined as
ZC(k) fasiig - [x[2(n - 1) + 1]k
k.t L7 e
X,(k,t) nz-:t :t(n)sm[ 5V ],
k=1,.,N. (6)

Note that the range of k is from 1 to N. Again, we consider those
cases that D(k)’s equal one first, i.e.

tNl

X, (k, t)_— > a(n)sin [W] )

The DST of the time update sequence [z(t + 1), 2(¢ +2), ..., z(t + N)|
is given by

t+N x .
Xo(k,t+1) = _njzﬂ:-l z(n)sin [W]
= X,(k,t+ 1) cos (1—:—) — Xo(k,t+1)sin (%) ) )

Here the terms X,(k,¢ + 1) and X(k,t + 1) that are used in (3) to
generate X.(k,t+ 1) appear in the equation of the new DST transform
X,(k,t+1) again. This suggests that the DCT and DST can be dually
generated from each other.

Rk, t+1) ) X (k,t+1)
e
Xk t+1) . (2) Xg(k,t+1)

Tetn)=cos(kn/2N), Lg(n)=sin(rkn/2N)
Figure 1: The lattice module.

2.3 The Lattice Structures

From (3) and (8), it is noted that the new DCT and DST transforms

Xc(k,t + 1) and X,(k,t + 1), can be obtained from X(k,¢+ 1) and
X, (k,t+ 1) in the lattice form as shown in Fig. 1. The next step is
to update X (k,t + 1) and X,(k,t + 1) from the previous transforms
X.(k,t) and X,(k,t). We notice that X.(k,t) and X.(k,t + 1) have
similar terms except the old datum z(t) and the incoming new datum
z(t + N). Therefore X (k,t+ 1) and X,(k,t 4+ 1) can be obtained by
deleting the term associated with the old datum z(¢) and updating the
new datum z(t + N) as

el +1) = Xelk,) =20 (5 ) cos (77)
ot ) (2) o [ 1)
= Xk, 0+ [-2() + (-1Pat+ N)] (3 ) cos (35), 9
and
Tk t+ 1) = Xo(k0) - 2(0) (5 ) sin (1)

+z(t+ N) (3> sin [—1(21;; Dk

= X,(k,0) + [-=(1) + (- 1)"z(t+N)]< )sm( ) (10)

From (3), (8), (9), and (10), the new transforms X.(k,t + 1) and
X,(k,t+1) can be calculated from the previous transforms X,(k, ) and
X,(k,t) by adding the effect of input signal samples z(t) and z(t+ N).
This demonstrates that the DCT and DST can be dually generated
from each other in a recursive way. The time-recursive relations for
the new transforms X (k,t+ 1) and X,(k,?+1) as well as the previous
transforms X (k,t) and X,(k,t) are given by

Xo(k,t+ 1) = Xo(kyt + l)cos( k)+X,(k t+1)sm(;), (11)
and

X,(k,t+1):7,(k,t+l)cos(1;v—k) c(kt-{-l)sm( ), (12)

where

Xk, t+1) = Xell, 1)+ [2(1) + (~D*2(N +0)] C(k) ( ;) cos ( ;’1’;)

(13)
and

Xk, t+1) = X, (k, 04 [-2(0) + (~1)F2(N + )] C(k) (%) sin (;—1’;)

(14)

M ' I
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Figure 2: The lattice structure for the DCT and DST with coefficients
C(k)’s and D(k)’s, k=0,1,2,...,N—1,N.

Now, let us consider the cases for ¥ = 0 in the DCT and k = N in the
DST respectively. According to (1), the 1-D DCT of the time-update
input vector [z(t + 1),z(¢t + 2),..x(t+ N)] for k =0 is

9 N
X (0,24 1) = —— ) 15
Q)= 5o 3 o) (15)
The relation of X (0,t+ 1) with the old transformed datum X,.(0,1) is
Xo(0,84 1) = Xo(0,8) + ~2n [~2(t) + 2t + N)].  (16)

NV2

And, the time-recursive relation between the new transforms X,(N,t+
1) and the previous transforms X,(N,1) is

t+N

> a(a)(-1t

n=t+1

2
XNyt +1) = ——
(N,t+1) N2

= X,(V, 1)+ NL\/Q [+ ()M tae 4 W) (1)

The complete time-recursive lattice modules for (k = 0,1,2,..,N - 1.)
are shown in Fig. 2. It consists of a N + 1 shift register and a normal-
ized digital filter performing the plane rotation. The multiplications
in the plane rotation can be reduced to addition and substration for
k = 0in the DCT and k = N in the DST respectively. The following
illustrates how this dually generated DCT and DST lattice structure
works to obtain the DCT and DST with length N of a series of input
data [z(t),z(t + 1),..,z(t+ N — 1),z(t + N),...] for a specific k. The
initial values of the transformed signals X (k,2 — 1) and X,{k,t - 1)
are set to zero; so are the initial values in the shift register in the front
of the lattice module. The input sequence [z(t), z(¢ + 1), ...] shifts se-
quentially into the shift register as shown in Fig. 2. Then the cutput
signals X (k,t) and X,(k,t),k=0,1,..., N — 1, N, are updated recur-
sively according to (11), (12), (16) and (17). After the input datum
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Figure 3: The parallel lattice structure for the DCT and DST.

z(t + N — 1) shifts into the shift register, the DCT and DST of the
input data vector [z(t),z(¢ + 1),...,2(t + N — 1)] are obtained at the
output for this index k. It takes N clock cycles to get the X.(k,t) and
X ,(k,t) of the input vector [z(t),z(t+1),...,z(t+ N —1)]. Since there
are N different values for k, the total computational time to obtain
all the transformed data is N2 clock cycles, if only one lattice module
is used. In this case, the delay time and throughput are the same N?
clock cycles.

A parallel lattice array consists of N lattice modules can be used for
parallel computations and it improves the computational speed drasti-
cally as shown in Fig. 3. Here we have seen that the transform domain
data X(k,t) have been decomposed into N disjoint components that
have the same lattice modules with different multiplier coefficients in
them. In this case the total computational delay time decreases to N
clock cycle. It is important to notice that when the next input da-
tum z(t + N) arrives, the transformed data of the input data vector
[z(t+1),2(t+2),...,2(t + N)] can be obtained immediately. Likewise,
it takes only one clock cycle to generate the transformed data of sub-
sequent inputs. That is, the latency and throughput of this parallel
system are N and 1 respectively.

It is obvious that this lattice structure is quite different from the
signal flow graph realization obtained from the fast DCT algorithms
[14, 15]. Since there is no global communication and the structure is
modular and regular, it is suitable for practical VLSI implementation.
The most interesting result is that this architecture can be applied to
any value of N. From this point of view, it is more attractive than
existing algorithms. In fact, most algorithms [21, 18] are limited to
the sequence length N which either must be power of 2 or must be
decomposable into mutually prime numbers. In addition, this lattice
structure reveals some interesting properties of the DCT and DST, i.e.,
the DCT and DST can be generated simultaneously. The DCT is near
optimal to the KLT transform in highly correlated signals, while the
DST approaches the KLT in signals with low correlation coefficient. As
we are able to obtain the DCT and DST at the same time, this lattice
structure is very useful especially when we do not know the statistics of
the incoming signal. Furthermore, we can use a single lattice module
with only 6 multipliers and 5 adders to recursively compute any N-
point DCT and DST simultaneously. To obtain the transformed data
in parallel, we need N lattice modules. As mentioned before, it is
suitable for VLSI implementation since all the modules have the same
structure except the 0’th module which can be simplified as shown in
Fig. 2. This parallel lattice structure requires 6N — 4 multipliers and
5N — 1 adders.



3 Inverse Discrete Cosine Transform (IDCT)
and Inverse Discrete Sine Transform (IDST)

3.1 Time-Recursive IDCT

According to the definition of the DCT in (1), the IDCT for the trans-
form domain sequence [X (), X(t+1),...,X(t+ N —1)] is

zc(n,t) ¢+§1 C(k — t)X (k) cos [r(?n +1)(k - t)]
k=t
n=0,1,..,N-1. (18)

The coefficients C(k)’s are given in (1). From the time-recursive point

of view, the IDCT of the new sequence [X(¢+1), X (¢42), ..., X(t+N))
can be expressed as
+N 4
zdmt+1)= Y Clk—t-1)X(k)cos [’-'Q-'iilz)—gv’i—'—’)] . (19)
k=t+1
Similar to the previous sections, we can decompose (19) into
- m(2n+1)] . [r(2n+1
zo(n,t+1) = z(n,t+1) cos [—(—EW-—)] +Zas(n, t+1)sin [Lé-l—v—) ,
20)
where
t+N _
Z(mt+1)= Y Clk—t-1)X(K)cos [Mg“—‘)] (1)
k=t+1
and
t+N k 1
Ta(n,t+1)= Y C(k—t~1)X(k)sin M] (22)
k=t+1

In order to be a dually generated pair of the IDCT given in (18), we
define the auxiliary inverse discrete sine transform (AIDST) as

t+N-1 _
Tas(n,t) = 3 C(k_t)X(k)sm[w(2n+22(k z)],
k=t

n=0,1,.,N -1 (23)

Although this definition utilizes the same sine functions as the trans-
form kernel, it is not the inverse transform of the DST. To differentiate
it from the IDST, we call this the AIDST. Comparing to the IDST de-
fined in (28) , we observe that the AIDST has the special coefficients

C(0) = = associated with the first term, while the IDST with the last
term. The AIDST for the data sequence [X (t41), X (¢+2), ..., X(t+N)]
can be written as
t+N
_ . [r(2n+1)(k -t - l)]
Tas(m, t41) = g;l Clk—t—1)X (k) sin [ o . (24)

By using the trigonometric function expansions, 2.,(n,t+ 1) becomes

©(2n + 1)] w(2n+1)
2N ’

Zas(n, t4+1) = Tau(n,t+1) cos [ i

—Z(n,t+1)sin [

3.1.1 Lattice Structure for IDCT

Combining (20) and (25), we observe that the IDCT and the AIDST
can be generated in exactly the same way as the dual generation of
the DCT and DST. Therefore, the lattice structure in Fig.1 can be
applied here except that the coefficients must be modified. Since the
coefficients C(k)’s are inside the expression in the inverse transform,
the relation between z.(n,t) and To(n,t+1) will be different from what
we have in the DCT. Equations (18) and (21) as well as (22) and (23)
have the same terms for k € {t + 2,t + 3,...,t+ N — 1}. After adding
the effects of the terms for k = ¢t and k = t + 1, we obtain

m(2n+ 1)

?C(n,t+1)=zc(n,t)—%X(t)+(—\—}_§~l)cos[ o, ]X(t-H),

(26)

X (nt)
I -II
Lz i
-1z I x{nt+1)
X L O,
- 3
(1 /{Z-1)T Ty
(14Z-1)T T,
n X, 4n,te1)
— +
)
s r
X Iz" ]
xas(n,t) e J

T(ncos(n(2n 172N, Tg(m=sintri(2n+ 172N

Figure 4: The lattice structure for the IDCT and AIDST.

and
Talmt+1) = zalmt)+ (1N +
in [M] X(t+1).

The complete lattice module for the IDCT and AIDST is shown in
Fig.4. This IDCT lattice structure has the same lattice module as that
of the DCT except for the input stage where one more adder and one
more multiplier are required. The procedure to calculate the inverse
transformed data is the same. Therefore, this IDCT lattice structure
has the same advantages as that of the DCT. To obtain the inverse
transform in parallel, we need N such IDCT lattice modules where 7N
multipliers and 6N adders are required. Again, we see that the num-
bers of adders and multipliers are linear functions of N. Here we should
notice that to obtain the inverse transform of the original input data
sequence, for example, [2(0), z(1),2(2),...,2(N —1)] and [z(N), z(N +
1),...,2(2N — 1)), it is sufficient only to send the transformed data
corresponding to these two blocks, i.e., [X(0), X(1),...,X(N —~1)] and
[X(N),X(N+1),..., X(2N - 1)] respectively, although we have all the
intermediate transformed data. Then by applying the time-recursive
algorithm mentioned above, we obtain the original data after X (N —1)
and X(2N — 1) arrive, the intermediate data obtained by the inverse
transform are redundant.

)
(27)

3.2 Time-Recursive IDST

From the definition of the DST in (6), the IDST for the transform
domain sequence [X(t+ 1), X(t+2),..., X(t+ N)] is given by

t+N
. [r(2n +1)(k-t)
S D(k - t)X(k)sin [—QN—_J ,

k=it+1
n=0,1,...,.N-1.

z5(n,t) =

(28)

The coefficients D(k)’s are given in (6). Analogous to Section 3.1, we
define the auxiliary inverse discrete cosine transform (AIDCT)

t+N
3" D(k - )X (k) cos

k=t+1
n=0,1,...,

Zac(n,t) =

[n(2n + 1)(k - t)]

N-1, (29)
which is the dually generated counterpart of the IDST. The IDST
and AIDCT of the new sequence of transformed data [X (t+2), X(t +
3),..., X(t+ N + 1)] are given respectively by

N
z,(n,t+1) = HZH D(k—t—1)X(k)sin [MQ] , (30)
k=t4+2 2N
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Figure 5: The pre-lattice structure for the IDST and AIDCT.

and
t+N+1 —t-1
Ta(mt+1)= Y, D(k—t—1)X(k)cos [%—‘—)]
k=t+2 (31)
Same as before, we can decompose (30) and (31) to
z,(n,t+1) = T,(n,t+1) cos [I—(?—;;-—l)] ~Z(n,t+1)sin ["—(22%\;1—)] ,
(32)
and
1
Zae(ny 1) = To(n, t+ 1) cos [”(2—'”-}—)1 +Ey(n,t+ 1) sin [EQ—;I—S-—)] ,
(33)
where
t+N+1 _
Falmt+1)= 3. D(k -t 1)X(K)cos ["(”‘—‘“22@] , (34)
k=t+2
and
t+N+1
Zmi+1)= 3 D(k—t-1)X(k)sin [L@w] (35)
k=t+2
3.2.1 Lattice Structure for IDST and AIDCT

If we employ the time-recursive derivation in the previous section to
exploit the relations between z,(n,t + 1) and Z,(n,t + 1) as well as
Tae(n, 1 + 1) and Foc(n,t + 1), the results are

n [%} X(t+1)
- (% - 1) (=1 X(t + N)

+—1-(—1)" cos [11'(_2;1;-_1_)] X(t+N+1)

Ty(n,t+1)

V2
+z,5(n, 1), (36)
and
Zoe(n,t+ 1) Zqe(n,t) — cos [%l] X(t+1)
'\/Li(—l)" sin [’“2"—“)] X(t+ N+ 1). (37)

Equations (32), (33), (38) and (38) reveal that to dually generate the
IDST and AIDCT requires 9 multipliers and 7 adders, more than that
required for the IDCT and AIDST. The result is shown in Fig. 5. To
reduce the number of multipliers and adders, substitute (38) and (38)

K dnt)

*dnt+1)

- (IZ-13(=17"TyX(teN)

xgnt)

Ttalcos(m(2n+1¥2N),  Tgtn)=sintni2ne 11/2N)

Figure 6: The post-lattice structure for the IDST and AIDCT.

into (32) and (33) and rearrange (32) and (33), we have

E(z—;Ni-Q] z,(n,t) — sin [1(2211_]‘-]{—1)

— 1)(=1)" cos [E‘L—”] X(t+N)

z,(n,t+1) = cos [ z,w(n t)

\/_
+($)(—1)"X(t+ N +1), (38)

and

Tae(n,t +1) cos [ﬂ%ﬂ] Z4e(n,t) + sin [M] z4(n,t)

f —1)(~1)"sin [M]X(t+N)

+(E)(—1)"X(t+N+1)—X(t+1). (39)

The lattice module of this rearranged IDST and AIDCT is shown in
Fig. 6. This structure differs from all the previous lattice modules
in that the input signals are added at the end of the lattice. From
now on, we call this lattice structure a post-lattice module and the
previous ones as pre-lattice modules. This post-lattice module needs
7 multipliers and 7 adders, less than required for the corresponding
pre-lattice module. A parallel post-lattice structure, which generates
N transformed data simultaneously, requires 7N multipliers and 7N
adders. All the forward and inverse transform pairs mentioned above
have pre-lattice and post-lattice structures. Not all post-lattice struc-
tures are superior to their pre-lattice counterparts in the hardware
complexity. For example, the IDCT and AIDST post-lattice form can
be expressed as
Zas(n,t +1) cos [5(2;1—+1)] Zqs(n,t) — sin [M

SN zc(n,t)
1., [r(2r+1)

—(ﬁ)a [ ]X(t)

+(~1)"X(t + N) cos [1(22"T+1) , (40)

and

LR AP

1 (2n + 1)
~(75) con [—] X(t)- X(t+1)
+(—1)" sin [”—-—~(2;’];' 1)] X(t+ N)

—1X(t+1). (41)

zc(n,t+1) = cos [

M] 1»3("7 t)

\/_

This post-lattice module has 9 multipliers and 7 adders which are
more than its pre-lattice realization. As to the DCT and DST, the



post-lattice form can be expressed as

Xkt 4+1) = cos(N)X(k t)+sm(N)X(k 1)
+(F)cos (T) [~o(t) + (~1¥ate + M) (42)
and
Xkt +1) = cos( )X(kt)—sm(;>X(k )

)sm (2";) [—z(t) + (-1)*z(t + N)] .(43)

In this case, the pre-lattice and post-lattice modules have the same
numbers of multipliers and adders.

4 Discrete Hartley Transform (DHT)

According to Bracewell’s definition of the DHT in [6], the data se-
quence z(n) and the DHT transformed data X (k) have the following
relation

t+N-1 rk(n —
Xn(k,t) = % E z(n)cas (MTQ)

%[- t+§:—1 z(n) |cos (2ﬂk(;~ t)) +sin (21rk(]r\;_ t))] ’

n=t
k=0,1,.,N 1. (44)

The DHT uses real expressions cos( 2""%’,‘"’) + sin( 2""5{,‘")) as the
transform kernel, while discrete Fourier transform (DFT) uses the
complex exponential expression exp(i'ﬂ’—',g‘;q) as the transform ker-
nel. Because the kernel of the DHT is a summation of cosine and sine
terms, we can separate them into a combination of a DCT-like and a
DST-like transforms as follows:

Xh(kat) = Xc(kyt) + Xs(kvt)v (45)
where
1 HN 2rk(n —1)
Xo(kt) = = E z(n) [cos (——ﬁ——)] , (46)
and t+N-1
X,(k,t) = % > a(n) [sin (2""(" ‘))] (47)

The X(k,t) is the so-called DCT-1 and the X,(k,t) is the DST-I that
are defined by Yip and Rao in [22]. Since the DHT can be decomposed
into the combination of the DCT-I and DST-I, the dual generation of
both for the DHT is thus possible. The DCT-I and the DST-I of the
data sequence [z(t + 1),z(t + 2),...,z(t + N)] are

N TE(n—1 —
Xo(k,t+ 1)=% Y a(n)cos [W]

n=t+1

(48)

and

X, (k,t+1)= = Z z(n)sin 7

n—t+1

L [T R

The new transforms X'c(k,t + 1) and X,(k,t + 1) can be further ex-
pressed as

Xo(kyt+1) = Xu(k, t+1) cos (2N'°)+X (k,t+1)sin (21v ) (50)
and
Xo(k,t+1) = },(k,t+ 1) cos (277:-,5) C(la: t+1)sin (2N ) , (51)

Xk 0)
x'c(k,m)
X (K, 1)
T(@ X (k1)

X's(k,t)

Figure 7: The lattice structure for the DHT for k = 1,2,...,N — 1.

X 0.0

X;:(O,t* 1)

X (0.t+1)

Figure 8: The lattice structure for the DHT for & = 0.

where

t+N

1 Z 2(n) cos (27rlc(n - t))

1l=t+l

Xo(kyt+1) =

= Xc(k’t)+p[-$(t)+z(t+N)]» (52)

and
t+N

l 3" z(n)sin (%—Q)

n—t+l

X,(k,1).

Xa(k,t+1)

(53)
The lattice module for the DHT for k = 1,..., N — 1 is shown in Fig. 7
and Fig. 8. From Fig. 7, we can see that the numbers of multipliers
and adders are less than those of the dual generation of the DCT and
DST. The total numbers of multipliers and adders in the parallel DHT
lattice architecture are 5N — 4 and 5N ~ 3 respectively.

5 Block Processing

All the time-recursive discrete tranisforms derived above are based on
the block-size-one update which means the time index is updated by
one. That is, at each iteration only the effect of one old datum is
removed and the information of one new datum is added. We are in-
terested in the relation between the area-time complexity (AT) and
block size. This motivates us to discuss the effect on the lattice struc-
ture when the block size is increased.
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Figure 9: The lattice structure for block-size-two operation on the
DCT and DST.

5.1 Block Processing of time-recursive DCT and DST

We begin the discussion of block processing with the block-size-two
update. Here we assume the time index ¢ in (1) is zero for simplicity,
and we will use this in the following discussions. As before, the trans-
formed data X (k,2) and X,(k,2) are defined as the DCT and DST
of the input vector [¢(2),z(3),...,2(N),z(N + 1)]. That is,

N1

X(k,2)= 3. 2(n) cos{m(—"—g’,—)ﬂ}, (54)
n=2
d
- X,(k,2) = Nf 2(n)sin {M} ) (55)
P2 N

To obtain X.(k,2) from X.(k,0) and X,(k,2) from X,(k,0) directly,
we can rewrite X (k,2) and X,(k,2) as -

Xo(k,2) = Xo(k,2) cos (2Nk) + X, (k, 2) sin (2;"),

) — X (k,2)sin (2;:,—’6) ,

[7((21;; l)k]

(56)

and

2rk

N (87)

X4(k,2) = X ,(k,2) cos(

where

N+41

Z z(n) cos

n=2

Xo(k,0) + [2(0) + (~1)¥a(N)] cos

X.(k,2)

1l

)
(58)

and

+{-2(1) + (-1)*2(N + 1)] cos (:;]\f)
N+1
Z z(n)sin

J
n=2
Xo(k,0) + [-2(0) + (~1)*(N)] sin (21@)

+=2(1) + (~1)*(N + 1)]sin (21\’;)

7(2n+ 1)k
2N

X.(%,2)

(59)

The lattice module for the block-size-two update is shown in Fig. 9.
There are two more multipliers in the lattice, i.e., the total number of
multipliers is eight. To obtain the transformed data in parallel, we need
N such lattice modules. The latency for this kind of parallel structure
is N/2 and the total number of multipliers is 8N. Since there is no
complex communication problem in the lattice structure, the area-time
complexity (AT') can be approximated by the product of the number of
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multipliers and the time latency, plus the area-time complexity of the
adders, which is o (mlog(m)) for adding m data. Next, let us consider
the more general case for the block-size-m update, where m ranges
from one to N. The 1-D DCT and DST of block-size-m update are
to obtain the transform of [z(m), z(m + 1), ..., 2(N + m — 1)] directly
from the transform of {z(0), z(1), ..., z(N — 1)]. We have

N+i+m-1 x[2(n —
Xfkbym)= 3 z(n)cos[ﬂTx’ﬂ], (60)
and Nim-1 7[2(n — m) + 1]k
X (k,m) = Z z(n)sin[——w—. (61)

Applying the same procedure in the case of block-size-two update, we
can write (61) and (62) as

otk m) = Xl o (mzvﬂk) +X,(k,m)sin (mek), (62)
and
Hallym) = Kol co (m;k) - X.(k,m)sin ("‘—J:,'If) . (63)
where
Ngm—
Tbm) = 5o aln)oos 222 ELE]
m-1
= Xe(k,0)- z(n) cos M
(50 - 3 son (M5525)
N4m-1
+ 3 a(mcos [22X IR
n=N
= X(k,0)
m-1
3 ) + (142N + ] cos [ 22 E D}y
n=0
and
N4+m-1 (20
X,(k,m) = Z z(n)sin [(_22.1_-;_%]
m-1
= Xk, 0)- -"-'nsinM
(60 - 3 san [F51]
_N+rn-l ] M
3 st [
= Xc(k,0)
+"§[—x(n) +(=1)¥2(N + n)]sin [ﬂ(?n + 1)]@}65)
n=0

Combining those input terms with same cosine and sine multiplier
coefficients together, we can obtain the lattice module for block size m
as shown in Fig. 10. To obtain the transform data X () in parallel, N
lattice modules of Fig. 10 are required. The total number of multipliers
of the parallel structure is (4 + 2m)N, the total number of adders is
(83m + 2)N, and the throughput is 1. The area-time complexity due
to multipliers and adders are (4 + 2m)N and (3m + 2)Nlog((3m +
2)N) respectively. Denote AT'm as the area-time complexity of the
block-size-m update, then ATm = (4+ 2m)N + (3m + 2)N log((3m +
2)N). For example, AT1 = 6N + [5Nlog(5N)] and AT2 = 8N +
[8N log(8N)]. In the limiting case of the block-size-N update, i.e., we
move a whole block of the input data sequence, ATN =~ (4+2N)N +
3N210g(3N?). In general, the area-time product gets smaller as block
size m decreases. We found that when m = 1, the minimum AT
complexity is achieved.
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Figure 10: The lattice structure for block-size-m operation on the DCT
and DST.

X, )

Xs(kv1)

Figure 11: The general lattice module.

6 Multiplier-Reduction of the lattice struc-
ture

In the VLSI implementation, the number of multipliers is an impor-
tant factor to the cost and complexity of the system. In this section,
we develop two methods to reduce the number of multipliers in our
parallel lattice structures. The first scheme makes use of a series input
series output (S150) approach and 2N multipliers can be saved; the
trade-off is that the latency and throughput is increased. The sec-
ond approach, which reconstructs the structure into a double-lattice
realization, saves N multipliers and the latency remains intact.

6.1 SISO Approach

Let us consider this problem through a general lattice structure as
shown in Fig. 11. Denote the output and input data at time ¢ as
(Xc(t), X4(t)) and (2, T4t) Tespectively, where the input and output
have the following relations

X.(t)
X,(t)

[Xe(t = 1)+ T12ce] T2 + [Xo(t — 1) + Taza] Ty,
[Xs(t = 1) + Tazse] T2 — [Xc(t — 1) + T1zet] Tq. (66)

By dividing both equations by I's, we have

X(t)/Ta =
X,(t)/Ts

[Xe(t — 1) + T1za] T2/Tq + [X,(t — 1) + Tazse],
X,(t-1)+ T3z4]To/Ty — [Xc(t — 1) 4 T12a] {67)

il

The lattice structure manifesting the above relations is shown in Fig.
12. It is noted that only four multipliers exist in this structure and
the outputs obtained differ from the original one by a factor I'y. To

Xc(k—l)

2]

X (k)/Ta
L -

Xek

X )/ T4
— -

X, (k=1)
Figure 12: The model of multiplier-reduction.

examine the effect of this multiplier reduction on the recursive oper-
ation from X (1) to X.(N), we start with the derivation fromt = 1.
That is

X(1)/Ty = [X(0)+T12a]T2/Ts+ [Xs(0) + Tsz41],

X,(1)/T4 = [X4(0) + F3z41]T2/T4 — [X(0) + T1zar].  (68)
Fort=2

X0(2)/r4 = [Xc(l) + rlzc2] F2/F4 + [Xa(l) + r3332] 3

X,(2)/Ta = [Xs(1) +Tsz:2) T2/Ty — [Xe(1) + T1ze2] . (69)

Because the outputs at time ¢ = 1 are X.(1)/T4 and X,(1)/T4, Xc(1)
and X,(1) at (69) should be replaced by X.(1)/Ts and X,(1)/T4. To
keep the above equations valid, we can multiply both equations by
1/T4 as shown

X(2)/T2 = [XA1)/T4+ (T1/T4)zc2]T2/T4
+[X.(1)/T4 + (T3/T4)zs2],
X,(2)/T% = [Xs(1)/Ta+ (F3/T4)zs2] T2/T4

= [Xs(1)/T4 + (T1/Ta)zcal - (70)

The coefficients of the input multipliers are T'y/T4 and I'3/Ty, in-
stead of T; and I'; at time ¢ = 1, and the output sare X(2)/I'} and
X,(2)/T3. For t = N, the recursive equations become

XANYTY = [X(N = 1)/T¥ "+ (0/Tf )zen| Ta/Ta
+ [Xu = /Ty 4 (/T Dzan]
XN)TY = [Xu(N = 1)/T§ "+ (To/TY )z.n] T2/T

— X = Y 4 T e (7D

From the above derivations, we observe that the two multipliers can be
removed by using variable multipliers in the input stage where the coef-
ficients (T3, '1/T4, .., T1/TY ~1) and (T3, T3/T4, .., T's/T} ') are stored
in shift registers. The structure is shown in Fig. 13. The output can
be obtained by multiplying the factor TY. This kind of rearrangement
does not save multipliers. However, for N such lattice structures,
the number of multipliers can be reduced by using variable multi-
pliers at the output stage and the coefficients for each stage T} (i),
i=0,1,2,.., N — 1, are stored in the shift registers. Fig. 14 shows the
final structure where the total number of multipliers is 4NV + 2. This
means that the number of multipliers for N parallel such lattice struc-
tures is reduced from 6N to 4N + 2. The tradeoff is that 2N + 2 shift
registers are required and the latency becomes 2N instead of N. Also,
this resulting structure is a STSO system, while the original parallel
structure is a STPO system.

For example, the variable-multiplier method derived above can be
applied to the lattice structure of the DCT and DST. There are no mul-
tipliers needed for t = 0, therefore the module remains the same. For
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Figure 14: The complete parallel multiplier-reduced lattice structure,

t=1,2,.,N - 1, the multiplier-reduced lattice structure is shown in
Fig. 14, where the coefficients are 'y = cos(k7/2N), T3 = cos(kx/N),
I3 = sin(kx/2N), and T4 = sin(kx/N). The total number of multipli-
ers is 4NV — 2 and the latency for this SISO structure is 2N.

It is readily seen that the SISO approach for multiplier reduction is
in fact a denormalization of the orthogonal rotation in the lattice. It is
well-known that the orthogonal rotation is numerical stable so that the
roundoff errors will not be accumulated. However, the denormalized
lattice does not have such a nice numerical property in finite-precision
implementation, i.e. the roundoff errors may continue to accumulate
and lower the signal-to-noise ratio. This effect can be minimized by
giving enough register length such as double precision in the imple-
mentation. Also, we note that since Ty < 1, l"f,v could be very small.
Not enough precision may result in bad numerical accuracy when ry
is multiplied at the output stage. Thus, the registers that store Y do
need enough precision to avoid the accuracy problem. The problems
addressed here are consequences of the tradeoff between complexity
and performance.

6.2 Double-lattice Approach

Generally, a post-lattice structure has the following forms

Xe(k)
X (k)

T2Xo(k ~ 1) + TaX,(k = 1) + Tyz,
D2Xo(k — 1) = TaXo(k — 1) + Tszar.

(72)
Based on the relationships shown below
TaXo(k— 1)+ DX, (k- 1) =
3(Ta + DXk = 1) + X (k - 1)
+5(0 = LIk - 1) = X, (k - 1),
(73)
and
TaX,(k - 1) = TaXo(k—1) =

T2 X,(k — 1) + Ty X(k - 1)
—2T X (k ~ 1)

= 5(C2+ LXKk = 1)+ X, (k- 1)
=32 = L[k — 1) = X,(k - 1)]
204X (k — 1), (74)

X.(k) and X,(k) can be rearranged in the following manner

Xelk) = 3(Fa+ Tk - 1)+ X,k - 1)]

+5(Ta = TOUX(k 1) - X,(k = 1)] + Ty

1
3 {t1+12} 4 Tiza,

X,(k) = %(r2 +T)[Xo(k ~ 1) + Xy(k - 1)

~3(Ta = COLX(k — 1) = Xu(k - 1)]
—9T, X, (k — 1) + Tazs

1
=3 {t1 — 12} — 2Ty X (k ~ 1) + T3zcs. (75)

" where
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1= (Fz + I‘4)[Xc(k - 1) + Xa(k - 1)]7 (76J
and

2 = (T = T[Xe(k = 1) - X, (k - 1)). (17)
The operational flow graph of (77) is illustrated in Fig. 15. Instead
of calculating the outputs from (74) directly (that requires 6 multi-
pliers and 4 adders), the first lattice adds and subtracts X(k-1)
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Ml denotes right shift one bit

Figure 15: The double-lattice form of the post-lattice realization.

and X,(k — 1), then multiplies the results by I's + I'yand Ty — Iy
respectively. The results are called t1 and t2 as defined in (78) and
(79). The second lattice adds and subtracts t1 and ¢2 again, then
divides the results by 2, which can be achieved by right shifting. Fi-
nally, we complete the computations by adding the inputs I'1zc; and
Tazex — 2Ty Xo(k — 1). This reconstruction can save one multiplier. A
parallel post-lattice structure with N lattice modules requires 6N mul-
tipliers and 4N adders. As for this reconstructed parallel structure,
only 5N multipliers and 7N adders are needed. This approach can be
applied to all the parallel post-lattice structures of different orthogonal
transforms. In general, this parallel double-lattice structure can save
N multipliers, but requires 3N more adders. The latency is N clock
cycles and the system remains SFPO.

7 Comparisons of Architectures

From the previous discussions, we see that the proposed unified par-
allel lattice structures have many attractive features. There are no
constraints on the transform size N. It dually generates the two dis-
crete transforms DCT and DST simultaneously. Since it produces the
transformed data of subsequent input vector every clock cycle, it is
especially efficient for systems with series input data such as com-
munication systems. Further, the structure is regular, modular, and
without global communication. As a consequence, it is suitable for
VLSI implementation.

Here, we would like to compare our lattice structures of the DCT
and DST with those proposed in [14, 15, 7]. The architecture in [14]
uses the matrix factorization method which is a representative of fast
algorithms. In [15], an improved fast structure with fewer multipliers
is proposed. Hou’s architecture in [7] uses recursive computations
to generate the higher order DCT from the lower order one. The
characteristics of these structures are discussed in the introduction.
A comparison regarding their inherent properties is listed in Table 1.
To be clear, the quantitative comparisons in terms of the parameters,
which are the numbers of multipliers, adders, and the latency, are given
in Table 2, Table 3, and Table 4.

The lattice architecture with six multipliers in the module as shown
in Fig. 2 is called Liu-Chiul structure, the one in Fig. 14 is called
Liu-Chiu2, and the parallel structure with the double-lattice modules
as shown in Fig. 15 is called Liu-Chiu3. The structure in Liu-Chiul
has 6N —4 multipliers, 5N — 1 adders, and the latency is N. There are
4N multipliers, 5N — 1 adders, and the latency is 2N in the structure
of Liu-Chiu2. The number of multipliers is reduced by the order 2N
in the expense of doubling the latency and the data flow becoming
SISO. The Liu-Chiu3 architecture has 5N multipliers and 7N adders
and the latency is N clock cycles. From these Tables, it is noted

Tiu-Chiul

chen Lee Hou
et al.
No. of 6N — 4 Nin(N) (N/2)In(N) | N-1
Multiplier -3N/2+4
latency N N/2 3[In(N) 3N/2
*(In(N) - 1)]
limitation | no 2" 2n 2"
on N
com. local global global global
1/0 SIPO PIPO PIPO SIPO

Table 1: Comparison of different DCT algorithms

NO | Liu-Chiul | Liu-Chiu2 | Chen | Lee | Hou
8 44/2 32/2 16 12 |7

16 | 92/2 64/2 44 32 15
32 188/2 128/2 116 80 |31
64 | 380/2 256/2 292 192 | 63

Table 2: Comparision of the number of multipliers

NO | Liu-Chiul | Liu-Chiu2 | Chen | Lee | Hou
8 39/2 39/2 26 29 |18
16 | 79/2 79/2 74 81 |41
32 | 159/2 159/2 194 | 209 | 88
64 | 319/2 319/2 482 | 5131183

Table 3: Comparision of the number of adders

NO | Liu-Chiul | Liu-Chiu2 | Chen | Lee | Hou
8 8 16 4 6 13
16 16 32 6 10 |21
32 |32 64 8 15 | 44
64 | 64 128 10 21 73
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Table 4: Comparision of the latency




Liu-Chiu | Sorenson Chaitali-JaJa
No. of 4N NIn(N) N1+ N2
Multipliers —3N+4
No. of S5N—-2 |3NIn(N)-3N+4[4N ++/N1
adders ~3N +4 VN1
latency N NIn(N) N1+ N2
limitation | no 2" N=N1+«N2,
on N N1,N2

mutual prime

com. local global local
1/0 SIPO PIPO S150

Table 5: Comparision of different DHT algorithms

that the number of multipliers in our architectures is higher than that
of others when N is small. This is due to the dual generation of
two transforms structure which is compatible with Lee’s. Since the
numbers of multipliers and adders of our structures are on the order N ,
our algorithms have fewer multipliers and adders than those proposed
in [14, 15]. Although Hou’s algorithm has the fewest multipliers, his
architecture needs global communications and the design complexity
is mu of other structures can not start until all of the data in the block
arrive.

A comparison for our DHT structure based on the lattice module
in Fig. 7 and different DHT algorithms [23, 18] is listed in Table 5.
The architecture in [23], a representative fast algorithm, is developed
base on the existing FFT method. Chaitali-JaJa’s algorithm in [18]
decomposes the transform size N into mutually prime numbers and
implements them in a systolic manner. Their structure needs extra
registers and the latency is higher than others. It is easy to see that
our structure is better than others in terms of hardware complexity
and speed.

8 Filter Bank Interpretation

Multirate digital filters and filter banks find applications in commu-
nications, speech processing, and image compression. There are two
basic types of filter banks. An analysis bank is a set of analysis filters
Hy(z) and N-fold decimators which split a signal into N subbands. A
synthesis filter bank ( the right part of Fig. 16) consists of N syn-
thesis filters Fj(2) and N-fold interpolators, which combine N signals
into a reconstructed signal %(n). As described in Section 2, the time-
recursive approach decomposed the transformed domain data into N
different components. If we are interested in the block-size-N trans-
form and perform the N-fold decimation in the outputs of every lattice
modules, the analysis bank is simply the series-input-parallel-output
filter bank described in Fig. 16. Under this condition, the analysis
bank is equivalent to perform a transformation and the synthesis bank
to perform an inverse transformation on successive blocks of N data
samples. In this section, we describe how to employ the time-recursive
concept to generate the synthesis banks based on the DCT, DST and
DHT.

8.1 Synthesis bank structure based on DCT

To perform the inverse transform in the synthesis bank, we feed the
DCT transformed domain components X.(k) into the synthesis mod-
ules and combine all the outputs of every synthesis modules to produce
the original input sequence z.(n). That is, the synthesis bank performs
the following inverse DCT operations

N-1
zo(n) = E C(k)X. (k) cos

=0

[fety]

Since in the synthesis bank different transform components are sent
to independent synthesis modules, we therefore focus on a specific
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x(n)
H, (2) N
H, (z) N
H,(z) N
Analysis Bank Synthesis Bank

Figure 16: The filter bank structure.

transform component. Denote Z.(n, k) as the output signal generated
by a specific synthesis module

Zo(n, k) = C(K)X.(k) cos [M] . (9)

2N

The time-recursive concept can be applied here to update Z.(n,k)
recursively. Use the result in section 3.1 that IDCT and AIDST can
be generated from each other recursively and denote Z,,(n, k) as the
auxiliary inverse sine transform generated by a specific synthesis filter.
We can obtain the following recursive-generated relations for Z.(n, k)
and T,,(n, k) as

Ze(n + 1,k) = C(k) X (k) cos [’fkl2(ﬂ241rv 1)+ 1]]

= Z(n, k) cos (%) - Zoy(n, k) sin (%) . (80)
and
Zaaln + 1,k) = C(K)Xo(k) sin [W]
Zas(n, k) cos (%) +Zo(n, k)sin (%) . 1)

(82) and (83) suggest that the T (n + 1,k) and T,,(n + 1,k) can be
dually generated from the previous values Te(n, k) and Fgo(n, k) in a
lattice form as shown in Fig. 17. Because the initial values for z.(0, k)
and 2,,(0, k) are

70,4) = (k) cos [7E] (82)
and
70s0,4) = XesBysin [ K] (83)

this means that the z.(n + 1,k) and Zg4(n + 1,k) can be generated
by sending a sequence with Xc(k) as the first element followed by
N -1 zeros into the input of the synthesis module. This is exactly the
up sampling procedure required in the synthesis bank structure. The
Zas(n, k) output is reset every N clock cycles. The synthesis module
diagram for the DCT is plotted in Fig. 17. The inverse transform is
obtained by summing all the outputs of the synthesis modules.

8.2 Synthesis bank structure of the DST and DHT

In this section, we apply the same approach mentioned in the previous
section to the DST and DHT. The results are summaried as below.
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Figure 17: The synthsis bank structure of the DCT.
By using the dual generation concept, the operation of the synthesis
module for the DST is

Za(n+ 1,k) = D(k)X,(k)sin [M

2N
= T,(n, k) cos (211%) + Fqae(n, k) sin (%) , (84)
and
Tae(n + 1, k) = D(k)X (k) cos [W]
= Tocn, k) cos (21}:,—) — T4(n, k)sin (;—k) . (85)

Because D(k) and C(k) have the same values for k = 1,2,...,N — 1
and D(N) = C(0). Therefore, the structure of the synthesis modules
for the DST are the same as that for the DCT except for k = N.

As for the DHT, the IDHT is defined as

)

N-1

Z Xn(k) [cos (27;5“) + sin (
k=0

n=0,1,..,N-1.

zp(n)

N-1
Z Xn(k)cas (21rkn
k=0 N

2xkn
N

)]

Again, we separate them into a combination of a DCT-like and a DST-
like transforms as follows:

(86)

z4(n) = Zo(n) + Z5(n). (87)

The operation of the synthesis module for the DHT is generated from
Z¢(n) and the ,(n) by the following relation

Z(n+1,k) = z.(n, k) cos (2;—16) — Zy(n, k) sin (2—17:,—,2) , (88)
and
Zy(n + 1,k) = Z5(n, k) cos (%’;—k) — Z(n, k)sin (%) . (89)

To obtain the IDHT z,(n), we must sum up both of the outputs of
the synthesis modules. It is noted that the multiplier coefficients in
the synthesis module for the DHT is different from that of the DCT
and DST.
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9 Conclusions

In this paper, unified time-recursive algorithms and lattice structures
that can be applied to the DCT, DST, DHT and their inverse trans-
forms, are considered. In fact, there are various forms of sin and cosine
transform pairs, (the DCTI/DSTI, DCTII/DSTII, DCTII/DSTIII,
DCTIV/DSTIV, and Complex Lapped Transform(CLT)) as mentioned
in [22, 33]. They also have their time-recursive lattice realizations. The
procedures to attain the lattice structures of different transforms are
similar and the resulting STPO lattice structures differ only in the
multiplying coefficients and the input stage. All the transform pairs
have their pre- and post-lattice realizations that differ in that the input
signals are added in the front and the end of the lattice respectively.
The hardware complexity of the pre-lattice realizations and their post-
lattice counterparts depends on the definitions of the transforms and
it cannot be readily determined which one is better. The number of
multipliers in all the parallel lattice structures is a linear function of
the transform size N and the latency is N clock cycles. Two methods,
the SISO and double-lattice approaches, are developed to reduce the
number of multipliers for the parallel lattice structures. The SIS0 ap-
proach can reduce 2N multipliers and the latency becomes 2N. The
double-lattice approach can reduce N multipliers and the latency re-
mains intact. From the discussion of the block processing, it is noted
that the area-time complexity is efficient when the block size m is
small, especially when m = 1. All the resulting parallel structures
are module, regular, and only locally connected. Further, there is
no constraint on the transform size N. It is obvious that the design
complexity of these structures is relatively low compared with other
algorithms. The characteristics of these algorithms are suitable for
processing series input data since the transformed data for sequential
input can be obtained every clock cycle. Therefore, it is very attractive
to VLSI implementations and high speed applications such as HDTV
signal coding and transmission.

Since the orthogonal rotation is the major operation in the lattice,
it is noted that such rotation can be easily implemented using CORDIC
(COordinate Rotation DIgital Computer) [29, 30] which is known as
an efficient method for the computation of orthogonal rotations and
trigonometric functions.
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