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Abstract - We introduce a family of square root free and division free 
rotation based algorithms. Our approach suggests a new perspective of 
the Q R  decomposition (QRD) algorithms and leads to a considerable 
reduction of the circuitry complexity and time delay in the associated 
architectures. The optimal residual and the optimal weight ext:raction for 
the recursive least squares (RLS) problem are considered in this paper. 
The systolic structures that are described are very promising, since they 
involve less computational complexity from the structures known to date  
and they make the VLSI implementation more tractable. 

1 INTRODUCTION 
The least squares (LS) minimization problem constitutes the core of many 

real-time signal processing problems, such as adaptive filtering, system iden- 
tification and beamforming [4]. The most common version of the LS problem 
for adaptive signal processing is as follows: Solve the minimization problem 

4 n )  = min I/ B(n)(X(n)w(n> - y(n)) 1 1 2 ,  (1) 4.1 

where X ( n )  is a matrix of size n x p ,  ~ ( n )  is a vector of length p ,  y(n) is 
a vector of length n and B(n)  = diag{j3n-1,/?n-2, . . e ,  l}, 0 < j3  < 1, that 
is, 0 is a forgetting factor. There are two different pieces of information 
that may be required as the outcome result of this minimization [4]: The 
optimizing weight vector w( n )  and/or the optimal residual at  the time instant 
12: eRLs(t,) = X(tn)w(.) - y ( t n ) ,  where X( t , )  is the last row of the matrix 
X ( n )  and y(tn) is the last element of the vector y(n). 
Efficient implementations of the recursive least squares (RLS) algorithms 
based on the QR decomposition (QRD) and the associated architectures were 
first introduced by McWhirter [6]. A comprehensive description of the algo- 
rithms and the architectural implementations is given in [4, chap.141. The 
optimal weight vector ~ ( n )  in (1) and the optimal residual are given by the 
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expressions 
W T ( R )  = U*(.) (R-H(n))* (2) 

and ., 

where the quantities R(n) ,  ~ ( n ) ,  and v ( t n )  are recursively computed as fol- 

T(n)  is a unitary matrix of size n x R that performs a sequence of p Givens 
rotations. The quantity ck in (3) represents the cosine term of the kth rota- 
tion. For the initialization of the recursion in (4) the reader may refer to  [4]. 
Equations (3) and (4) constitute the QRD-RLS algorithm for the optimal 
residual computation. 
This algorithm uses the Givens rotation as a building block and it can be 
implemented by a fully parallel and pipelined triangular systolic array [7]. It 
has been proved that the QRD-based algorithms have good numerical proper- 
ties [4]. Nevertheless, they are not very appropriate for VLSI implementation, 
because of the square root and the division operations that are involved in the 
Givens rotation and the forward-substitution required for the case of weight 
extraction (cf. (2) ). 
Several papers have proposed modifications in order to reduce the computa- 
tional load involved in the original Givens rotation (for example [2],[3],[5]). 
These rotation-based algorithms are not rotations any more, since they do 
not exhibit the normalization property of the Givens rotation. Nevertheless, 
they can substitute the Givens rotation as the building block of the QRD 
algorithm, thus they can be treated as rotation algorithms in a wider sense: 

Definition 1 W e  will call SJiotation algorithm a Givens-rotation-based algo- 
rithm that can be used as the building block of the QRD algorithm. 

McWhirter has been able to compute the optimal residual of the RLS algo- 
rithm without square root operations [7] based on Gentleman's SKotation [a]. 
A generalization of this result has appeared in [5]. Also, a fully-pipelined 
structure for weight extraction that circumvents the back-substitution divi- 
sions was derived independently in [8] and [9]. In both works the key idea is 
the use of a recursion for R-H(n)  in (2): 

R-H(n)  L R - H ( n  - 1) [ f ] = i r n ) [  o#. 1 .  (5) 

No divisions are required for the evaluation of this recursion. Nevertheless, p 
divisions have to be evaluated during the initialization phase, where R-H(p)  

' A  square matrix T is a unitary matrix if it has the property T H T  = I .  where T H  
denotes the Hermitian transpose matrix. 
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is computed from R(p)  with forward substitution. Equations (4), ( 2 )  and (5) 
constitute the  QRD-RLS algorithm for the optimal weight extraclion. 
It has been shown that a square-root-free and division-free Xotation does ex- 
ist [3]. In this paper, we introduce a parametric family of square-root-free and 
division-free Xotations. We will refer to this family of algorithms with the 
name Parametric rcX Xotation. We will also say that a gotation algorithm is a 
rcA %dat ion  if this algorithm is obtained by the Parametric K A  gotation with 
a choice of specific values for the parameters K: and A.  We employ the argu- 
ments in [ 5 ] ,  [7] and [8] in order to design novel systolic architectures for the 
RLS algorithms that have less computational and circuitry complexity from 
the already known architectural implementations. 
In Section 2, the Parametric K X  Xotation is introduced. In Section 3, the RLS 
algorithms that are based on the Parametric K X  !Rotation are derived and the 
architectural implementations are considered for a specific K X  !Rotation. We 
conclude with Section 4. 

2 SQUARE ROOT AND DIVISION FREE ALGORITHMS 
In (4) the multiplication with the matrix T(n)  is equivalent t op  consequent 

rotations. Each one of the rotations operates (for real valued data) as follows: 

] , (6) 
pa? . . '  

. . .  " A ] = [  p:, -c, :] [ pp:' p2 . . .  Pm 

a; = @a: + P; (8) 

(9) a; = cpaj + spj  , p! 3 = -spa, + cpj  , j = 2 , 3 ,  * * - ,  m . 

The Givens rotation is specified by the equations (7) to (9). We introduce 
the following data transformation: 

(11) 
1 p! = -b'. j = 2 , 3 , .  . . m. ' fl " 

We seek the square root and division-free expressions for the transformed 
data a i , j  = 1 , 2 , .  . . ,  m, b ; ,  j = 2 ,3 , .  . ., m, 1; and 1; in terms of a,, b j , j  = 
1 , 2 ,  - .  - , m, 1, and 11,. By substituting (10)-(11) in ( 8 ) - ( 8 )  and solving for a,{, 
ai and b ; ,  we get 

I I I  
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We will let l', and 1; be equal to 

(, = / ,1b( laP2a;  + lab;)K2, and 1; = (lbP2a; + 1ab;)X2, (14) 
where K and X are two parameters. 
obtain the expressions 

By substituting (14) in (12)-(13) we 

U: = rt(lbP2a? + l ab?)  (15) 
2 a; = K : ( l b P  alaj + l a b l b j ) ,  b; = X P ( - b l a j  + a l b j ) ,  j = 2 , 3 , - - . , m .  ( l a )  

If the evaluation of the parameters K and X does not involve any square root 
or division operations, the update equations (14)-( 16) will be square root and 
division-free. In other words, every such choice of the parameters K and X 
specifies a square root and division-free gotation algorithm. 

Definition 2 Equa t ions  (14)-(16) specify the Parametric K A  !Rotation algo- 
rithm. Furthermore,  a !Rotation algori thm will  be called a K X  !Rotation i f  i t  ,is 
specified b y  (14)-(16) for specific square-root-free and division-free expressions 
of t h e  parameters  K and A. 
One can easily verify that the only one square root and division-free %ot,ation in 
the literature to date [3] is a K X  !Rotation and is obtained for K = X = 1. 

3 NOVEL RLS ALGORITHMS AND ARCHITECTURES 
In this Section, we use the sRotation described by the equations (14)-(1G), 

in order to  perform the QR decomposition of the data matrix ,Y(n). More 
specifically, we perform the triangularization in (4). We derive a parametric 
formula for the optimal residual eRLs ( t , )  that involves no square root opera- 
tions and only one division operation. We describe the systolic architectural 
implementation that  is associated with the K X  ?Rotation for which ri = X = 1. 
Then, the systolic structure for the parallel computation of the weight vector 
~ ( n )  that was introduced in [SI and [9] is modified to provide a fast systolic 
implementation for weight vector extraction. 

A Very Fast Algorithm for the RLS Optimal Residual 
Computation 

Equation (4) symbolically can be written as 
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JK 

(17) 

(18) 

= (l,P2aT, + llb?)A:, (19) 

a i j  = K1(1,P2allalj  + l l b l b j ) ,  (20) 

b;"= X1P(-b la l j  + a l l b j ) ,  j = 2,3,...,p+ 1. (21) 

I! 1 = /.&i-l) ' q ('9 ( i - l )p2a;i  + /.b("-')? 1 i ).? ( 2 2 )  

1: i) - --( / ( i -1)p2a:i  B + / . b ( i - l )* )&! l  1 2  ( 2 3 )  
a ! . = K i ( l ( i - ' ) P 2 a ; j a i j + l i b ~ '  a - 1 )  b j -  ( i  1) ), j = i , i + l , . . . , p +  1 (24) 

Equations (14)-(16) imply that the first sRotation is specified as follows: 

1'1 = /11q(19,82a:1 + /lb:)K: 

j = 1 , 2 ,  . . . , p +  1 

Similarly, the ith %otation is specified as follows: 

83 Q 
(i- 1) b y )  = Ai,B(-b, a;j +aijb;a-')), j = i +  l , i + 2 , . . . , p +  11, (25) 

where i = 2 , 3 , . . . , p  and blo) = b j ,  j = l , . . . , p +  1. In [l] the following 
lemma is proved: 

Lemma 1 If the Parametric R A  %otation is used in the QRD-RLCS algorzthm, 
the optimal residual is given by the expression 

where v = & if p is an even number and v = fi if p is a n  odd number .  
a 
Here, I, is a free variable. If we choose 1, = 1 we get v = 1 for both even 
and odd values of p and we can avoid the square root operation. We can see 
that for a recursive computation of (26) only one division operation is needed 
at the last step of the recursion. This compares very favorably with the fast 
algorithm (based on a square root free 3otation) that requires one division 
for every recursion step, as well as with the original approach (3),  which 
involves one division and one square root operation for every recursion step. 
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For this reason, the algorithms and architectures based on the Parametric K A  
3otation will be called very  f a s t  algori thms and architectures. 
The division operation in (26) cannot be avoided by proper choice of expres- 
sions for the parameters K and A. This is restated by the following lemma, 
which is proved in [l]: 

Lemma 2 I f  a K C X  S o t a t i o n  is used, the  RLS opt imal  residual evaluat ion will 
involve t h e  evaluat ion of at least one divis ion.  0 

A Systolic Architecture for the Optimal RLS Residual 
Evaluation 

McWhirter has used a systolic architecture for the implementation of the 
QR decomposition [7]. This architecture is modified, so that equations (18)- 
(26) be evaluated for the special case of 

The systolic array, as well as the memory and the communication links of 
its components, are depicted in figure 1 '. The boundary cells (cell number 
1) are responsible for evaluating (22) and (23), as well as the coefficients 

The internal cells (cell number 2 )  are responsible for evaluating (24) and ( 2 5 ) .  
Finally, the output cell (cell number 3 )  evaluates (26). The functionality of 
each one of the cells is described in figure 1. We will call this systolic array 
sl.l. 
On table 1, we collect some features of the systolic structure 3 . 1  and the two 
structures, S1.2 and S1.3, in [7] that are pertinent to the circuitry complexity. 
Note that 3 . 2  implements the square-root-free QR decomposition algorithm 
introduced by McWhirter [7], while S1.3 is the systolic implementation of 
the QR decomposition based on the original Givens rotation. On table 1, 
the complexity per processor cell and the number of required processor cells 
are indicated for each one of the three different kinds of processors '. One 
can easily observe that S1.1 requires the implementation of only one division 
operator and no square root operator, S1.2 requires the implementation of 
p division operators and no square root operator, while S1.3 requires the 
implementation of p division and p square root operators. This reduction 
of the complexity in terms of division and square root operators is penalized 
with the increase of the number of the multiplications and the communication 
links that are required. 
Apart from the circuit complexity that is involved in the implementation of 
the systolic structures, another feature of the computational complexity is 
the number of operations-per-cycle. This number determines the minimum 

E .  - I ( i - l ) a . .  and g. a - - [ .b( i - l )  a and the partial products ei = I-Ij=l(@jj). a - q  a: 

e;-1 E e;,,e; eout. 
3The multiplications with the constants p and p2 are not encountered. 
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Figure 1: S1.l : This systolic array computes the RLS optimal residual. 
It implements the algorithm that is based on the K X  !Rotation for which 
K : = X = l .  

i/o 9 10 4 6 8 3 5  6 3 1  
. operations max{ 1 diu. + 1 mult., 1 diu. + 5 mult. 1 sq.rt. + 1 diu. 

per cycle 9 mult.} +4 rnult. 

number of 

div. 
4 

Table 1: RLS residual computational complexity. 
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required delay between two consequent sets of input data. For the structures 
S1.2 and S1.3 the boundary cell (cell number 1) constitutes the bottleneck 
of the computation and therefore it determines the operations-per-cycle that 
are shown on table 2 .  For the structure S1.l either the boundary cell or the 
output cell are the bottleneck of the computation. This is reflected on the 
corresponding expression on table 1. 

Algorithm and a Systolic Architecture for the  Optimal 
RLS Weight Extraction 

We have seen in Section 1 that we can calculate the optimal weight vector 
in a recursive way: We can compute R-H(n)  by using the same rotation (5) 
that computes R(n)  and then use parallel multiplication ( 2 )  for computing 
w T ( n ) .  This algorithm can be implemented by a systolic structure, which 
is a variation of the one used for the residual calculation and it was derived 
independently by Shepherd et al. [8] and Tang et al. [9]. It is a fully pipelined 
array that can operate in two distinct modes, 0 and 1. The initialization 
phase consists of 2 p  steps for each processor. During the first p steps the 
processors operate in mode 0 in order to calculate a full rank matrix R. 
During the following p steps, the processors operate i n  mode 1 in order to 
compute R-H, by performing a task equivalent to forward substitution. After 
the initialization phase the processors operate in mode 0. In [SI one can find 
the systolic array implementations that are based both on the original Givens 
rotation and the Gentleman's variation of the square-root-free Rotation. We 
will call these two structures S2 .3  and S2.2 respectively. 
In figure 2 ,  we present the systolic structure S2.1, which is based on the 
IEX %Rotation with h: = X = 1. The functionality of the processing cells, as 
well as their communication links and their memory contents, are given in 
figure 2. On table 2 we collect some computational complexity metrics for 
the systolic arrays S2.1, S2.2 and S2.3, when they operate in  mode 04. The 
conclusions we can draw are similar to  the ones we had for the circuits that 
calculate the optimal residual. We should also note that S2.1 does require 
the implementation of division operators in the boundary cells, since these 
operators are used during the initialization phase. Nevertheless, after the 
initialization phase the circuit will not suffer from any time delay caused by 
division operations. 
The computational botlleneck of all three structures, 272.1, S2.2 and S2.3, is 
the boundary cell, thus it determines the operations-per-cycle metric. 

4 CONCLUSIONS AND FURTHER RESEARCH 
We introduced f h e  Parametr ic  rcX !Rotation, which is a square-root-free 

and division-free algorithm. We reviewed the systolic architectures that ini- 
plement QRD-RLS algorithms and they are based on the Givens rotation, 

4The multiplications with the constants p , p z ,  1/p and 1/p2, as well as the communica- 
tion links that drive the mode bit, are not encountered. 
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Y 
X Y 

X X 0 
X X 1 0 
X 0 0 0 
0 1  0 Y 
0 0  X Y 

I I 
X X X 

1 

X X 
X 

Y 

'q 

s2.1 32.2 
cell 1 2  3 4 1 1  2 3 4 

sq.rt - - -  
diV. - 1 -  - 

mult. 8 4 4 5 5 3 3 4 

numberof (k$k p plp+l) 

i/o 7 LO 11 14 6 8 9 12 
operations 8 mult. 1 diu.  + 5 mult. 
per cycle 

00 
00 00 
00 0 
0 1 
0 0 
1 00 
00 00 
00 00 
00 

S2.3 ! 

1 -  
1 -  
4 4  

1 sq.rt. + 1 div. 
+4 mrclt. ~ 

The symbol 0 denote$ 
a unit tima qday 

W 
W W 

Y W 

W 

mcde 0 : b 8 x .  b * - y  . pr 

r t l .  Btr+r. b i m  

moae I :  b o , t x .  b i n - y . r  

bin 
1 

mace 0 : b D ~ l  c- l x .  b i n  -y$r P 
r c ' ~ E - r + S . b .  

D 
worn,+ W h + t . I '  

mcce I :  if b i z l  then Z +  y 

Figure 2: S2.1 : This systolic array computes the RLS optimal weight vector. 
It implements the algorithm that is based on the r;X 8otation for which 
IE=.A=l. 

Table 2: RLS weight extraction computational complexity (mode 0). 
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as well as the Gentleman’n square root free ?Rotation. We introduced novel 
architectures that are based on the K X  ?Rotation for K = X = 1 and we made 
a comparative study of all three kinds of architectures. We observed that 
considerable improvements can be obtained for the implementation of the 
QRD-based RLS algorithms. 
We have not stated any arguments concerning the optimality for the choice 
of the values of the parameters K ,  A. We underline the fact that both the t i A  
8otation algorithms expose computational complexity advantages, compared 
to the original Givens rotation, with the cost of the denormalization of the 
latter. Consequently, the architectures based on them should incorporate 
some additional logic that ensures numerical stability. Actually, Gotze and 
Schwiegelshohn have shown that the K X  ?Rotation with ti = X = 1 can be 
stabilized with negligible overhead [3]. Finally, a study on the dynamic range 
needs to  be made before we be able to infer any optimality statement about 
the implementation cost. 
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