3098

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 12, JUNE 15, 2014

Distributed State Estimation With Dimension
Reduction Preprocessing

Hang Ma, Student Member, IEEE, Yu-Han Yang, Student Member, IEEE, Yan Chen, Member, IEEE,
K. J. Ray Liu, Fellow, IEEFE, and Qi Wang

Abstract—System state estimation relies heavily on the measure-
ments. With the advance of sensing technology, the ability to mea-
sure is no longer a bottleneck in many systems, and more and more
researchers now focus on the rich-information setting, i.e., big data.
However, although information never hurts, it does not help un-
conditionally. How to make the most of it depends on whether we
can process the data efficiently. In some systems, the inherent con-
straint such as the bandwidth and cost makes it necessary to reduce
the dimension of the measurement before further processing. The
problem that the raw measurements are first preprocessed to re-
duce size and then used for estimation is addressed in this paper. It
is shown that there is a lower bound on the size of the preprocessed
data such that if the size is beyond the bound, there exists a closed-
form estimator design that the linear minimum mean-square esti-
mation can be obtained. Moreover, we propose an algorithm that
is guaranteed to converge to a stationary point to design an esti-
mator in the conditions that the lower bound cannot be reached.
Besides convergence, the proposed algorithm guarantees bounded
performance loss compared with the global optimal solution under
some additional conditions. Finally, simulation results in three dif-
ferent applications are shown to demonstrate the effectiveness of
the proposed algorithm.

Index Terms—Distributed state estimation, fusion, LMMSE,
lossless compression, optimal lossy compression.

I. INTRODUCTION

HE sensing technology has enabled us to measure the

“states” in our daily life in the past few decades, such
as monitoring the water distribution [1], railway traffic [2] and
power grid [3]. In recent years, the sensing technology has been
greatly improved in terms of cost and resolution, due to which
the wide deployment of sensors with/without high sampling
rate becomes possible. Such improvements lead to the fact that
people are able to obtain more and more measurements, i.e., a
typical phenomenon in the big data trend. With the availability
of more measurements, the performance of the estimators are
expected to be improved. They would be able to provide more
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precise information about the “states” even in non-ideal envi-
ronments. However, measurement itself does not uncondition-
ally help. Whether we can make the most of it depends on the
ability to effectively process the measurements to extract the in-
formation we need.

The way we leverage the measurements must be compatible
with the inherent constraints of the system. In some cases, the
estimator is unable to directly utilize the massive measurements
due to some limitations in the system. For example, in wireless
sensor networks, the sensors are usually distantly distributed
such that transmitting massive data within a small time interval
is expensive, and sometimes even impossible considering the
fact that sensors are always powered by battery and subject to
stringent power and bandwidth limit [4]-[6]. Another example
is the channel state estimation of communication systems. Since
the terminal device is generally small and cheap, the memory
is often limited and thus impossible to store the massive mea-
surements. In these systems, preprocessing the measurements to
make them compatible with the inherent constraint of the system
is necessary.

Motivated by these facts, we aim to design a preprocessing
method that could make the raw measurements concise enough
while at the same time preserve as much information as pos-
sible for the subsequent estimation. There has been extensive
research in similar topics, especially in the realm of wireless
sensor network where stringent power and bandwidth constraint
is always imposed. In order to save power and bandwidth, one
of the approaches is to use quantized data for the state estima-
tion [7]-[11]. This method is inherent with the discrete nature
of the communication between the sensors and the fusion center
(FC) in the FC-based network or between sensors in the ad hoc
network. Instead of limiting the bits representing each measure-
ment, another approach is to preprocess the data transmitted by
each sensor and/or cluster to reduce the dimension of data that
need to be transmitted [12]-[23]. This method is motivated by
the fact that the raw data contains some redundancy, and the pre-
processing could help to reduce the redundancy. Moreover, due
to the block-wise and multi-rate [24] nature of most wireless
sensor networks, reducing the dimension of the data is useful in
matching the data from multiple sensors and/or clusters. Besides
the wireless sensor network, other researches on compressing
the raw data before estimation lie in different fields including
image processing [25], power grid [26], [27] and robotic net-
works [28].

The authors in [20]-[22] provided methods that utilizing a
subset of the raw measurements for state estimation in order to
reduce the dimension of data. While using a subset of the raw
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Fig. 1. The hierarchical system structure.

measurements is a good solution in some systems, especially
in the wireless sensor networks where each sensor has limited
computation power, there are certain cases that the raw mea-
surements can be compressed in some more complicated ways
to improve the performance. The authors in [16] presented a
minimal bound of the dimension of the compressed sensor data,
which could achieve the same estimation performance as using
uncompressed sensor data. In other words, this bound is a “loss-
less” bound. The lossless compression problem was also inves-
tigated in [17]. In practice, it is not always possible and/or neces-
sary to ensure the lossless performance. Sometimes, engineers
are more concerned about the optimal compression given any
system inherent constraint. This problem was studied in [19],
however the results were argued to be suboptimal in [18], in
which the authors further considered the fading and noisy chan-
nels in the sensor network. The algorithm provided in [18] was
also suboptimal, which ensured the convergence to a stationary
point. Moreover, the algorithm in [18] is computation expensive
and sometimes unstable due to the matrix inversion required at
each iteration. In [23], the authors addressed the measurement
dimension reduction problem with knowledge of the network
topology.

In this paper, we consider the block-wise preprocessing and
estimation problem. We aim to jointly design the preproces-
sors and the subsequent estimator where the preprocessors
associated with each measurement block is responsible for
compressing the raw data within this block to meet the in-
herent constraints of the system and the estimator relies solely
on the compressed data for estimation. We assume that all
preprocessors and the estimator are linear. It is found that
there is a bound for the dimension reduction. If the permitted
dimension is beyond this bound, then it is possible to design
the preprocessors and the estimator to make the estimation
equivalent to the linear minimum mean square error (LMMSE)
estimation, which is the best that can be achieved within the
linear space. In other words, there is no performance degra-
dation incurred by the compression. However, if the required
dimension reduction is below this bound, then it is impossible
to achieve the LMMSE. In this case, we propose an algorithm
to design the preprocessor and the subsequent estimator to
minimize the mean square error (MSE) between the real “state”
and the estimation. Different from most existing algorithms
that can only ensure convergence to a stationary point without

performance guarantee, the proposed estimator can bound the
MSE by a constant factor times the global minimum value
under some additional conditions. The effectiveness of the
proposed method is illustrated in different applications. It is
shown in some cases that the designed preprocessors are able
to compress the raw data into vectors of dimension far below
the “LMMSE-achieving” bound without incurring too much
performance loss.

The rest of this paper is organized as follows. In Section II,
the dimension reduction problem is formulated. The bound for
the lossless dimension reduction is proposed in Section III and
the algorithm for designing the estimator if the reduction re-
quirement is below the bound is provided in Section IV. The
performance bound of the proposed algorithm under some ad-
ditional conditions is analyzed in Section V. The proposed algo-
rithm is illustrated in three different applications in Section VI.
Section VII concludes this paper.

II. PROBLEM FORMULATION

We consider a system where the linear measurements of states
are contaminated by noise as follows

z=Hx+v, (1)
where x € R” is the vector composed of the n states of the
system, z € R™ is the measurement vector, H is the m by n
measurement matrix with mn > n, and v € R™ is the vector
composed of the v noise components. Without loss of gener-
ality, it is assumed that all the state and noise components are
zero mean.

In this paper, we focus on the two-level distributed state esti-
mation problem in this system where the measurement vector z
is partitioned into multiple vectors z;’s, and each of them is de-
fined as a block. The measurements in one block would be pre-
processed to a shorter vector before subsequent estimation. As
shown in Fig. 1, each z; is a block and y; is the corresponding
shorter vector by preprocessing. The subsequent state estima-
tion will be purely based on the y;’s.

Assume that there is no shared measurement, i.e., each mea-
surement is involved in only one block. Let z; denote the ¢-th
block, and we have z = [z - ~-sz]T, z; € R™, where
m,; is the number of measurements corresponding with the ¢-th
block and z” denotes the transpose of z. p is the total number
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of blocks. The (1) could be re-written in the block-wise form as
follows

Z1 H1 Vi1
H

2)

z \2

P r r

where H; and v; are the measurement matrix and noise vector
associated with the block z, respectively.

We are interested in designing a distributed two-level linear
estimator K = (K; Ky --- K,),L = (L; Ly --- L), and
G, = LK;, 7 = 1,2,---,p, where the local measurements
related with block ¢ are first locally processed using K;, and
then further processed using L; as follows

p
X= Z Ly; =
i=1 X

where y; = K;z; is the block z; preprocessed by K.

Our goal is to properly design K and L such that the mean
square error (MSE) is minimized. According to the orthogo-
nality principle [29], we can write the MSE as follows

r

p
LKz =Y Giz. 3)
1 i=1

E[(x-x)%] =E [Xrmmse — x)°]+E [(*X — Xommse)’],

“)
where x is the true state vector, X 373755 i the output of the
linear minimum mean square error (LMMSE) estimator, which
is in the form of [29]

Xrmuse = Wz
1 1 1 -1
= (S -SH'LH(Z, +HL, 'H) }

x HTE 1z, (5)
where ¥, and ¥, denote the covariance matrix of x and
v, respectively. Partitioning the corresponding matrices into
sub-matrices for each block, we have H = [HlT . HpT]T,
H; € R""*" and . is the block diagonal matrix composed
of ¥, -+, B, , B, € RMX™

Let us define

) -1
w;2|s, =,HTS 'H (2;1 + HT2;1H) ] HIS
(6)
fors = 1,---,p and then (5) can be re-written as
P
Ximmse = » Wiz, (7

i=1

In (4), E[(Xrararse — X)?] is a constant independent of the
designed estimator. Thus, minimizing the MSE of the designed
estimator is equivalent to minimizing E[(X — Xzarase)?],
which can be further expanded by substituting (3) and (7) as
follows

E[(x — xemuse)’] = Tr (G - W)B.(G - W)T) (8)

where 22 = H2£HT + 2@7 G = (LlKl LQKQ ce Lpr)
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By (3), the rows of K; which are all zeros correspond to the
zeros in y; and are not necessarily kept. Therefore, the con-
straint on the size of y; is equivalent to limiting the number of
nonzero rows of K;. According to (4) and (8), the problem of
minimizing the MSE can be formulated as follows,

- _ _ T
min - Tr((G - W)E(G - W)")
s.t. oy < ¢y, Vi, )

where «; 1s the number of nonzero rows of K; and ¢; is the con-
straint on the size of y;. In other words, the designing purpose is
to use K; to linearly combine the measurements in z; to reduce
the size of data while preserving as much as possible useful in-
formation for the subsequent state estimation. Due to the linear
measurement model z = Hx + v, the measurements are not to-
tally independent and thus contains some redundancy. The K;
would serve to remove the redundancy by linearly combining
them. However, the redundancy is limited, due to which there
is a minimum size to represent the measurements in z;. It will
be shown in the next section that if ¢; is beyond this size, K;
can remove the redundancy such that the constraints are satis-
fied and all the useful information is preserved. If ¢; is below
the minimum size, then not only the redundancy but also some
useful information would be removed, incurring performance
loss in the subsequent estimation.

III. MINIMUM DIMENSION REQUIREMENT FOR
LOSSLESS COMPRESSION

In this section, a sufficient and necessary condition on the ¢;’s
for the system to achieve the LMMSE estimation will be shown.
Before we show the condition, let us first establish an equivalent
form of the problem in (9).

For any given G, it is always possible to use the singular
value decomposition (SVD) to re-write it as [30]

G, =Ux, V! (10)
where V! denote the Hermitian conjugate of V;.

Iflet L; = U; and K; = £, V/, then o; = rank(G;),
which means that we can always reduce «; to rank(G;). More-
over, it is impossible to reduce «; below rank(G;) because if
a; < rank(G;), then rank(K;) < «; < rank(G;). In this
case, the controversy comes that rank(G;) = rank(L;K;) <
rank(K;) < rank(G,). In other words, for any given G;, we
can always and at most reduce «; to rank(G;), i.e., limiting a;
is equivalent to limiting rank(G;). The problem in (9) could
be reformulated as

n&n Tr ((G -W)X.(G - W)T)

s.t.  rank(G;) < ¢, Vi. (11)

Therefore, the problem of jointly designing L and K is equiva-
lent to finding an optimal G in the low-rank space constrained
by ¢;’s to minimize the MSE. From (11), we develop the suffi-
cient and necessary condition on ¢;’s for the system to achieve
the LMMSE estimation. Please note that similar result with dif-
ferent assumptions had also been derived in Theorem 2.1 of
[16].
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Theorem 1: A sufficient and necessary condition on ¢;’s for
the estimation defined in (3) constrained by (11) to achieve the
global LMMSE state estimation is Vi, ¢; > rank(H;).

Proof: First notice from (6) that rank(W;) = rank(H;).
In the following, we would prove ¢; > rank(W;) as the suffi-
cient and necessary conditions instead.

(proof of sufficiency) If ¢; > rank(W;), then W is in the
low-rank space constrained by ¢;’s. Choose G; = W, for all
the blocks thus G = W, achieving the LMMSE.

(Proof of Necessity) The state estimation %X(z) in (3) as a
function of z achieves the LMMSE if %(z) = Xryarse(z)
for any z € R™ where Xz prarse(2) is defined in (7). We will
show the necessity by contradiction.

Suppose there exists a block indexed s such that
cs < rank(Wy). Let dim(£2) denote the dimension of
the linear space £, since rank(G;) < c; < rank(W,),
dim(®¢g,) > dim(Ow,) where Og, and Ow, are the
null spaces of G, and W, respectively. In other words,
3 a vector z; such that Gsz; = 0 while Wiz, # 0.
Therefore, there exists a vector z = (0 z, 0)7 such that
x(z) = Y71 Gizi # 31—y Wiz, = Xpmase(z), where 0
is the vector with appropriate size composed of all zeros. By
definition, the estimation X(z) does not achieve the LMMSE.
Therefore, 7; > rank(H;) is a necessary condition for the
estimator G to achieve LMMSE. [ |

From Theorem 1, we can see that the minimum ¢; for the
system to achieve LMMSE is rank(H;). Taking expectation
over v in (2), we have E[z;] = H,;x, where we can see that the
number of independent values in the mean of z; is determined
by rank(H,). Therefore, Theorem 1 could be interpreted that
no information of the measurement z; is lost if ¢; is at least the
number of independent components in z;. If we view the linear
combination as projection, in case that ¢; < rank(H,), one tries
to project the vector z; into a space with insufficient bases, due
to which some information is lost and the LMMSE estimation
cannot be achieved.

IV. ESTIMATOR DESIGN FOR LOSSY COMPRESSION

In the previous section, we derive a lower bound for ¢;’s to
enable the LMMSE estimator, i.e., for any dimension constraint
beyond the lower bound, we can achieve the same MSE perfor-
mance as the LMMSE estimator. However, in some situations
where high compression ratio is needed due to, for example,
high communication cost, the required dimension may be even
smaller than the lower bound. In such a case, the design of the
estimators will be constrained in the low-rank space, as given in
(11). Obviously, the objective function Tr((G — W)X, (G —
W)T) is quadratic thus a convex function of G, but the set
{G|rank(G;) < ¢} is not a convex set. In this section, we
proposed an algorithm to tackle this non-convex optimization
problem that is guaranteed to converge.

To make (11) more tractable, we first decompose the covari-
ance matrix as follows

T

rol=

%, = QAQY = %,°%, (12)

3101
We then further re-write Zz% in the block-wise form
Ay
A, |
=] .|2A (13)
AP

where A; € R™*" Now we can re-write the objective func-
tion in (11) as follows

Tr [(G — W)Z,(G - W)T]

1 1T
=Tr {(G ~-W)E, 2%, 7 (G - W)T]
P 2
= szﬁ =Y GiA; (14)
=1 F

where ||X||r denotes the Frobenius norm [30] of matrix X.
Since the matrices W and ¥, are determined by the system
parameter, they are independent of the designed estimator. Let

us denote the matrix W, % by Y. With G = [G1 G5 -+ G,],
the problem in (11) can be re-written as

o _ 2

min Y — GAlr

st.  rank(G;) < ¢, Vi (15)

In (15), we can see that the problem boils down to finding esti-
mator G in the low rank space to minimize the distance between
GA and apoint Y, where A and Y are independent of G. If A
is an identity matrix, the solution is trivial by discarding the most
insignificant singular values of W; until rank(G;) < ¢;, Vi
[31]. However, for a general A, there is no explicit solution.

Since the problem in (15) is hard to directly solve, we seek to
tackle it by formulating another optimization problem which is
an approximation to the original problem (15). By introducing
anew matrix D € R™*™  the objective function in (15) can be
written as

Y - GA|% =|Y - DA +DA - GA|%
<|Y - DAJ|Z + |DA - GA||%
<[[Y = DA|F + A (A) (D - G5 (16)

where A(1y(X) is the maximum absolute value of the eigen-
values of X. Therefore, we try to solve the problem

min

D

Y - i:D,;A,,;
=1

s.t. rank(G;) < ¢;, Vi

P
+Aé%AJ(§:HG;—ILH§>
=1

amn

2
F

which is to minimize an upper bound of the objective function
in (15).

We further transform the problem in (17) using a similar idea
in [32]. We replace A%l)(A) by another parameter - > 0. This
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transformation gives the algorithm one more degree of flexi-
bility in choosing v to further improve the performance than
fixing it to be /\%1) (A). The problem becomes

P 2 r
Y-S DA 4o (ZH&- —DAI%)
i=1 F

i=1
st rank(G;) < ¢, Vi.

min
L k3

i

(18)

where G;’s are the estimators in the low-rank constrained space
and D, ’s are the estimators in the unconstrained space. The first
term in (18) is the distance between the appropriate estimation
chosen in the non-constrained space and the point that we aim
to approximate in the non-constrained space. The second term
is the distance between the point chosen in the non-constrained
space and its projection in the low rank space. From (18), we can
see that the optimal estimator is found by simultaneously min-
imizing two different distances through a balance factor y. In
such a case, we will obtain an estimator ID in the unconstrained
space that make |[Y — >°F_; DA, ||; small, while at the same
time the corresponding projection on the low rank space will
not introduce too much performance degradation. In the sequel,
it will be discussed in details how to solve the optimization
problem and derive the performance bound.

Since directly solving the optimization problem in (18) is dif-
ficult, we will solve it iteratively with two steps in each itera-
tion: in the first step we fix G; and optimize D;, and then in
the second step we optimize G; by fixing D;. For the first step,
when G; is fixed, since the feasible set for D; is R™:*", the
problem is a convex optimization problem, and we can derive
the solution using the first order condition as follows

(DA - Y)A] +v(D,; - G;) =0, Vi. (19)
At the second step we fix D in (18) and optimize it with respect
to G, which is equivalent to optimizing ||G; — DZ||i- since
Y ->"%, D7;A7;||?m is independent of G. By Eckart-Young
Theorem [31], the optimal G, for the problem
min |G - DI}
sito rank(Gy) < ¢, Vi (20)
is derived by applying low rank projection for each D; as
follows
G; = T;A;S! (21)
where D; = T;A;S/ is the singular value decomposition of
D; and Zi is the truncated singular value matrix where only
the most significant ¢; singular values are kept while all other
singular values are assigned 0.
The (19) can be re-written as

DAA] ++D; = YA, +7G;, Vi. (22)
Combining (22) for all the blocks, we have
D = (AAT 4+ 4I) (YA ++G). (23)
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Combining (21) and (23), the iterative steps for solving (18)
can be written as follows

G = TWAW G

DEH) — (AAT 4 41) (YA + VG("")) (24)
where
5 k k 5
) — [G§ el ’,...,GM
k k .
D — [Dg >7Dé )’ . .7D7(]k)} ) (25)

The initial point of the iteration could be easily set as D) =
W. The algorithm is terminated if MSE*+1) — MSE® < ¢
where MSE*) is the MSE achieved by the estimator at £ it-
erations and ¢ is the pre-defined threshold. There is a tradeoff
between runtime and performance in selecting €.

It can be seen from (24) that the proposed algorithm itera-
tively fixes one of G and D and updates the other one to mini-
mize the cost in (18) until the termination condition is reached.
Thus, it can be easily seen that the proposed algorithm always
converges since the cost is always nonincreasing during the it-
erations and the cost is lower bounded by the LMMSE. Note
that the converged solution is a stationary point and it may not
be a global optimum. However, one unique characteristic of the
proposed algorithm is that under some additional conditions,
the MSE of the local optimal G designed by this algorithm is
bounded by a constant C times the minimum MSE achievable
by any low rank estimator G satisfying the constraints in (11),
which will be shown in next section.

V. PERFORMANCE ANALYSIS UNDER ADDITIONAL CONDITIONS

In this section, it will be shown that the convergence
value of G would bound the MSE by a constant C' times
the MSE achieved by G* where G* is the estimator min-
imizing ||[Y — GA|%Z over the whole low-rank space
{Glrank(G;) < ¢;,Vi}. We will also show that C is re-
lated with the restricted isometry constant [33] of the matrix
A.. To show the condition, we first introduce the definition of
restricted isometry constant.

Definition 1: The d-restricted isometry constant [33] of A is
defined as &4 such that VX € R™*"™ satisfying rank(X) < d,

(1 - 8IIX[3 < XA} < (1 +80]X]3. @6)

With this definition, we are able establish a lemma that would
facilitate the performance analysis of the proposed iterative
algorithm.

Lemma 1: Suppose the eigenvalue decomposition of AAT 4
(Lis AAT + 41 = JTI7, define (AAT +~1)"/* = J1V/2,
then if A has the d-restricted isometry constant 64 where d < n,
for any X € R"™*™ satisfying rank(X) < d, we have

2
L < (o) [IXI%

27

(1=tatDIXI5 < [X(AAT +91)
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Proof: For any X satisfying the conditions in Definition 1,
we have

12
HX(AAT +D}|| =1 (X(AAT + wI)XT)
=Tr(XAATXT) + yTr(XXT)

= XAE +7IXlE

By applying the restricted isometry property (RIP), it can be
further re-written as

(1= 8a+NIXNE < [IXANE +AIX]E < (14 80+ XI5

(28)

|

To evaluate the estimator calculated by the proposed algo-
rithm, we first define the functions

1
$(X) = SIIY — XAll% (29)

and

W(X) = [[Y - XAlF +p (30)
where X € RnXm, and yt = E[()A(LA/[AMSE — X)Q]. According
to (4), U(G) is the MSE achieved by the estimator G. Define
G* as

G = arg ngn d(G)

s.borank(Gy) < ¢;. 31
In other words, G* is the optimal solution for the minimization
problem in (15). Then we have the following theorem:
Theorem 2: If A has the n-restricted isometry constant 6,
satisfying 6,, < v/5 — 2, then by the iterative steps in (24),

li v (G(k)) C 32
P wGn < (32)
where
28,,(1468,,)
_ 1 + l + (17;)714».7,)2
1-1
26,{\/2 1 4 26n(1 + §n)
= ——2 —+4). . (33
((1_6n+7)2 * 27) 1_6n (1_6n+7)2 ( )

Proof: For any G satisfying the constraints in (15), we
have rank(G) < n.
By Lemma (1), the following condition holds for any G sat-
isfying the constraints in (15)

2
< (146, +7)IGl%

F

(34)

Since the ¢(G) is quadratic in G, we could represent it by
the Taylor series up to the second order as follows

¢(G<k+1>) _¢(G(k>) - <(G("‘)A—Y> AT GU+D _G<k>>

1 2
L (+1) _ (k) H
+2H(G G )AF (35)

1
z

(1-6.+7)IGlF <||G(AAT +4T)

where (M, N) £ Trace(MN7). Recall that in (24)
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D +U(AAT 4 41) = YAT + 4G, (36)
Substituting YA in the above equation into (35), we get
ICORICD
1 1112
=Z (k+1) _ plk+1) T i
5|l(e D+D) (AAT + 4D}
_1 H (G® — DED) (AA" + 1)} ’
2 F
1 , L2
-bler-c]
F
1 ) ) ) 2
< 5(1 460+ ) HG(k,Jrl) _ D(k+1)HF
1 2
-ju-s o],
1 2
S L
1 2
_ 5(1—571,4"}’)“G(k) _D(k+1)HF (37)

where we have applied Lemma (1) in the first inequality since
rank(GHHD — DE+HD) < 5 and rank(GH) — DEHD) < g,
The last inequality is due to the fact that G**1 is the global
minimizer of |G — D®**1|| - in the block-wise low-rank sub-
space thus replacing it with G* would increase the value. On
the other hand,

#G) ¢ (GHM)
= %H(G* _ D(k+1)) (AAT +’yI)% 2

F

112
2

1
-5 H (G(k) - D<k+1>) (AAT 4 4T)

F
1 2

e o)
2 F

Y
| =

2
(1— 6n +) HG - D(’"“)HF
1 ) ) 2
— (146, +7) HG“) — DG+ H
2 F

1 2
_ollgr = G(k)H
7| ; a8)

where Lemma (1) has been used.
Now subtracting (38) from (37), we get

¢ (GHY) - p(6")
<o o oo
F ra
1 2
fe o]
2 F
=6, ||[(G*A — Y)AT
2
G* — GM)](AAT 4 11 ’1H
+v( )} ( +90 ),
_ 2
+ 6, H (GMAAT — YAT) (AAT + 1) 1HF

1 2
il o
2 F
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bn H G(“A YAT H

+4
(1_671 ‘I"Y

o]
2 F

46, (1 +6,,) 20nl+0n) (k)

26,72 1 2

n - G'* _ G(k)”
+<(16n—|—y)2+27) H F
where the Lemma (1) and the Cauchy Schwarz 1nequa11ty
ING*A — Y)A_T +y(G* —
v2||G* — G(*)|| 1) have been used in the first inequality. The

second inequality is due to the RIP in (26). By the same
way, the last term is bounded by

H(G*) + 26,(1+6,,)

(39)

o - e
ra
2
< 15 G*A—G(’“)AH
&

[||G*A Y+ |a®a - YH]

S 1-6,
1 _4(5” ((/’(G*) ¢ (G(k)))' “0)
Substituting (40) into (39) we can get
¢ (G - p(G)
e T s ()
(i) s (e+o(a)
(41)

By simplifying (41), we can get

(G - cgar) <1 (¢ (6W) - ca@h) @)
where

26, (1+6,)
(1 - 6n + 7)2

/= 26,72 N 1 4
B (1 —6p + 'Y)Z 27 1-6,

28, (1+6,.)
I+l g

1-1

(43)

Since lim-, ol = =55
possible to find small enough « such that 0 < [ < 1 making the
iteration converge, and limy, o, $(G*)) = Cp(G*).
According to (29) and (30), the MSE achieved by the esti-

mator G is
¥ (G("")) -

M < 1ifé, < V5 -2, itis

2 (G("")) ¥ (44)

GOy <2((G*A - Y)AT |3+
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TABLE 1
MINIMUM ACHIEVABLE VALUES OF C FOR SOME §,,

on [} on (]

0.02 | 1.1331 | 0.04 1.2977

0.06 | 1.5045 | 0.08 1.7696

0.10 | 2.1186 | 0.12 2.5949

0.14 | 3.2778 | 0.16 4.3301

0.18 | 6.1470 | 0.20 | 10.0000

Comparing it with ¥(G*)
i ¥ (G®W) 26 (GW) + 4 2¢(GW) o @s)
1im = =

k—oe W(G¥) 20(G*) + i 2¢(G*)

where the inequality is due to that fact that ¢(G*)) is always
greater than ¢(G*) and 1 > 0. ]

It is shown in the above discussions that besides an esti-
mator design, the proposed algorithm also provides some mea-
sure based on the system parameter 6,, to evaluate the perfor-
mance of the designed estimator, which is different from the
existing method that can only guaranteed convergence to a sta-
tionary point [18]. Please note that the condition &,, < v/5 — 2
is only a sufficient condition for the performance analysis and
it should not limit the applicability of the proposed algorithm.
The convergence of the algorithm is always guaranteed inde-
pendent of this condition. Moreover, sometimes it is possible to
find some ~ to make ! < 1 even if §, > v/5 — 2.

From (33), since [ > 0, C' is always greater than 1, which
means that the MSE of the designed estimator G is always
greater than that of the optimal low-rank estimator and C' could
provide a bound of the difference between them. This bound
is related with -y and the n-restricted isometry constant §,,. The
minimum feasible values of (' for some cases when 8,, < v/5—2
are shown in Table I. For some cases, if 4,, is small, we can
choose appropriate v which would ensure both  and M
to be close to 0 thus C' is close to 1. The MSE of the designed
estimator will be close to that of the optimal estimator G*. How-
ever, if 6,, is relatively large, we need to choose small enough ¥
to ensure / < 1, which would make % relatively large
and therefore C' would be much greater than 1. In this case, the
upper bound of performance loss provided by C' is loose. Nev-
ertheless, it does not necessarily indicate the performance of the
designed estimator is poor, which will be shown by numerical
examples in next section.

Before comparing the performance with that of the method in
[18], let us first compare the computation complexity of these
two methods. In Algorithm 1 of [18], it requires multiple matrix
inversion at each iteration. There are two main disadvantages:
first, sometimes the matrix that needs to be inverted is so close
to singular that inverting it would incur a lot of inaccuracy due
to which the convergence becomes an issue. Another disadvan-
tage is that since the matrix inversion is of cubic complexity
with respect to the number of measurements, this method might
not be scalable. However, in the method proposed in this paper,
the matrix inversion (AA” 4+ ~71 )71 is independent of the it-
eration and thus does not need to be calculated each time. It
makes the algorithm more robust without the risk of inverting
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a matrix close to singular. Also, it reduces the complexity sig-
nificantly and therefore makes it more suitable for the condi-
tion with massive measurements, especially in the case that es-
timators are re-designed periodically to meet the time-varying
conditions.

VI. APPLICATIONS

There are a variety of problems in different fields using the
linear measurement model in (1) where the proposed method
can be applied such that the raw measurements are compressed
to meet the system’s inherent constraints. If the conditions in
Theorem 1 are satisfied, then the distributed LMMSE estimator
can be implemented. Moreover, we are more interested in the
performance of the designed low-rank estimator if those condi-
tions can not be satisfied. In this section, three state estimation
applications with inherent constraints are discussed to illustrate
the effectiveness of the proposed algorithm.

A. MIMO Channel Estimation

To fully achieve the spatial and time diversity that MIMO sys-
tems can offer, the accurate channel state information (CSI) is
required at the transmitter and/or receiver [34]. For example, the
beamforming requires the CSI at the transmitter [35] while the
space-time code requires the CSI at both the transmitter and the
receiver [36]. While there are multiple ways to do the CSI esti-
mation, in this example, we consider the approach using training
sequence. In a MIMO system with ¢ transmitting and r receiving
antennas, we use the training sequence to estimate the CSI at the
receiver. Namely, we consider the state estimation problem at
each receiving antenna, where 7 states are to be estimated. This
estimation problem can be modeled using (1) where x is the
t x 1 state vector of the channels from # transmitting antennas
to the specific receiving antenna, z is composed of the received
signals from time 1 up to NV by the receiving antenna, H is the
matrix composed of the training sequence from the # transmit-
ting antennas from time 1 up to NV and v is the noise vector.

Generally, the training sequence length N is required to be
no less then ¢ to ensure that the system is determined. In some
cases, IV is much larger than ¢ to make the estimation less vul-
nerable to abnormal noise and/or interference from other de-
vices. While the accuracy of the estimation is expected to in-
crease with the length of the training sequence, it also brings
massive measurements that the estimator need to deal with. Tra-
ditionally, the receiver would store all the measurements before
using them to do the estimation. However, in some systems,
the receiver side is expected to be cheap and small thus there
might be not enough space for the massive measurements. We
use the block-wise preprocessing to solve this problem. Instead
of waiting until the end of the training sequence, the receiver
would periodically preprocess the latest measurement block by
a matrix L; to make it a shorter vector y; to be stored where
¢ is the index of the block. The subsequent estimation is done
at the end of the training sequence when all the p blocks have
been received and preprocessed. Recall in (3) that the estima-
tion is purely dependent on the preprocessed data y;’s thus the
raw measurement blocks can be discarded immediately after the
preprocessing such that a lot of memory space can be saved.
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In this example, we assume that the MIMO system is
equipped with 10 transmitting antennas thus the dimension of
the state is 10. To ensure the performance, the training sequence
of length N = 40 is employed thus the total number of mea-
surements is 40. The measurements are partitioned equally into
two blocks of length 20 with the corresponding measurement
matrices Hy and Hy where rank(H;) = rank(H,) = 10.
Moreover, in this application, the ¥y is small compared
with 3, which corresponds with the case that the system
is with high measurement noise. Assume that the mea-
surement noises are i.i.d, and without loss of generality
assume that ¥, = I. Note that the 4, of A is bounded by
b < Ay(B, = I) = Ay(HELH') = 0.2 in this example,
which satisfies the sufficient condition in Theorem 2.

To evaluate the performance of the designed estimator, we
define

GAP = E [(%x — Xrammse)’] (46)
where X is the state estimation obtained by the designed esti-
mator. By (4), the MSE of the designed estimator is GAP plus
a constant that is independent of the estimator design.

In Fig. 2 and Fig. 3, it is shown that if the GAP is bounded by
5 x 1073 for all the cases where ¢; < 10,¢0 < 10,61 - ¢2 # 0,
which is small compared with the LMMSE that is 0.0417. It is
shown that the performance of the proposed algorithm is very
good such that it is able to compress the raw measurements into
quite small size with little performance loss. Moreover, in Fig. 3,
it is shown that the theoretical results match the simulation re-
sults obtained by Monte-Carlo simulations.

The algorithm proposed in this paper is compared with Al-
gorithm 1 in [18]. As shown in Fig. 4, the algorithm proposed
in this paper has better performance than that in [18], especially
in the cases where ¢; is low. Moreover, in this example, the al-
gorithm in [18] converges within less than 10 iterations. How-
ever, the performance is not improved with more iterations. In
contrast, the algorithm proposed in this paper has good enough
performance with 10 iterations while at the same time the per-
formance continues to improve, even after 1000 iterations.
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B. Power Grid

In the power grid, there are generally two levels for the power
to be delivered from the generation plant to household: the trans-
mission level and the distribution level. The former delivers the
power from generation plants to substations and between sub-
stations; the latter delivers the power from substations to house-
holds locally. They have quite different structures and physical
properties.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 12, JUNE 15, 2014

TABLE 11
THE GAP FOR THE CASES ¢; < rank(H,), ¢z < rank(Ho>)

c1 co GAP c1 co GAP

8 | 10| 497x107* | 10 | 10 | 2.48 x107°
8 | 11 | 520x107% | 10| 11 | 1.48x107°
8 | 12| 505x107% | 10| 12| 1.42x107°
9 | 10| 829x107% | 11 | 10 | 6.57x 107
9 | 11 | 7.30x107° | 11 | 11 | 6.40 x 10~"
9 |12 ] 723x107°% | 11| 12 0

We consider the state estimation problem in the transmission
level, specifically in the IEEE 14 bus system model where there
are 14 interconnected substations. Engineers are interested in
the complex voltage phase differences in the substations, which
is costly to directly measure. One way to get to know these
states is to estimate them by power flow measurements which
include the power injections at substations and the power flows
in each transmission line. We assume that this system is fully
measured, i.e., each substation would provide one power injec-
tion measurement while each transmission line would provide
two power flow measurements, all of which are contaminated by
random noise. In this system, there are 14 power injection mea-
surements and 40 power flow measurements, while 13 phase
differences are to be estimated. It can be modeled by (1) where
H is the measurement matrix related with the grid topology, z
is composed of the 54 measurements, x is composed of the 13
system states and v is the noise vector.

In practice, the substations are usually distantly distributed.
Therefore, transmitting a lot of measurements to the estimation
center is expensive and sometimes even impossible. We parti-
tion the system into several groups and the measurements in-
side each group is preprocessed to be compatible with the trans-
mission capability of the system. In this example, we partition
the substations indexed 1,2,3,5,7,9,10 as one group while the
rest as the other group. The power injection measurements are
associated with the corresponding substation while the power
flow measurements are associated with the originating substa-
tion. From Theorem 1, the sufficient and necessary conditions
to enable LMMSE estimation is ¢y > rank(H;) = 11, ¢3 >
rank(Hsy) = 12, where ¢; and ¢y stand for the communication
capability from the preprocessor of each group to the estimation
center. If these conditions cannot be satisfied, the low rank esti-
mators are designed using the proposed algorithm.

By doing simulation using Matpower [37], Table II illustrates
that the GAP decreases asymptotically to 0 as ¢; and ¢y increase.
Moreover, it is 0 if and only if both ¢; > 11 and ¢ > 12.

Looking at the cases where both ¢; < rank(Hy) and ¢ <
rank(Hs), as shown in Table II and Fig. 5, the GAP is still
close to 0 even if ¢; and ¢ are slightly below the rank(H;)
and rank(Hs). It means that the estimation obtained by the
low-rank estimator is quite close to the LMMSE estimation in
the mean square sense.

An interesting observation found in Fig. 5 is that there exists
a sudden change of the GAP as ¢; and ¢, varies. Moreover, it
seems like a boarder line such that if ¢; + c2 is greater than a
specific value, then the GAP is insignificant compared with that
when ¢; +c¢» is below that value. It becomes more clear if we see
the examples in Fig. 6. If ¢; = 5, the sudden change isatcy = 8;
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Fig. 5. Performance of lossy preprocessing and estimation with combinations
of ¢; and co.

ife; = 6, the sudden change is at c; = 7, and so on. The boarder
line is ¢; +c2 = 13. The reason why it is 13 is that in this system,
the number of system states is 13. In other words, the estimator
is using the preprocessed data with size ¢; +¢5 to estimate the 13
states of the system. If ¢; +¢» < 13, according to (3), the matrix
L has more rows than columns, i.e., the size of data is smaller
than that of the states of the system. In this case, there is no way
for any linear preprocessing to keep the linear independence
of all the elements in the system state vector, i.e., to preserve
enough information of all the system states. On the other hand,
ife; + ¢5 > 13, i.e., it is possible to linearly combine the mea-
surements to preserve information of all the system states, the
algorithm would always find the way to do so by designing the
appropriate low-rank estimator with performance close to the
LMMSE estimation. In other words, in this application, the pro-
posed algorithm has pushed the linear preprocessing to its limit,
which is to compress measurements to totally as few values as
the dimension of the system, which demonstrates the effective-
ness of the proposed algorithm. In Fig. 6, it is also shown that
the theoretical results match the simulation results obtained by
5000 Monte-Carlo trials.

In this example, the n-restricted isometry constant §,, is hard
to obtain [33] and a lower bound can be provided. It is somehow
surprising that 6, > 10%. Although the condition 6,, < v/5 — 2
in Theorem 2 no longer holds, the algorithm still converges.
Moreover, the performance of the designed estimator is good
enough.

Comparing the algorithm proposed in this paper with that in
[18] as shown in Fig. 7, at 10 iterations, the two methods per-
form really close in some cases while in other cases the pro-
posed algorithm has better performance than that in [18]. The
performance of the proposed algorithm is further improved by
increasing the number of iterations from 10 to 100 while the al-
gorithm in [18] does not have much improvement, where the
proposed algorithm outperforms that in [18] in all the cases.
Moreover, since it is free of matrix inversion in each iteration,
the computation cost of each iteration in the proposed algorithm
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is much lower than that in [18]. Therefore, the proposed algo-
rithm can afford more iterations to improve the performance.

C. Target Tracking

Target tracking is one of the primary applications of wire-
less sensor network (WSN). Each sensor would observed the
target and report the measurement to a fusion center for the pur-
pose of tracking, i.e., estimating the location of the target. By
combining the measurements from multiple sensors, it can be
modeled using (1) where x is the state containing the location
information of the target, H is the measurement matrix com-
posed of the measurement matrices of all sensors, z is the vector
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containing the measurements from all users and v is the noise
vector.

In reality, there are many inherent constraints in this system.
For example, due to the stringent power and spectrum budget,
the communication capability of the system is limited. Some-
times it is impossible for the sensor to directly report the mea-
surements to the fusion center.

One of the solutions is using the block-wise structure that the
sensors are partitioned into several clusters. Each sensor first re-
ports the measurements to a local substation within the cluster
with higher communication capability that is responsible for
providing information for the fusion center. However, in some
applications, the communication capability of the substation is
still not enough for reporting all the raw measurements. In this
example, we use the proposed preprocessing method to com-
press the measurements reported by the sensors at the substation
to meet its communication capability.

Suppose that 2 targets that are randomly distributed in a par-
ticular area monitored by a sensor network composed by mul-
tiple sensors with block-wise structure, and thus the dimension
of the system is 6. The sensor network is composed of p = 30
sensors that partitioned into 3 clusters, each containing 10 sen-
sors and equipped with a substation. Assume the distribution of
the target and the noise are both zero-mean, with variance 5 and
0.1. We use the algorithms proposed in this paper to design the
preprocessors and the estimator to satisfy the communication
capability from the substation to the fusion center.

In Fig. 8, it is shown that with any fixed ¢;, when both ¢
and ¢3 are slightly below the lower bounds rank(Hsy) = 6 and
rank(Hs) = 6, the GAP is close to 0. Recall in (4) that the
MSE of the estimation is the sum of GAP and the LMMSE, it
is still possible to estimate the target location with satisfactory
MSE. For example, if ¢; = 2, co = 3, c3 = 4, the GAP of the
estimation is 0.0004. Since the LMMSE of this problem is 0.02,
the MSE of the estimation is 0.0204 which is slightly increased.
However, instead of transmitting the 30 measurements, only 9
preprocessed values are transmitted from the substations to the
fusion center, saving 70% of the communication load.

In Fig. 9, similar sudden changes in the GAP are observed.
It is shown that if ¢; + ¢2 + ¢3 > 6, which is the dimension of
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this system, the performance is satisfactory. However, if ¢1 +
ca + c3 < 6, then GAP will grow dramatically. Moreover, it
also illustrates that the theoretical results match the simulation
results obtained by 5000 Monte-Carlo trials.

In the above, it is assumed that the target evolution model
is unknown, i.e., we are doing instantaneous estimations at
each time slot. However, it is worth noting that the proposed
methods could be generalized to the case that the system evo-
lution models are known. In this case, since the measurements
in consecutive time slots are correlated, the proposed prepro-
cessing method can be used to combine the measurements
obtained by neighboring sensors at consecutive time slots. For
example, suppose that a target is moving in a particular area
that monitored by a sensor network composed by homogeneous
sensors with hierarchical structure modeled by

x(k + 1) =Px(k) + u(k)
z=Hx+v (47)
where x is the state vector, P is the state evolution matrix
and u is the system noise. z is the measurement vector,
H = (HfHY ... Hg)T is the measurement matrix composed
of the measurement matrix of p clusters where H; is the mea-
surement matrix associated with the cluster indexed ¢, v is the
noise vector.
In this example, consider the preprocessing at cluster 7 where
the measurements of f time instants are compressed into one
single vector. By combining the states of f time instants, define

X1
X9

W
e

(48)

Xf
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where x; is the states at the j-th instant. The measurement
model for the cluster indexed ¢ is

Z(’l:, 1) H.[‘
Z(i, 2) HLP
Z(i) = : = : X
2. f))  \HPUD
0 v(i. 1)
u(1) v(i.2
+H; ) + (49)

S D Piu(f — 1 )

where v(i, j) is the measurement noise in cluster i at time in-
stant j, (%, j) is the measurements in cluster ¢ at time instant j.
Define

H,
i, 2 HtP
HiP:(ffl)
0 v(i,1)
v 2H, u T I e
SED P -1-5))  \v(if)
then it can be re-written as
7(i) = H;x + ¥, (51

that corresponding with the model in (1) thus the proposed pre-
processing method could be applied to compress the measure-
ments. Besides using the correlation of measurements in the spa-
tial domain, the proposed method also utilizes the correlation of
the measurements in the time domain to compress them. More
specifically, the measurement matrix H; enables us to leverage
the spatial correlation between the measurements obtained by
neighboring sensors. If we further have the knowledge of the
temporal correlation from (47), they can be combined in (51)
to compress the measurements jointly using spatial domain and
time domain correlations of the measurements.

VII. CONCLUSION

In this paper, we addressed the problem of preprocessing the
measurements to balance between the estimation accuracy and
the data conciseness. It is shown that there is a bound on the
compressed data size to enable lossless compression. Moreover,
an algorithm to design the preprocessor and the estimator when
the required size of the compressed data is below the bound is
proposed. The estimator designed by the algorithm has the per-
formance guarantee that the MSE of the estimation is at most
a constant factor times the MSE of the global optimal solu-
tion under some additional conditions. Moreover, the proposed
algorithm has the advantage in both robustness and computa-
tion complexity compared with existing works. Three applica-
tions are shown to demonstrate the effectiveness of the proposed
method.

In the future, it might be interesting to investigate distributed
algorithms for designing the estimators to meet time-varying
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conditions where the estimators need to be re-designed period-
ically. Also, in this paper, it was assumed that the grouping of
the measurements is fixed. Since different grouping may lead
to quite different performance, it might also be interesting to in-
vestigate the problem of optimal grouping of the measurements.
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