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Abstract

We show that to determine if a family of matrices, each with parameters in the unit interval, contains a matrix with
all eigenvalues inside the unit circle is an NP-hard problem. We also discuss how this problem is closely related to the
widespread problem of power control in wireless systems. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a wireless network, an optimal solution to the
automatic power control problem can be obtained us-
ing Frobenius’ theorem [10]. Once a signal to interfer-
ence and noise ratio (SINR) has been assigned to each
user, the existence of an optimal power control solu-
tion requires that the pathgain matrix should have all
its eigenvalues inside the unit circle [8]. If the pathgain
matrix conforms with this constraint, then the SINR
values are called feasible. In a wireless system where
users have di>erent SINR requirements due to di>erent
multimedia service types, the system designer endeav-
ors to assign the highest possible SINR levels to all the
users, according to their service types. The problem of
@nding a set of feasible SINR levels that are somehow
optimal, in the sense that they are as high as possi-
ble considering the priorities of each service type, has
been proposed in [6]. This problem is closely related
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to the “Stable Rank One Perturbed Matrix” problem
[1], except that it refers to discrete-time stability and
not continuous-time stability. Henceforth, we denote
the discrete-time problem as Power-P. One method to
show that Power-P is NP-hard is by using the problem
“stable matrix in unit interval family” problem [1] for
discrete time, hereafter denoted as SMIUIF.

The principal undertaking of this paper is to show
that SMIUIF is NP-hard. This problem, in turn, can
be used to show NP-hardness for some communica-
tions problems, as discussed in Section 3, including
the problem mentioned above, Power-P.

We shall denote the set of positive integers as Z+,
and the set of rational numbers as Q. The problem
statement is:

SMIUIF. Let n ∈ Z+; and let I be a set of
coordinates; I = {(i; j): 16i; j6n}; which is parti-
tioned into two subsets; I1; and I2. Let A be a set of
real matrices; de,ned by A = {A: A(i; j) ∈ Q; for
(i; j) ∈ I1 and A(i; j) ∈ [− 1; 1]; for (i; j) ∈ I2}. Does
A contain a matrix with all of its eigenvalues inside
the unit circle?
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From a linear system’s perspective, our work
supplements that which was done in [7] where
NP-hardness is shown for several robust stability
problems. The second problem addressed in [7] is to
determine if the members of an interval family, simi-
lar to our A, have their eigenvalues inside or on the
unit circle. The di>erence between that problem and
ours is that the problem in [7] asks if all members of
the family are stable, we ask if there is at least one
member which is stable.

SMIUIF has been shown to be NP-hard for the
stabilization in a continuous-time linear feedback
system by Blondel and Tsitsiklis [1], but not for
the discrete-time linear feedback system. For the
continuous-time case, the matrix is stable if the eigen-
values are on the left side of the complex plane. For
the discrete-time case, which we address, the matrix
is stable if the eigenvalues are inside of the unit cir-
cle. The proof used here is similar to that used in
[1], except that the family of matrices used in the
instance of SMIUIF, A, must be de@ned di>erently,
and the parameters used in describing the members
of A must be chosen di>erently.

The distinction between continuous-time and
discrete-time cases is noteworthy in that the lat-
ter is relevant to some communications’ problems.
NP-hardness for the discrete-time case has been as-
sumed to be true in the control of systems whose
components are distributed over a network, where the
network has a limited communication capacity [3,4].
However, it was not proven. As mentioned before, the
optimal power control in wireless systems is another
example. This is discussed further in Section 3.

2. Proof of NP-hardness for SMIUIF

To show that SMIUIF is NP-hard, we use the known
NP-complete problem [2]:

Problem 1. Let {ai}i=1; :::; l be a set of integers. Do
there exist t1; : : : ; tl ∈ {−1; 1} such that
l∑
i=1

aiti = 0? (1)

Here, three intermediate results are presented, in or-
der to streamline the proof for the problem of interest.

Lemma 1. Let a be a real vector of length l;
and k be a real scalar. The (l + 1) × (l + 1)

size matrix

A1 =




0

−kaaT ...
0

0 · · · 0 0




has eigenvalues zero with multiplicity l and a simple
eigenvalue −kaTa.

Proof. A1 has rank 1, and the rest follows.

Lemma 2. The (l+ 1) × (l+ 1) matrix

A2 =




0 · · · 0 −�x1
...

...
...

0 · · · 0 −�xl
�x1 · · · �xl k�




where � = 3=(4
√
l); k = 1=(2aTa); � = 5aTa=2; and

xi ∈ {−1; 1}; for i=1; : : : ; l; has all eigenvalues inside
the unit circle.

Proof. We can show that the characteristic polyno-
mial of A2 is

det(�I − A2) = (�− k�)�l + l�2�l−1

= �l−1(�2 − k��+ l�2): (2)

Eq. (2) has l−1 roots at zero, and two additional roots
at

�=
k�+

−
√
k2�2 − 4l�2

2
: (3)

From the premise, we know that k�¡ 2�
√
l, which

makes the discriminant negative, so that |�|2 = l�2.
Also from the premise, it is known that �¡ 1=

√
l.

Thus all eigenvalues of A2 are inside the unit circle.

Lemma 3. Let B(�) be the (l+ 1) × (l+ 1) matrix
de,ned by

B(�) =
(−(Il×l + kaaT) ��y0

��xT
0 k� − 1

)
;

where x0 and y0 are vectors in [− 1; 1]l; a is a vector
in Zl; � ∈ [0; 1]; � ∈ (1=(2

√
l); 1=

√
l); and k� ∈

(1; 2�
√
l). If B(�) has a zero eigenvalue; then

(��)2xT
0

(
I − k

kaTa + 1
aaT

)
y0 = −(k� − 1): (4)
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Proof. By premise, �i = 0 for some eigenvalues of
B(�). Denote the eigenvector associated to �i as Ci =(
�
q

)
, where � is a vector and q is a scalar. So,

B(�)Ci = 0⇒
{−(I + kaaT)� + ��qy0 = 0

��xT
0� + (k� − 1)q= 0:

Now, −(I + kaaT) is negative de@nite, so it is invert-
ible, therefore,

� = ��q(I + kaaT)−1y0:

Since q=0 requires that Ci=0, it can be deduced that
q 
= 0, which results in

(��)2xT
0 (I + kaaT)−1y0 + (k� − 1) = 0:

Using the matrix inversion lemma [9], Eq. (4) is @nally
obtained.

Theorem 1. Problem SMIUIF is NP-hard.

Proof. The proof has three parts [5]:
Part 1: An instance of Problem 1 is reduced to an

instance of Problem SMIUIF.
Let the integers ai; i = 1; : : : ; l, be an instance of

Problem 1. Let x; y ∈ [− 1; 1]l, and A be a family of
matrices which are parameterized by x and y:

A = {A(x; y) : x; y ∈ [ − 1; 1]l};

where

A(x; y) =
(−kaaT �y

�xT k�

)
; (5)

with �=3=(4
√
l); k=1=(2aTa), �=5aTa=2. The fam-

ily of matrices A is an instance of Problem SMIUIF.
Part 2: If the instance of Problem 1 is true, then the

instance of Problem 2 is true. In other words, if there
exists a set {ti}i=1; :::; l, that satis@es Eq. (1), then there
is at least one stable matrix in the interval family, A.

Let the collection of ti ∈ {−1; 1}; i = 1; : : : ; l, sat-
isfy (1). Consider the member of A which has xT =
(t1; : : : ; tl), denoted x0, and y=−x0, denoted y0. Note
that, because of Eq. (1), xT

0a = aTx0 = 0. We show
that this matrix, A0 =A(x0; y0), is veri@ed to be stable
in polynomial time, i.e., it has all of its eigenvalues
inside the unit circle. Indeed, A0 can be decomposed
as follows:

A0 =


−kaaT 0

...
0 : : : 0




︸ ︷︷ ︸
denote A1

+




0 : : : 0
...

... −�x0

0 : : : 0
�xT

0 k�




︸ ︷︷ ︸
denote A2

:

Lemma 1 states that matrix A1 has a zero eigen-
value with multiplicity l, and a simple eigenvalue at
−kaTa, which, by premise, falls inside the interval
0¡kaTa¡ 1. Lemma 2 states that matrix A2 has all
its eigenvalues inside the unit circle.

Let � be an eigenvalue of A0, with eigenvector C:

A0C= (A1 + A2)C= �C ⇒ (A2
1 + A1A2)C= �A1C:

(6)

The fact that xT
0a=a

Tx0=0, results in A1A2=A2A1=0,
so

A1(A1C) = �(A1C): (7)

Therefore, if (A1C) is not zero, then � is an eigenvalue
of A1. Conversely, if C is in the nullspace of A1, then
� is an eigenvalue of A2. Therefore, every eigenvalue
of A0 is also an eigenvalue of A1 or A2. Since both A1

and A2 are stable, then so is A0, and every result used
for this conclusion is obtained in polynomial time.
Part 3: If the instance of Problem 2 is true, then

the instance of Problem 1 is true. That is, if there is
a stable matrix in the interval family, A, then there
exists a solution, {ti}i=1; :::; l, that satis@es Eq. (1).

LetA contain a stable matrix and let x̃; ỹ ∈ [−1; 1]l

be the two vector parameters of that stable matrix, so
that A(x̃; ỹ), as given by (5), has all of its eigenvalues
inside the unit circle.

Consider the parameterized family of matrices:

B(�) =
(−(Il×l + kaaT) ��ỹ

��x̃T k� − 1

)
;

where � ∈ [0; 1]. The behavior of the eigenvalues of
B(�) is studied as � varies.

When �= 0,

B(0) =
(−(Il×l + kaaT) 0

0T k� − 1

)
:

Since k ¿ 0, the matrix −(Il×l + kaaT) is negative
de@nite, so all of its eigenvalues are in the left-half
plane. Also, since k�= 5

4 , the last term on the diagonal,
which also indicates the last, simple eigenvalue, is in
the right-half plane.

When �= 1,

B(1) =
(−(Il×l + kaaT) �ỹ

�x̃T k� − 1

)
=−I(l+1)×(l+1) + A0:

But, all eigenvalues of A0 are strictly inside the unit
circle, because of its stability. So, −I + A0 has all of
its eigenvalues in the left-half plane.
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Now, the eigenvalues of B(�) are symmetric with
respect to the real axis, and they are continuous with
respect to �. So, when � varies from 0 to 1, we move
from a con@guration of a simple eigenvalue alone on
the right-half plane to all eigenvalues on the left-half
plane.

This means that for some �0 ∈ (0; 1), B(�0) has a
zero eigenvalue. Lemma 3 states that this zero eigen-
value implies that

(��0)2x̃T
(
I − k

kaTa + 1
aaT

)
z̃ = −(k� − 1);

where z̃ = −ỹ.
Now, since �0 ∈ (0; 1), then

x̃T
(
I − k

kaTa + 1
aaT

)
z̃¿

(k� − 1)
�2 : (8)

The matrix (I − (k=(kaTa + 1))aaT) is symmetric
and positive de@nite, which makes the left side of the
inequality a convex function with respect to x̃ and z̃.
Therefore, the maximum expression of the left-hand
side over all possible vectors, x; z ∈ [ − 1; 1]l is
reached when x= z. The maximum of a convex func-
tion over a bounded polyhedron is attained at an ex-
tremum, therefore, the maximum is attained when the
elements of x are at the boundaries of the unit interval:

max
x;z∈[−1;1]l

xT
(
I − k

kaTa + 1
aaT

)
z

= max
x∈[−1;1]l

xT
(
I − k

kaTa + 1
aaT

)
x

= max
x∈{−1;1}l

xT
(
I − k

kaTa + 1
aaT

)
x

=l− k
kaTa + 1

min
x∈{−1;1}l

(xTa)2: (9)

Combining (8) and (9) results in

l− k
kaTa + 1

min
x∈{−1;1}l

(xTa)2¿
(k� − 1)
�2

⇒
(
l− k� − 1

�2

)
kaTa + 1

k
¿ min

x∈{−1;1}l
(xTa)2:

With the constraint on �, the left side of the inequal-
ity is less than 1, but the right side is a non-negative
integer. Thus

min
x∈{−1;1}l

(xTa)2 = 0:

Assume that the maximum of (9) is obtained for
xT = (x1; : : : ; xl); a set {ti}i=1; :::; l, that satis@es (1), is
obtained by setting ti = xi for i = 1; : : : ; l.

3. Corollaries that stem from SMIUIF

Automatic power control is becoming increasingly
prevalent in wireless systems. In such a system, the
successful attainment of an optimal set of transmission
powers depends on the spectral radius of the system
gain matrix, which depends on pathgains, SINR lev-
els, and antenna array weights. The system designer
wishes to provide the highest allowable SINR level to
each user. The constraint is the spectral radius of the
system gain matrix, which should have a norm less
than 1.

This problem leads to the question of modifying the
SINR constraints for users in order to comply with this
requirement, which equates to perturbing the original
matrix by adding a linear combination of rank-one
matrices to it [6]: Let k; l be positive integers, A0 a
real, (l+1)× (l+1) matrix with rational entries, and
{Ai}i=1; :::; k real, (l+1)×(l+1) matrices with rational
entries and rank 1. Does there exist a set of scalars,
{ti}i=1; :::; k , from the unit interval such that the sum

A= A0 +
k∑
i=1

tiAi (10)

has all eigenvalues inside the unit circle? Recall we
denoted this problem as Power-P. With the result of
Theorem 1, we can use the same arguments as in
[1] to show that problem SMIUIF can be reduced
to Power-P, for the discrete-time case. Therefore,
Power-P is NP-hard.

Theorem 1 can also be used to prove the
discrete-time version of other NP-hard problems
such as Stable Matrix in Interval Family. This
problem consists of two sets of rational numbers
{a∗i; j}16i; j6n and {a†i; j}16i; j6n, and the question
is: Does there exist a stable matrix A(i; j) = ai; j
with {a∗i; j}16i; j6n6ai; j6{a†i; j}16i; j6n? [1].

4. Discussion

In this paper, we have shown that the stable ma-
trix in unit interval family problem is NP-hard for
discrete-time stability. We have also discussed how
this problem is closely related to some problems in
wireless communications, such as automatic power
control. We have also noted that SMIUIF can be used
to prove NP-hardness for another problem, Stable
Matrix in Interval Family.
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