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Abstract— In this paper, the Peak to mean Envelope
Power (PMEPR) of the OFDM codes generated from an
16-QAM constellation is discussed. Maintaining the same
level of error correction properties, these codes achieve
higher information rate. A new set of 16-QAM Golay
sequences having PMEPR bounded up to 3dB is defined.
Many recursive structures are found to generate Super
Golay sequences. The recursive algorithm is started by
a generalized realization of an 16-QAM sequence as a
weighted sum of two QPSK sequences. The coding rate
and information rate of the generated code is compared to
similar works.

I. INTRODUCTION

Orthogonal Frequency Division Modulation (OFDM)
is a parallel data transmission scheme that has recently
attracted lots of interest to combat the effect of frequency
selective channels in wideband wireless communica-
tions.

One of the major hurdles to the widespread use of
OFDM is the high Peak to Average Power Ratio(PAPR)
of OFDM signals [1]. Usually the transmitters are con-
strained to a limited peak power. This in turn reduces
the average power allowed under OFDM relative to that
under single carrier modulation schemes. In addition, to
prevent the spectral growth of the OFDM in the form
of intermodulation among subcarriers, the transmitter
amplifier must operate in a linear region, otherwise, the
mobile battery lifetime is reduced.

Many approaches have been proposed to overcome
this barrier. The conventional solution to this problem is
to use a linear amplifier or to back-off the operating point
of nonlinear amplifier, both result in a severe efficiency
penalty. Another solution presented in [2] is to simply
clip the signal before amplification. This approach causes
performance degradation. Another attractive idea was
using block coding across the subcarriers and selecting
the codewords that minimize or reduce PAPR [3] and [4].
This scheme requires an exhaustive search, and does not
address error correction.

In one of the most recent and efficient works done
in this area, Golay Complementary Sequences (GCS)
[5] are used as codewords to control the modulation
of carrier information resulting in OFDM signals with

PAPR at most 2. Davis and Jedwab [6] presented a
magnificent work to obtain a large set of length 2m

binary Golay Complementary Pairs (GCP) from certain
second order cosets of the first order Reed-Muller [7]
codes . They combined block coding schemes (with all
of its properties like efficient encoding and decoding
and error correction capabilities) with the use of GCS
(with their attractive power control properties). They also
went one step further and found 2h-ary GCP from cosets
of an appropriate generalization of the Reed-Muller
codes. However, Tarokh and Paterson [8] performed a
theoretical analysis for a general coding scheme, having
a constellation with equal energy symbols. They found
a trade-off between the PAPR, the data rate and the
minimum distance of the code. In other words, given
the data rate and minimum distance, they found a lower
bound for the PAPR that is increased with increasing
data rate.

In this paper we will look at the general problem
of PAPR reduction in multicarrier systems and specif-
ically try to overcome the limitation on PAPR reduc-
tion imposed by coding rate [8]. Here, we relax the
assumption of having an equal energy constellation and
use QAM for modulation. We define a new version of
Golay Complementary Sequences to support these codes.
The scheme presented in this paper uses a recursive
procedure to build the Super Golay (SGolay) 16-QAM
sequences. We generalize the recursive schemes for the
case of binary Golay sequences introduced in [5]. Using
M -QAM modulation allows a better error correcting
capabilities over M -PSK. Tarokh and Chong in [9]
designed a construction method for low PAPR 16-QAM
codes that uses the Jedwab’s construction for QPSK
Golay sequences [6]. The coding rate achieved by this
construction is low (about 3% for 256 subchannels). It
should be pointed out that their constructions does not
guarantee an upper bound of 3dB for the OFDM PAPR.
If they want the PAPR to be bounded up to 3dB, their
coding rate will be cut in half. Tarokh and Rößing, in
a related work [10], designed another construction for
16-QAM low PAPR codes. In this work a QAM symbol
is represented as a weighted sum of two QPSK symbols.
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The constructed sequences are not Golay, but their PAPR
is bounded up to 3.6 (=5.6dB), and the coding rate is
twice as the rate for Golay QPSK codes found in [6].
For example for N = 256 it results in a rate of 9.7%
while the PAPR is guaranteed to be bounded up to 3.6
(5.6dB).

The remainder of this paper is organized as follows.
In Section II, we will describe the motivation of the
research problem. Section III outlines a proposed struc-
ture to achieve low PAPR for a general constellation.
In Section IV a seed for our recursive procedure is
introduced. In Section V we present some simulation
results and compare our construction with some existing
works and finally Section VI concludes the paper.

II. EQUAL-ENERGY GOLAY CODES

Channel coding is a mean to perform the PAPR
reduction and some error correction for OFDM systems
simultaneously. If x is an N -valued complex sequence
applied to IFFT block in an OFDM transmitter with
frequency separation ∆f , the instantaneous envelope
power of the OFDM signal is

px(t) =
N−1∑

i=0

N−1∑

u=0

xix
∗
u exp[j2π(i − u)∆ft]. (1)

Definition 1: The Cross-Correlation of two N -
valued complex sequences x and y with replacement
0 ≤ l ≤ N − 1 is defined as

Cl(x, y) =
N−l−1∑

i=0

x∗
i yi+l,

and C−l(x, y) = (Cl(y, x))∗.
Definition 2: The Auto-Correlation of an N -

valued complex codeword x with replacement
1 − N ≤ l ≤ N − 1 is Al(x) = Cl(x, x) or

Al(x) =
N−l−1∑

i=0

x∗
i xi+l.

Using these definitions, the instantaneous envelope
power of the OFDM signal can be restated as

px(t) = A0(x) +
N−1∑

|l|=1

Al(x)ej2πl∆ft. (2)

The average power of the OFDM signal is A0(x), which
is the same as the power of the codeword x (by Parseval
equation) and is denoted by Px. The maximum possible
value for PAPR in an OFDM system is equal to the
number of subchannels, N .

Definition 3: Two N -valued complex sequences x
and y are called Golay Complementary Pairs (GCP) if

Al(x) + Al(y) = 0 ∀l �= 0.

We show this by x ∼ y. Each of the sequences x and y
is called a Golay Complementary Sequence (GCS).

Assume that the sequences x and y are GCP and have
the same power (A0(x) = A0(y)). The instantaneous
envelope power is non-negative at all times, therefore

PAPR(x) � maxt{px(t)}
Px

� 2 = 3dB. (3)

Consequently, if we choose the codewords from a set
of Golay sequences, the PAPR is bounded up to 3dB.

Drawing the elements of the codeword from an equal-
energy constellations, Davis and Jedwab [6] proved that
each of the m!

2 cosets of the first order Reed-Muller
code [7], RM2h(1,m), having a coset representation

of the form 2h−1
m−1∑
k=0

xπ(k)xπ(k+1) comprises 2h(m+1)

Golay sequences over Z2h of length 2m, where π is a
permutation of the symbols {1, 2, ...,m} and h > 1. This
generates m!

2 2h(m+1) Golay sequences of length 2m.
Encoding this code can be done by a very simple digital
counter, and its decoding can be done very efficiently by
using Sylvester-Hadamard transformation [7].

They also introduced a construction for building at
least 2h(m+2) m!

2 Golay complementary pairs over Z2h

of length 2m.
III. PAPR REDUCTION FOR THE NON-EQUAL

ENERGY CONSTELLATION

Given the length of each codeword, minimum Euclid-
ian distance, and maximum PAPR, Tarokh and Paterson
[8] found a lower bound for achievable coding rate.
On the other hand, given the length of each codeword,
coding rate and minimum Euclidian distance, they found
a lower bound for the PAPR. The lower bound for the
PAPR increases by increasing the coding rate.

The need for low PAPR and at the same time overcom-
ing the lower bound of rate for equal-power codes has
motivated us to investigate the non-equal power codes
that achieve low PAPR. To do this we define a special
case of GCSs.

Definition 4: Two N -valued complex sequences x
and y are called Super Golay Complementary Pairs
(SGCP) if they are Golay pairs and Px + Py ≤ 2NPav ,
when Pav is the average power of the constellation. We
show this by x ≈ y. Each of the sequences x and y is
called Super Golay Complementary Sequence (SGCS)

For a special case, It has been proved in [10] that
if the 16-QAM sequences are realized as a sum of
two sequences chosen from an equi-probable set of
QPSK codewords, then the mean envelope power of the
transmitted OFDM symbol is Pav , the average power
of the 16-QAM constellation. This fact can be easily
generalized to our structures introduced in Section IV.
Therefore, by virtue of (2) and the fact that the instan-
taneous power of each codeword is always non-negative
we can see that the PAPR achieved by any SGCS is
bounded up by 3dB.
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Next, we would like to find a construction method
for SGolay codes. If x and y are two N -valued se-
quences, we show the inverse of x by x̂, the element-
wise conjugate of x by x∗, the concatenation of x and y
by x|y, and the interleaving of x and y by x ↓ y. Also
we show the sequence (x1,−x2, x3, ..., (−1)N−1xN ) by
x′. The following theorem can be seen very easily from
Definition 2.

Theorem 5: The property of being Super Golay com-
plementary pairs is invariant under the following trans-
formations:

• Reflection w.r.t the origin.
• Reflection w.r.t both axes.
• Reflection w.r.t the bisectors of all regions.
• Rotation of one or both sequences.

Theorem 6: If x ≈ y then
a. x′ ≈ y′. b. x̂ ≈ ŷ c. x ≈ ŷ∗

Proof: If x ≈ y then

a . The kth member of the sequence x′ is
x′

k = (−1)kxk, therefore using Definition 2.

Al(x′) = (−1)lAl(x). (4)

b . The kth member of the sequence x̂ is
x̂k = xN−1−k, therefore using Definition 2.

Al(x̂) =
N−l−1∑

i=0

x̂i+lx̂
∗
i =

N−l−1∑

i=0

xN−l−i−1x
∗
N−i−1

=
N−l−1∑

k=0

x∗
k+lxk = (Al(x))∗ (5)

c Using Al(−x) = Al(x) and (5), the statement is
concluded.

Theorem 7: If x ≈ y then

a. x|y ≈ x| − y b. x ↓ y ≈ x ↓ −y

Proof: The items are proved separately:

a . It is easy to see that

Al(x|y) = Al(x) + Al(y) +
l−1∑

i=0

x∗
N−1−iyl−1−i

and therefore

Al(x|y) + Al(x| − y) = 2(Al(x) + Al(y)) = 0.

b . if l = 2k then

Al(x ↓ y) = Al/2(x) + Al/2(y) = 0. (6)

If x ≈ y, then x ≈ −y, and since Al(−x) =
Al(x), then Al(x ↓ −y) = 0. Therefore,

Al(x ↓ y) + Al(x ↓ −y) = 0.
If l = 2k + 1 , then

Al(x ↓ y) =
N−1− l−1

2∑

i=0

x∗
i yi+ l−1

2
. (7)

and therefore Al(x ↓ y) + Al(x ↓ −y) = 0.

By applying the transformations defined in Theorems
5 and 6 to the statements of Theorem 7, we can build
a set of structures that create 2N -valued Super Golay
pairs from N -valued ones. Specifically, if x ≈ y, each
with size N , then the following sequences are Super
Golay pairs ([j] means multiplying the sequence by j is
optional) :

1) ± [j](x|y) ≈ ±[j](x| − y)
2) ± [j](x ↓ y) ≈ ±[j](x ↓ −y)
3) ± [j](x|y) ≈ ±[j](ŷ∗| − x̂∗)
4) ± [j](x ↓ y) ≈ ±[j](ŷ∗ ↓ −x̂∗)
5) ± [j](x ↓ −y) ≈ ±[j](ŷ∗ ↓ x̂∗)

However, because of the special structure of 16-QAM
constellation, many of these constructions yield similar
sequences. For example reversing the role of x and y
will not yield new pairs. If the number of N -valued
pairs is M , the first structure yields 4M of 2N -valued
SGolay pairs and this is true for the second structure
too. We have performed a simulation for the pairs with
size 8 and obtained the same result. In general each pair
with size N yields 32 pairs each with size 2N . This is
similar to the Reed-Muller codes used for equal-power
Golay sequences. Reed-Muller codes of degree r + 1
and length 2m+1 can be constructed from two 2m-length
Reed-Muller codes, one in degree r and one in degree
r + 1.

IV. SGOLAY 16QAM PAIRS FROM QPSK PAIRS

In this section we will look at an important question
which is how to start the recursive construction. To this
end, we will use the relation that Tarokh and Rößing
[10] used. They represented a 16-QAM symbol by a
weighted sum of two QPSK symbols. We will generalize
their observation and find a construction that builds 16-
QAM SGolay sequences from QPSK Golay sequences.
Let’s define QPSK symbols as the set

QPSK = {exp[j(kπ
2

+
π

4
)], |k ∈ Z2h}

Using Definitions 1 and 2, the following lemma can be
proved easily,

Lemma 8: For any two sequences x and y and any
two complex numbers α and β

Al(αx + βy) = |α|2Al(x) + |β|2Al(y)
+ αβ∗Cl(x, y) + α∗βCl(y, x).
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Theorem 9: If x and y are N -valued QPSK Golay
pairs, and |α| = |β| , then each of the following pairs
are 16-QAM Super Golay sequences:

1 . c = α(x + 2y) and t = β(−2x + y)
2 . c = α(x − 2y) and t = β(2x + y)
3 . c = α(x + 2jy) and t = β(2jx + y)
4 . c = α(x − 2jy) and t = β(−2jx + y)

Proof: We will prove the result for the third item.
The rest can be proved similarly. Using Theorem 8, for
each nonzero l,

Al(c) + Al(t) = 5|α|2(Al(x) + Al(y)) = 0

Therefore c and t are Golay pairs. It is easy to see
that each of these sequences are actually a 16-QAM
sequence, when the average power of the constellation
is Pav = 5|α|2. If we denote the Hermition of x by xH ,
and consider the fact that the power of both x and y is
N , then

Pc + Pt = |α|2(‖x + 2jy‖2 + ‖2jx + y‖2)

= 5|α|2(‖x‖2 + ‖y‖2) = 10N |α|2 = 2NPav.

Therefore, by Definition 4, c and t are Super Golay
sequences.
Theorem 9 suggests a starting point for the proposed re-
cursive construction. If we limit ourselves to an 16-QAM
construction with Pav = 10, then α and β can be chosen
from the set {

√
2,−

√
2, j

√
2,−j

√
2}, and therefore for

each of the 2h(m+2) m!
2 Golay complementary pairs over

Z2h of length 2m, there are 64 Super Golay 16-QAM
pairs. However, some of these pairs are repeated. As
an example if (c ∼ t), then (−c ∼ −t) and therefore
we do not need to multiply the two sequences in the
first construction of Theorem 9 by −

√
2. Eliminating

these repeated sequences, the number of 16-QAM Super
Golay pairs generated from each QPSK Golay pair is
16. Therefore we can build 24+h(m+2) m!

2 distinct QAM
Super Golay pairs over Z2h of length 2m. For m = 2
and QPSK symbols (h = 2), this translates to 4096 pairs.
Through exhaustive search , we have found that there are
exactly 12032 Super Golay pairs and Theorem 9 builds
4096 of them.

We were able to come up with some structures that
build in average 32 new 2N -valued SGolay pairs from
one N -valued SGolay pair. Therefore, starting from 4-
valued codes, our construction is able to achieve at least

R =
12 + 5 log2 N/4

4N
. (8)

code rate for N OFDM subchannels.
For 128 subchannels, this achieves 7.3% code rate.

Although not still acceptable, this is about 11% improve-
ment over Tarokh-Chong’s work [9].

The achievable code rate is about 20% below the equal
power Golay codes constructed by Jedwab and Davis [6].
However, because of using 16-QAM constellation, the
information rate achieved by these structures is twice as
the information rate achieved by Jedwab’s construction,
while the error correction properties of the code is
maintained.

The structure we proposed is for general Super Go-
lay codes, regardless of the constellation. However, we
have focused on 16-QAM constellation for the sake of
simulation. This scheme can be generalized to higher
order QAM constellations, like 64-QAM which is used
in IEEE WLAN standards like IEEE802.11a .

To find a construction method for low PAPR 64-QAM
sequences we can use the concept of Golay sets. They are
defined as a set of sequences whose autocorrelations with
any nonzero replacement add up to zero and therefore
their PAPR is bounded up by the size of the set, if
they are taken from an equal energy constellation .
Paterson has shown that [11] the 2k+1-size equal power
Golay set can be represented by some certain cosets of
RM2h(1,m) in RM2h(2,m).

The following lemma which can be proved easily
using the Definitions 1 and 2 is a generalization of
Lemma 8.

Lemma 10: For any n sequences xi and any n com-
plex numbers αi, i = 1, . . . n

Al(
n∑

i=1

αix
i) =

n∑

i=1

|αi|2Al(xi) +
n∑

i=1

n∑

j=1
i�=j

αiα
∗
jCl(xi, xj).

Using this Lemma, the following theorem can be used
to generate 64-QAM Super Golay sets (The sum of the
powers is nNPav).

By generalizing Lemma 8, the following theorem can
be proved to generate 64-QAM Super Golay sets:

Theorem 11: If {xi|i = 1 . . . 4} comprises a N -
valued QPSK Golay set, and |αi| is constant for all
i = 1, . . . 4, then the following is a 64-QAM Super
Golay set and therefore, the PAPR of each element is
at most 4 (6dB):

{α1(4x1 + jx2 − jx3 − x4), α2(4x2 + jx1 − x3 − jx4),

α3(4x3 − jx1 + x2 − jx4), α4(4x4 + x1 − jx2 − jx3)}.
Note that, for the super Golay sets, the sum of the powers
is not 2NPav anymore, but it is nNPav , when n is the
number of sequences comprising a Golay set.

V. SIMULATION

We have performed a search to find all of QPSK Golay
pairs and 16-QAM SGolay pairs of size 4. The total
number of QPSK Golay pairs is 256 which is exactly
compliant by the formula given in [6] (22(m+2) m!

2 dis-
tinct QPSK Golay pairs with size 4). Using the represen-
tations in Theorem 9, We have been able to build 4096
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Scheme size 4 SGPs size 8 SGPs built by Theorem 7
1 12032 385020
2 4096 131720

TABLE I

NUMBER OF CONSTRUCTED 8-VALUED SGOLAY PAIRS.

Scheme Max PMEPR Code rate Information rate
Recursive1 3dB 0.3438 1.375
Recursive2 3dB 0.375 1.5
Jedwab1 3dB 0.31 0.62
Jedwab2 6dB 0.47 0.94
Paterson 6dB 0.563 1.126
Chong1 3dB 0.2954 1.1817
Chong2 5.56dB 0.3053 1.2212

TABLE II

RATES AND PMEPRS FOR SIZE 16.

SGolay pairs with size 4. The total number of 4-valued
SGolay pairs is 12032. Table I compares the number of
8-valued SGolay pairs obtained from these two sets. In
both cases, each Golay pair with size 4 yields 32 new
SGolay pairs with size 8. In this table, scheme 1 means
the total number of SGolay pairs and scheme 2 means
the number of SGolay pairs built by Theorem 9. Table II
and III compare the code rate, information rate and the
achievable PMEPR of the proposed recursive structure
with the same values reported in [6], [11], and [9] using
QPSK constellation for 16 and 32 subcarriers. In the
rows represented by “Jedwab1” the second order Reed-

Muller cosets of the form 2h−1
m−1∑
k=0

xπ(k)xπ(k+1) are

used and therefore the constructed codewords are Golay
and their PMEPR is bounded up by 3dB. However, in
the scheme represented by “Jedwab2” other forms of
second order Reed-Muller cosets are also allowed. This
causes the PMEPR of the codeword to exceed 3dB. At
the row represented by “Paterson”, the concept of Golay
sets are used. It is proved in [11] that a Golay set of size
2k+1 achieve the maximum PMEPR of 2k+1. The rows
represented by “Recursive1” is using the 4-valued 16-
QAM SGolay pairs generated from QPSK pairs as the
seed, while “Recursive2” scheme uses the total 4-valued
16-QAM codes generated by exhaustive search, as the
seed.

VI. CONCLUSION AND FUTURE WORK

In this paper we focused on the construction of a
recursive scheme that allows us to build all of the
Super Golay sequences with a specific size. We formed
some structures to obtain this code from Super Golay
sequences with half size. One of the future directions
of this work is to search for more structures. The more
structure we obtain, the bigger number of SGolay codes
we can cover and the higher coding rate we can achieve.

Scheme PMEPR Code rate Information rate
Recursive1 3dB 0.2109 0.84375
Recursive2 3dB 0.2266 0.9063
Jedwab1 3dB 0.19 0.38
Jedwab2 6dB 0.31 0.62
Paterson 6dB 0.375 0.75
Chong1 3dB 0.1835 0.7341
Chong2 5.56dB 0.3053 1.2212

TABLE III

RATES AND PMEPRS FOR SIZE 32

The construction started from QPSK Golay sequences
which are efficiently created using 2nd order cosets of
RM2h(1,m). Although the information rate is higher
than the existing works in this context, it is not still an
acceptable rate. Another future direction of this work is
to find the possible trade-off between the coding rate and
PAPR.

The structure we propose is for general Super Golay
codes, regardless of the constellation. We also presented
a scheme that generates 64-QAM sequences with PAPR
bounded up by 4.

A natural future direction of this work we aim to
do is to find an encoding and decoding method and
also analyze the Euclidian distance structure of the
construction.
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