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Abstract— This paper presents a novel technique for pilot-based
channel estimation and data detection by exploiting a null-space
property and an orthogonality property of the data bearer and
pilot matrices. The data and pilot extraction procedures can be
done independently by a simple linear transformation exploiting
the null-space property. The maximum-likelihood (ML) receiver
employed for data detection and the unconstrained-ML estimator
employed for channel estimation can be designed separately by
using the orthogonality property. In addition, the linear minimum
mean-squared error (LMMSE) channel estimator is also proposed
to improve the performance of channel estimation. The simulation
results show that, among three data bearer and pilot structures
including time-multiplexing (TM)-based, ST-block-code (STBC)-
based, and code-multiplexing (CM)-based structures, the CM-
based structure shows superior performance over the TM-based
and the STBC-based structures in term of the probability of
detection error, e.g. BER, for nonquasi-static flat Rayleigh fading
channels, while the performances of these three structures are
quite close for quasi-static flat Rayleigh fading channels.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) communication sys-
tems provide prominent benefits to wireless communications,
including enhanced capacity and reliability [1], [2]. Recently,
the space-time (ST) codes have been proposed in [3], [4] for
MIMO communications, in which the bit error rate (BER) of
the communication systems is significantly improved without
increasing transmission power by exploiting transmit diver-
sity [3]. A major challenge in wireless ST communications
employing a coherent detector is channel state information
acquisition. Typically, the channel state information is acquired
or estimated by using a pilot or training signal, the known signal
transmitted from the transmitter to the receiver. This technique
has been widely used because it is feasible to implement, and
such a low computational complexity channel estimator can be
implemented [5].

Two main pilot-based channel estimation techniques have
been widely used in both single-input single-output (SISO) and
MIMO systems: the pilot symbol assisted modulation (PSAM)
technique and the pilot-embedding technique. In the SISO
system, the PSAM technique has been intensively studied in [5]
in the presence of fre- quency-nonselective fading channels, and
was recently extended to MIMO systems [6], [7]. This technique
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firstly time-multiplexes a pilot signal into a transmit data stream,
and then, at the receiver, this pilot signal is extracted from the
received signal for acquiring the channel state information. The
disadvantage of this technique is the sparse pilot arrangement
that results in poor tracking of channel variation. In addition,
the denser the pilot signals, the poorer the bandwidth efficiency.

On the other hand, the pilot-embedding or pilot-superimposed
technique, which has been firstly proposed for the SISO systems
[8] and for the MIMO systems [9], [10], can be done by adding
a sequence of pilot signals directly to the data stream, and
such soft-decoding methods, e.g. Viterbi algorithm [8], [10], are
employed for channel estimation and data detection. Despite the
better bandwidth efficiency of this technique, because it does not
sacrifice any separate time slots for transmitting the pilot signal,
the disadvantages of this technique are the highly computational
complexity of the decoder and the highly computational delay
in the channel estimation process given the channels are slowly
varying.

Our purpose is to design a novel pilot-aiding approach for
ST coded MIMO systems with affordable computational cost
and better fast-fading channel acquisition. The basic idea is
to simplify channel estimation and data detection processes by
taking advantage of the null-space and orthogonality properties
of the data-bearer and pilot matrices. The data-bearer matrix
is used for projecting the ST data matrix onto the orthogonal
subspace of the pilot matrix. By the virtue of the null-space and
orthogonality properties, in our proposed data-bearing approach
for pilot-aiding, a block of pilot matrix is directly elementwise
added into a block of data matrix, that are mutually orthog-
onal to each other. The benefit that we are able to expect
from this approach is better channel estimation performance,
since the estimator is able to take into account the channel
variation within the transmitted data block. In addition, a low
computational complexity channel estimator and an enhance
bandwidth efficiency, at least equal to the PSAM technique, are
also expected. Throughout this paper, (-)¥ denotes the complex-
conjugate transpose, (-)7 denotes the transpose, and (-)* denotes
the complex conjugate.

The rest of this paper is organized as follows. In Section II,
we present MIMO channel and system models. We propose a
data-bearing approach for pilot-aiding in Section III, including
the possible data bearer and pilot matrices, the channel estima-
tion, and the data detection. The simulation results are given in
Section IV and we conclude this paper in Section V.
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II. MIMO CHANNEL AND SYSTEM MODELS

In this section, we briefly describe the MIMO channel and
system models used in this paper. We consider the MIMO com-
munication system with [; transmit antennas and L, receive
antennas. In general, for a given block index ¢, a ST symbol
matrix U(?) is an L; x M codeword matrix transmitted across

the transmit antennas in M time slots. The received symbol wiwy= e P P

matrix Y (¢) at the receiver front-end can be described as follows
[10],
Y () = HOU() + N(), (1)

where H(¢) is the L, x L; channel coefficient matrix and
N(t) is the L, x M additive complex white Gaussian noise
(AWGN) matrix with zero mean and variance ";I( ML, xML,)
per real dimension. The elements of channel coefficient ma-
trix H(t) are assumed to be spatially independent, complex
Gaussian random variables with zero mean and variance 0.5
per real dimension, which in turn, an independent Rayleigh
fading channel is modelled. In this paper, we firstly examine
a quasi-static flat Rayleigh fading channel, where H(¢) remains
constant over each symbol block but it changes block-by-
block independently. Then, we extend our proposed scheme to
examine in a nonquasi-static flat Rayleigh fading channel, where
H(¢) changes according to a process whose dominant frequency
is much faster than ﬁ, meaning that H(t) is not constant over
each symbol block.
ITI. A DATA-BEARING APPROACH FOR PILOT-AIDING

In this section, we present a data-bearing approach for pilot-
aiding, including the pilot and data extraction procedures, the
possible data bearer and pilot matrices, the channel estimation,
and the data detection. The data-bearing approach for pilot-
aiding firstly directly adds the pilot signal to the ST data and
then regard this signal combination as the ST symbol. Our
motivation of this approach is to embed the pilot signal onto
the ST data in order to capture the variation of the channel at
every instant in that ST block for the better channel coefficient
estimate. Without loss of generality, we propose the data matrix
Z(t) € CEe*M a5 follows,

Z(t) = D(t)A, 2

where D(¢) € C¥+*¥ is the ST data matrix, and A € RV*M
is the data-bearer matrix with /N being the number of data time
slots. In our implementation, the ST data matrix D(t) is assumed
to maintain the energy constraint E[||D(¢)]|?] = L, with || - ||
being the Frobenius norm. The proposed pilot-aided ST symbol
matrix U(t) can be expressed as follows,

Ut)=Z(t)+P=D(t)A+P, 3

where P € RE+*M g the pilot matrix. In general, the pilot-
aided ST symbol block structure can be demonstrated in Fig.1.
The pilot-aided ST symbol block consists of two main parts:
data sequences {Z(¢)}; and pilot sequences {P};, where ¢
stands for a row index, ¢ =1,..., L.

Substitute (3) into (1), the received symbol matrix Y (¢) in
(1) can be rewritten as follows,

Y()=H({)(D(t)A+P)+ N(). @

[ P B ¢ e e P it ]
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Fig. 1: The pilot-aided ST symbol block structure.

By the data-bearing approach for pilot-aiding, we mean that
the data bearer matrix A and the pilot matrix P satisfy the
following properties:

APT — 0 e RV*Ee, 5)
PAT = 0 e RN, (6)
AAT = BT e RNV N
PPT = oI € RE*1e, @®)

where 3 is a real-valued data-power factor for controlling the
value of data-part power, « is a real-valued pilot-power factor
for controlling the value of pilot-part power, 0 stands for an
all-zero-element matrix, and I stands for an identity matrix.

From (5)-(8), it is straightforward to verify that the time slots
M of the pilot-aided ST symbol matrix U(¢) must satisfy the
following equality

Rank(A) + Rank(P) = M. 9

There are three possible different structures of data bearer
and pilot matrices, in which the elements of these matrices are
real numbers, that satisfy the properties (5)-(8) as follows.

1. Time-Multiplexing (TM)-Based Matrices

The structures of these matrices are given by

A= \/_[ (NXLg)s (N><N)]7
P= \/—[ (Lex L) (thN)L M =N+ Ly,

where ; stands for matrix combining. The TM-based data bearer
and pilot matrices are similar to the PSAM concept in [5] and
have been used in [7], for instance.

2. ST-Block-Code (STBC)-Based Matrices

The structures of these matrices are given by

A= \/—[ (Nx7)s NXN)]7
P:\/‘[STBCLMT% OLoxny], M=N+7, (11

where 7 is the time slots used for transmitting one ST block
code. The normalized known ST block code [4] is used as the
pilot or training information. This kind of data bearer and pilot
matrices have been used in [6], for instance.

3. Code-Multiplexing (CM)-Based Matrices

The structures of these matrices are given by

A = VBWH[L : N(vsa),
P= \/EWH[N‘Fl : M](LLXM% M= N+Lt7

(10)

12)
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where WH][z : y] denotes a submatrix created by splitting the

M x M normalized Walsh-Hadamard matrix [12] starting from
" row to y**-row. The disadvantage of the CM-based data

bearer and pilot matrices is the limitation of a dimension of the

Walsh-Hadamard matrix, in which the dimension is proportional

to 2", nell.

A. Channel Estimation

The channel estimation of our proposed data-bearing ap-
proach for pilot-aiding can be achieved by first simply post-
multiplying the received symbol matrix Y (¢) in (4) by the
transpose of the pilot matrix P” for extracting the pilot part.
By using (5) and (8), and dividing the result by «, thus yielding

Y(t PT N(t PT
YOP gy XOP (13)
o o
Let us define Y(t) = Y(ta)PT and N(t) _ N(t;PT. In

the sequel, we need Y( t) and the parameters to be repre-
sented as column vectors. Denote y(t) £ vec(Y(t)), n(t) &
vec(N(t)), and h(t) £ vec(H(t)), where vec(-) denotes
vectorizing conversion. The pilot-projected received symbol
matrix Y (¢) in (13) can be rewritten as follows,

y(t) =h(t) +n(t),

where n(t) = 2 (IoN(¢))vec(P”) with @ being the Kronecker
product. The second order statistics of the pilot-projected noise
vector n(t) are determined as follows,

(14)

1
Ha(r) = EE[(I @ N(t))vec(PT)] = 01,1, 1), (15)
Vo = HEm(tn? (t)] = Z;Diag (B;),
Bi =Y PPy, i€ {1, L), (16)

where fpiy,y and Viyy stand for the mean vector and the
covariance matrix of the pilot-projected noise Vector n(t) per
real dimension, respectively, F;; is the ithrow 7t h_column
element of the pilot matrix P, Diag(-) stands for the diagonal
matrix created by concatenating submatrices By, i € 1,..., Ly,
into the diagonal elements.

From (&), it can be shown that E;ﬂi1 |P; ;|* = o, Vi. Hence,
we can rewrite (16) as follows,

2

2a
Obviously, the pilot-projected noise vector n(¢) is the com-
plex white Gaussian vector, hence, the log-likelihood function
In(p(y(t)|h(¢))) is given by [13]
In(p(y(O(®)) = In (srrrivoy )
~(y(t) ~ B AV (v(t) — h(t)).

1) Unconstrained Maximum-Likelihood (ML) Channel Esti-
mator: The maximum-likelihood estimator [13] maximizes the
log-likelihood function In(p(y(¢)/h(t))) as follows,

= Iﬂg§<{ln(p(Y(t)lh(t)))}~

V) = 5—Xi0,1,x1,1,) per real dimension.  (17)

(18)

h(t) (19)

Differentiating (18) and equating the result to zero, we have
the maximum-likelihood estimator as follows,

h(t) = y(t) or H(t) = Y(1). (20)

It is worth noticing that our ML estimator is the pilot-
projected received vector (or matrix) y(¢) (or H(¢)) itself.

2) Linear Minimum Mean-Squared Error (LMMSE) Channel
Estimator: We further improve the performance of the uncon-
strained ML channel estimator in (20) by employing the L-
tap LMMSE channel interpolation. The L-tap LMMSE channel
estimator can be expressed as follows,

REMVSE () = wihE (1),

2D
where hEMMSE(t) denotes the j'"-row i*"-column ele-
ment of the LMMSE-estimated channel matrix, w;;
[w(0) -~ w; (L — 1)]T denotes the L-tap finite impulse
response (FIR) linear filter’s weight vector, and h ()
[hj () hj (t— L+ 1)] denotes the L-element mput vector
constructed from the j"-row **-column element of the ML-
estimated channel matrix in (20) taking values in the block
interval [t — L + 1,¢]. The optimization criterion, assuming
the channels are wide-sense stationary (WSS), for the L-tap
LMMSE channel estimator is given by

J(wjq) = argminE |[|hyi(t) — wibhE, (6)])° (22)

th_column element of the

where h;;(t) denotes the j*-row 4

true channel matrix H(¢) in (1).
Differentiating (22) with respect to w7 ;

result to zero, the optimum LMMSE weight vector w;

by

and equating the

OP is given

Opt
j i

=Ry o Phr, 0 (23)

where Rz E[ﬁle(t)flJHf )] and Py,
E[h;‘l(t)ﬁfl(t)] According to (14), (17), (20), and the uncor-
relatedness of the channel and noise coefficients, the autocorre-
lation matrix Ry, ,y can be further simplified as follows,

2

Rflii(t) = Rhii(t) + EILXM (24)

where Rz () EhL (hf2 (1)) and hE, (1)
[hji(t)--hji(t — L + 1)]T. In a similar way to (24),
the cross-correlation vector Phr (y can be further simplified

as follows,

- E[h;z(t)hfz(t)]

Substituting (24) and (25) into (23), and then substituting (23)
into (21), the L-tap LMMSE channel estimator can be rewritten
as

Pﬁj@)i(t) = Pnl, (1) (25)

2 H

o _
RSB = | Rz ) + —lixr) "Puz (1

h;(t).
(26)
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10 T T T T

[ — & —ML-CM Based

i —a— LMMSE-CM Based

- % — ML-STBC Based
—+— LMMSE-STBC Based
‘- & — ML-TM Based =
SRR —=— LMMSE-TM Based
= L0 Ideal

BER

Fig. 2: The graph of BER in quasi-static flat Rayleigh fading channels.
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Fig. 3: The graph of MSE of the channel estimation in quasi-static
flat Rayleigh fading channels.

B. Data Detection

We further describe the data detection procedure. Firstly,
the data part of the received symbol matrix Y (¢) is extracted
by post-multiplying the received symbol matrix Y (¢) by the
transpose of the data bearer matrix AT, By using (6) and (7),
and dividing the result by g, the data-bearer-projected received
symbol matrix is given by

Y()AT

27
3 @27

Let us define Y(t) _Y@®AT

rewrite (27) as follows,

and N(t) = %AT. We can

Y(t) = Ht)D(t) + N(t). (28)

The maximum-likelihood receiver is employed for decoding
the transmitted ST data matrix D(¢) by using the estimated
channel coefficient obtained in either (20) or (26) as the channel
state information. The maximum-likelihood receiver computes

the decision matric and decides the codeword that minimizes

o Bit Error Rate (BER) vs. SNR
T T T T

—& ML-CM Based

—£&— LMMSE-CM Based
—% ML-STBC Based
—x— LMMSE-STBC Based

107k —5- ML-TM Based
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Fig. 4: The graph of BER when L, =
Rayleigh fading channels.
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Fig. 5: The graph of BER when L, =
Rayleigh fading channels.

2 in nonquasi-static flat

this decision matric [3],

N . N L, | Lo
{di} = miny giy {Zt:1 Zj:l |yg - 2121 hj,idﬂg} )

Vdi, i€ {l,..., L}, te{l,....,N}, 29)
where 3] denotes the j*"-row ¢-column element of the data-
bearer-projected received symbol matrix Y (¢), k;; denotes the
jthrow z'th-cglumn element of the estimated channel coefficient
matrix, and dj denotes the #"-row ¢""-column element of the
estimated ST data matrix D(¢).

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of the data-
bearing approach for pilot-aiding. Without loss of generality, we
examine a 4 x 4 orthogonal ST block code of [4]. The setting
parameters of our experiments are: the normalized pilot-aided
ST symbol power is 1 watt/pilot-aided ST symbol block; the
time slots are 8 time slots/pilot-aided ST symbol block. The
data part’s power is constantly allocated 50% and the pilot part’s
power is constantly allocated 50% of the normalized pilot-aided
ST symbol power. In addition, 4-PSK modulation is employed
in these experiments and a number of taps of the LMMSE
channel estimator is 3.
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A. Quasi-Static Flat Rayleigh Fading Channels

In this situation, the element of the channel coefficient matrix
H(#) in (1) are taken from the normalized time-varying channel
which is modelled as Jakes’ model [14], where fdxT = 0.08
(fast fading) with fd being the Doppler’s shift and T being the
symbol period.

The graph of BER of the pilot-aided MIMO system compared
with the ideal-channel MIMO system when 1 and 2-receive
antennas are employed is shown in Fig.2. Notice that, at BER
= 1074, the SNR differences between the ideal-channel and
the ML channel estimator are about 2.3 dB, whereas the SNR
differences between the ideal-channel and the LMMSE channel
estimator are about 0.5 dB, for both the 1 and 2-receive antenna
schemes. In addition, the SNR differences between the ML and
LMMSE channel estimators are about 1.8 dB.

The graph of MSE of the channel estimation of the pilot-aided
MIMO system when 1 and 2-receive antennas are employed
is shown in Fig.3. Notice that the MSE of the ML channel
estimator is larger than the LMMSE channel estimator, and all
three kinds of data bearer and pilot structures yield the same
MSE. It is worth noticing that the LMMSE channel estimator
performs better than the ML channel estimator because of the
higher accurate channel estimate, as shown in Fig.3.

B. Nonquasi-Static Flat Rayleigh Fading Channels

In this situation, we consider the situation where the channel
coefficient matrix is not constant over the ST symbol block.
Without loss of generality, we give an example where the
channel coefficient matrix changes twice within one ST symbol
block, i.e. there exists Hy(¢) and Hy(¢) in the ¢**-block ST
symbol matrix.

1) I-Receive Antenna Scheme: The graph of BER of the
pilot-aided MIMO system when fdxT are 0.0021 (slow fading),
0.0165, 0.0412, and 0.0741 (fast fading) is shown in Fig.4.
Notice that, when Doppler’s shifts are small, e.g. fd*xT =
0.0021, the probability of detection error of three kinds of data
bearer and pilot structures are quite the same; however, when
Doppler’s shifts are getting larger, the CM-based structure is
much better than the TM- and STBC-based structures, where the
error floors of the CM-based structure are much lower than the
TM- and STBC-based structures. Since the nonquasi-static flat
Rayleigh fading channel is the severe situation, there exists error
floors that increase significantly as the Doppler’s shift increases.

2) 2-Receive Antenna Scheme: The graph of BER of the
pilot-aided MIMO system when fd + T are 0.0021 (slow
fading), 0.0412, 0.0741, and 0.1235 (fast fading) is shown
in Fig.5. Similarly to the 1l-receive antenna scheme, the CM-
based structure is much better than the TM- and STBC-based
structures.

Obviously, the CM-based structure performs much better
than the TM- and STBC-based structures because it takes into
account both of the channel submatrices H; (¢) and Hy(¢) in
the channel estimation, whereas the other two structures exploit
either of them according to their structures. Furthermore, the
LMMSE channel estimator performs better than the ML channel
estimator in a low SNR region, in which the AWGN is the major
factor that causes the detection error; however, in a high SNR

region, the channel mismatch plays a major role in causing the
detection error resulting in the comparable error floors for the
LMMSE and ML channel estimators. In addition, the 2-receive
antenna scheme is more robust to the fast fading channel than
the 1-receive antenna scheme.

V. CONCLUSION

In this paper, we have proposed the data-bearing approach for
pilot-aiding for joint data detection and channel estimation in
ST coded MIMO systems, including the necessary properties for
the data bearer and pilot matrices, the pilot and data extraction
procedures, the possible data bearer and pilot matrices, the
channel estimation, and the data detection. Obviously, our data-
bearing approach for pilot-aiding subsumes the classical pilot-
based channel estimation, e.g. PSAM, and it reveals that, in
the quasi-static flat Rayleigh fading channels, the performance
of three kinds of data bearer and pilot structures, i.e. the
TM-based, STBC-based, CM-based structures, are quite the
same. Furthermore, in the nonquasi-static flat Rayleigh fading
channels, the CM-based structure shows superior performance
over the TM- and STBC-based structures especially for high
Doppler’s shift scenarios, where the error floors of the former
are much lower than the other two. Due to the page limitation,
the interested readers could further explore the performance
analysis of our data-bearing approach for pilot-aiding and the
optimum power allocation for the data and pilot parts in [15].
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