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ABSTRACT

In this paper, we present a mixture Principal Component Anal-

ysis (mPCA)-based approach for voxel level quantification of

dynamic positron emission tomography (PET) data in brain

studies. The parameters of the probabilistic mixture model

are determined using an EM algorithm. The problem of inter-

est here requires neither the accurate arterial blood measure-

ments as the input function nor the existence of a reference

region. The effects of mPCA are examined in two different

ways on the basis of whether the compartmental model for

tracer dynamics is considered. First, the mPCA approach it-

self is used to classify all voxels into the specific binding and

non-specific binding groups, and the resulting power is used

for revealing the underlying distribution volume (DV) image.

Second, the proposed mPCA-based classification approach is

incorporated as the clustering preprocessing into our earlier

work [4] to simultaneously estimate the DV parametric im-

age and the input function. The efficiency and superiority of

the proposed scheme is demonstrated by real brain PET data.

1. INTRODUCTION AND MOTIVATION

Analysis of dynamic positron emission tomography (PET)

data has been widely applied to determine neuroreceptors bind-

ing sites in vivo. Of particular interest in this paper is the

problem of estimation of the underlying distribution volume

(DV) parametric image of neuroreceptors in brain, which pro-

vides image-wide quantification of the concentration of neu-

roreceptor and thus can be used to track or identify dynamic

physiological and biochemical (e.g. disease) processes.

For quantitative analysis of neuroreceptor PET studies,

compartmental model-based approaches are the most widely

used for tracer kinetic modeling [1]. Among these approaches,

a reference region model has been shown valid and widely ap-

plied as a noninvasive approach to avoid arterial blood sam-

pling [2], though it involves a nontrivial challenge of the man-

ual definition of a region of interest (ROI) as reference region.

Another noninvasive research direction with great interest is

to estimate both the kinetic parameters and the input function

simultaneously. Only a few works for this purpose have been

reported and most have been ROI-based. Theoretically, quan-

titative analysis of receptor can be at either the ROI level or

voxel level. However, due to the poor signal-to-noise-ratio

(SNR) in the voxel time-activity curves (TACs), ROI level

quantification is commonly studied while voxel level quan-

tification (i.e. parametric image analysis) has been hindered

in the past. Here we are mainly tackling two concerns. First,

no input function or reference region is presumably available.

Second, we are interested in analyzing the problem at the

voxel level, i.e. the identification of the voxels of specific

binding and non-specific binding.

The goal of identifying specific binding voxels and non-

specific binding voxels can be achieved by estimating the DV

parametric image from voxel TACs and visually inspecting

the estimated DV image. The purpose of the present work is

to validate the feasibility that no input function or reference

region is needed to obtain the DV parametric images. Specif-

ically, we propose an algorithm to automatically sketch out

the voxel regions for specific binding and non-specific bind-

ing. We incorporate the model of mixture Principal Compo-

nent Analysis (mPCA). Distinguishing specific binding and

non-specific binding voxels can be regarded as identifying

different voxel function activity patterns, where each activity

pattern can be represented by a different underlying model.

As demonstrated in many areas, the idea of mPCA is proved

to be a promising framework to deal with such problems by

modeling the underlying nonlinearity and complexity with a

collection, or mixture, of local linear sub-models [6]. Be-

cause patterns of observed TACs of specific binding voxels

and non-specific binding voxels are different as characterized

by different kinetic parameters, motivated by the successes of

mPCA in areas such as image analysis, we proposed to ap-

ply mPCA to model the voxel TACs. One probabilistic PCA

is used to describe the principal components of TACs from

specific binding voxels; another probabilistic PCA is used to

describe the principal components of TACs from non-specific

binding voxels. In addition, as reported in the literature, clus-

ter analysis (e.g. k-means-like method, hierarchical linkage

method) has been used to improve the determination of TACs

of reference tissue regions [3] and can be used as a prepro-

9280-7803-9577-8/06/$20.00 ©2006 IEEE ISBI 2006



cessing step to improve the accuracy of voxel level quantifica-

tion [5]. This further motivates us to accommodate the mPCA

idea into our earlier work regarding voxel quantitative PET

analysis [4] as a clustering preprocessing step.

The main contributions of this paper are as follows:

• Present an mPCA-based algorithm to sketch out the

voxel regions for specific binding and non-specific bind-

ing. The mPCA model is able to classify all voxels into

two groups in a Bayesian fashion, where an estimation

and maximization (EM) algorithm is applied to itera-

tively estimate mPCA parameters.

• Incorporate the proposed mPCA-based classification ap-

proach into our earlier work [4] where both the DV

parametric image and the blood input function are si-

multaneously estimated. The real PET data analysis

demonstrates that the proposed method can improve the

estimation accuracy.

2. FORMULATION AND METHODS

2.1. Formulation under mPCA framework

In this section, we formulate the PET problem of interest in

the framework of mPCA. In [6], the mixture of probabilistic

principal component analyzers is proposed. A probabilistic

PCA (PPCA) model is introduced by associating a probabil-

ity density with the conventional PCA model. A set of prior

probabilities is applied to combine several PPCA models into

a mixture model.

The concepts in [6] is related with our PET parametric

imaging problem as follows. Suppose the observed TAC yn

for voxel n can be described by one PPCA model, i.e. the ith

PPCA model,

yn = Wix + µi + εi, (1)

where yn is a d dimensional vector, and the dimension of x is

assumed to be q. The principal components are the columns

of the matrix Wi. x is assumed to be independent Gaussian

vector with unit variance, x ∼ N(0, I). The principal compo-

nents are not necessarily unitary, so the energy of each com-

ponent can be taken cared of in the Wi matrix. The parameter

µi represents the mean vector, and εi represents measurement

noise.
For the case of isotropic noise, εi ∼ N(0, σ2

i I), the con-
ditional probability of observed TAC yn can be written as fol-
lows,

p(yn|x, i) = (2πσ2
i )−d/2exp{− 1

2σ2
i

‖ yn − Wix − µi ‖2}. (2)

Associated with the distribution of x, we obtain the distribu-
tion of observation yn given PPCA model parameters,

p(yn|i) =

Z
p(yn|x, i)p(x|i)dx

= (2π)−d/2|C|−1/2exp{−1

2
(yn − µi)

T C−1(yn − µi)}(3)

where C = σ2
i I + WiW

T
i .

Given the prior probabilities p(i) of a set of K PPCA
models, the marginal probability of observation TAC yn is,

p(yn) =
KX

i=1

p(yn|i)p(i), (4)

and the posterior probability of the ith PPCA model can be
expressed as

p(i|yn) =
p(yn|i)p(i)

p(yn)
. (5)

Therefore, the posterior probability can be used for the clas-

sification purpose.

As in [6], an EM algorithm of mPCA is derived. In the

E-step, given the observed TACs and model parameters from

last iteration, the posterior probability of the ith PPCA model

can be calculated by equation (5).
In the M-step, the update of model parameters can be

summarized as follows. Suppose there are in total N voxels
under consideration.

ep(i) =
1

N

NX
n=1

p(i|yn) (6)

eµi =

PN
n=1 p(i|yn)ynPN

n=1 p(i|yn)
(7)

fWi = SiWi(σ
2
i I + M−1

i W T
i SiWi)

−1 (8)

eσ2
i =

1

d
tr(Si − SiWiM

−1
i

fW T
i ) (9)

where, p̃(i), µ̃i, W̃i, σ̃
2
i are the updated model parameters for

the ith PPCA model in the mixture, and

Si =
1ep(i)N

NX
n=1

p(i|yn)(yn − eµi)(yn − eµi)
T (10)

Mi = σ2
i I + W T

i Wi (11)

2.2. Methods

mPCA-based classification approach to identify specific
binding voxels

In PET parametric image, other than specific binding vox-

els and non-specific binding voxels, there are some irrelevant

voxels which do not correspond to the whole brain region. In

order to sketch out the regions of specific binding and non-

specific binding, we propose the following processing steps:

• A simple masking step is applied to roughly determine

the whole brain region by discarding irrelevant vox-

els (i.e. voxels with small TAC observation powers).

A simple threshold based on the overall power of the

voxel TACs is employed as masking criteria.

• Apply the mPCA approach to refine the rough brain re-

gion determined in the simple masking step. Voxels in

the rough brain region are classified into two classes.

One class corresponds to voxels in the real brain re-

gion; the other corresponds to the voxels outside. An
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Expectation Maximization (EM) algorithm is applied

to iteratively estimate mPCA parameters, which is sum-

marized in the Appendix.

• For the refined brain region, the mPCA approach is

applied again, in order to distinguish specific binding

voxels from non-specific binding voxels. So that, re-

gions of specific binding and non-specific binding can

be sketched out.

• For voxels labeled as specific binding class, calculate

the intensity of each voxel based on the class posterior

probability and the projection coefficients in the mPCA

model. This intensity value is expected to reveal the

underlying DV value for each voxel.

Such generated voxel-wise intensity power image is proposed

for representing the underlying DV spatial pattern.

mPCA-based approach as clustering precessing step to im-
prove noninvasive voxel quantitative analysis

In our earlier work [4], the basic idea is to estimate the

integral of the input function cp(t) by exploring the intersec-

tions of spaces, each of which is spanned by two vectors rep-

resenting the voxel cluster TACs and their integrals. Based on

the estimated input function, we then apply approaches which

require the knowledge of the input function to estimate the

DV parametric image. In [4], a clustering method is required

as a preprocessing step, where the popular Gaussian cluster-

ing method is employed. The choice of clustering scheme

may affect the overall estimation performance in [4]. As each

PPCA model represents a different underlying pattern, it is

naturally to apply the presented mPCA approach for the clus-

tering purpose.

Therefore, in this study, the proposed mPCA approach

can also serve as a clustering preprocessing step in the al-

gorithm proposed in [4]. The voxels giving a sufficient large

posterior probability of the ith PPCA model are chosen to

represent the ith voxel cluster. Then we apply the space-

intersection-based algorithm in [4] to estimate both the input

function and the DV parametric image. In section 3, we will

demonstrate the estimation performance improvement from

incorporating the proposed mPCA approach with [4].

3. RESULTS

We apply mPCA to examine the PET studies of healthy con-

trol subjects obtained after intravenous injection of C-11 la-

beled DASB, a radioligand used for imaging the serotonin

transporter (SERT). The experimental details are the same as

in [7]. Totally 10 subjects were tested. For each subject, 18

serial dynamic PET images were acquired during the experi-

ment. All PET scans were reconstructed in a 128x128 matrix.

The proposed method is applied on all slices. Due to the space

limitation, we illustrate the proposed method by one example.

First, we evaluate its classification performance on iden-

tifying specific binding voxels. As mentioned in subsection

2.2, the rough brain region is obtained by discarding voxels

with small TACs observation powers. Then, the mPCA ap-

proach is applied to refine the rough brain region. In Figure

1(a), the union of white and gray areas is the rough brain re-

gion obtained in Step 1 in subsection 2.2. In Step 2, by apply-

ing the mPCA, the gray area is obtained as the refined brain

region. The brain region and non-brain region is shown sepa-

rately in Figure 1 (b) and (c). Figure 1(b) corresponds to the

refined brain region. Figure 1(c) corresponds to non-brain re-

gion, which is of little interest. The intensity of each voxels

is proportional to the class posterior probability and the pro-

jection coefficient in the mPCA model. Intuitively, we expect

the intensity value to be highly correlated with the underly-

ing voxel-wise DV value. Because, class posterior probability

describes how likely a voxels belongs to an PCA model, e.g.

brain region or non-brain region; and mPCA projection coef-

ficient represents how much power the mPCA model supports

the observed TACs.
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Fig. 1. The identified brain region in PET image. The union

of white and gray areas in (a) is the rough brain region ob-

tained by Step 1 in subsection 2.2. The gray area in (a) and

Fig (b) is the obtained as the refined brain region in Step 2.

The white area in (a) and Fig (c) does not correspond to brain

voxels.

Based on the refined brain region, Figure 1(b), the mPCA

approach is applied again, distinguishing specific binding vox-

els from non-specific binding voxels. Shown in Figure 2(a)

are the voxels for specific binding, while Figure 2(b) corre-

sponds to the voxels for non-specific binding. The intensity

of each voxels is defined the same with that in Figure 1. In this

step, class posterior probability describes how likely a voxels

belongs specific binding or non-specific binding. Figure 3(a)

shows the DV image estimated by the traditional multivariate

analysis with the known input function in [8], where the bright

region corresponds to specific binding voxels with higher DV

values. Figure 2(a) appears similar to the bright region in Fig-

ure 3(a), which indicates that, the proposed method is able to

sketch out the regions for specific binding voxels.

Further, we examine the proposed mPCA method as a

clustering algorithm, which is incorporated with [4]. Given

the specific binding voxels and non-specific binding voxels

obtained by the proposed mPCA model, we estimate the plasma

input function and DV image simultaneously as in [4]. Fig-
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ure 3(b) is the estimated DV image, which is almost identical

with Figure 3(a), the DV image estimated from known experi-

ment measured input function. Figure 3(c) shows the integral

of the measured and estimated input functions in [4]. Fig-

ure 3(d) shows the estimated input function by incorporating

the proposed mPCA model. The scale is normalized, because

in the proposed method, the shape is important for the esti-

mated input function, which the scale does not affect the final

parametric image. From these figures, we can see that, the

proposed approach yields improvement in estimating the in-

put function, because the proposed approach can cluster vox-

els in a way with physiological meaning, specific binding and

non-specific binding.
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Fig. 2. The specific binding regions and non-specific binding

regions sketched out by the mPCA model. Figure (a) corre-

sponds to specific binding, while Figure (b) corresponds to

non-specific binding.
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Fig. 3. Figure (a) is the DV parametric image estimated with

the knowledge of input function, as in [8]. Figure (b) is the

estimated DV image by combining the mPCA approach and

[4], without the knowledge of input function. In (c), the

dashed line shows the integral of the normalized measured

input function. The solid line is the normalized estimated in-

put functions in [4]. The solid line in Figure (d) shows the

normalized estimated input function by the proposed method.

4. CONCLUSION

An mPCA-based framework is presented for the voxel level

quantification of dynamic PET data in brain studies. Real

brain PET data were studied to examine the performance of

the proposed scheme. We have demonstrated the feasibility

that no input function or reference region is needed to obtain

the DV parametric images. The proposed mPCA approach

is able to sketch out specific binding regions. Further more,

incorporating the proposed scheme with [4] yields improve-

ment of the estimation of DV parametric images. Future work

will focus on two directions: one is to improve the mPCA ap-

proach within a framework of hidden Markov model since the

adjacent voxels more likely belong to the same hidden state

(i.e. specific binding or non-specific binding); the other is to

extend the proposed 3D PET analysis (i.e. the current anal-

ysis is based on a slice-by-slice manner) to 4D PET analysis

by jointly considering multiple slices.
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