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An Activity-Subspace Approach for Estimating the
Integrated Input Function and Relative Distribution

Volume in PET Parametric Imaging
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Abstract—Dynamic positron emission tomography (PET) imag-
ing technique enables the measurement of neuroreceptor distribu-
tions corresponding to anatomic structures, and thus, allows image-
wide quantification of physiological and biochemical parameters.
Accurate quantification of the concentration of neuroreceptor has
been the objective of many research efforts. Compartment model-
ing is the most widely used approach for receptor binding studies.
However, current compartment-model-based methods often either
require intrusive collection of accurate arterial blood measure-
ments as the input function, or assume the existence of a reference
region. To obviate the need for the input function or a reference
region, in this paper, we propose to estimate the input function.
We propose a novel concept of activity subspace, and estimate the
input function by the analysis of the intersection of the activity
subspaces. Then, the input function and the distribution volume
(DV) parameter are refined and estimated iteratively. Thus, the
underlying parametric image of the total DV is obtained. The pro-
posed method is compared with a blind estimation method, iter-
ative quadratic maximum-likelihood (IQML) via simulation, and
the proposed method outperforms IQML. The proposed method is
also evaluated in a brain PET dataset.

Index Terms—Activity subspace, positron emission tomography
(PET).

I. INTRODUCTION

THE FUNDAMENTAL aim of functional imaging such as
positron emission tomography (PET) and single-photon

emission computed tomography (SPECT) is to extract quantita-
tive information about physiological and biochemical functions
(e.g., physiological parameters) from medical images. PET is
a nuclear imaging technique relying on the unique physics of
radionuclides that decay via positron emission. PET in dynamic
mode can produce sequential images of in vivo distribution of
a radioligand over time. PET imaging has found many clinical
applications, with substantial contributions to neurologic ill-
nesses, oncology, and cardiovascular disease [1]. For example,
using PET and a specific radioligand, the serotonin transporter
(SERT) in the brain can be quantified to assess the integrity of
serotonergic neurotransmission [2]. Of particular interest in this
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paper is the image-wide quantification of the concentration of
neuroreceptor.

For the purpose of neuroreceptor quantification, the PET
time-activity data are commonly analyzed by fitting to a math-
ematical model. Compartmental model-based approaches are
the most widely used for tracer kinetic modeling in dynamic
imaging [3], [4]. The compartmental modeling approaches can
be mainly classified into two categories, namely, invasive and
noninvasive, on the basis of whether arterial blood sampling
is required. In the invasive approaches, a sequence of arterial
plasma samples is used as the input function in the kinetic
model [5], [6]. Though invasive models have some advantages,
arterial plasma samples are often difficult to obtain or measure
accurately, and such invasive measurement represents a limited,
but not negligible risk of complications including thrombosis,
infection, and nerve injury [7]. Therefore, there has been in-
creasing interest in noninvasive techniques.

Noninvasive techniques in the literature can be further classi-
fied depending on whether a reference region is needed. Exam-
ples of reference-region-based methods include [8] where the
time-activity curve (TAC) from carotid artery regions of inter-
est (ROI) is used as the input function, and [9], [10] where a
two-compartment model is assumed for the reference region.
The reference region models obviate the need for input func-
tion by obtaining the parameters as a function of the reference
region TAC. Another noninvasive research direction is to esti-
mate both the kinetic parameters and the input function simul-
taneously. For example, in [11] and [12], the input function is
assumed to follow a mathematical formula, with several param-
eters to be determined. The parameters for the input function
and the kinetic parameters are estimated simultaneously through
weighted nonlinear least-square (LS) method. Three blind iden-
tification schemes in [13] are examined and compared, namely,
the cross-relations (CRs) method, the iterative quadratic max-
imum likelihood method (IQML), and the eigenvector-based
algorithm (EVAM). These methods estimate kinetic parameters
without requiring the knowledge of the input function. The input
function can be obtained based on the observed TACs and the
estimated kinetic parameters.

In this study, we revisit a novel noninvasive approach first
proposed by our group [14], called the activity-subspace ap-
proach, and also, referred to as intersectional searching algo-
rithm (ISA) in [15]. The proposed activity-subspace approach
does not assume any reference regions, and thus, falls into the
category that estimates both the kinetic parameters and the input
function. Compared with [11] and [12], the proposed activity-
subspace approach does not assume any mathematical structure
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Fig. 1. Two-compartment model and three compartment model for voxel i in the region of interest.

of the input function. Different from the methods discussed
in [13], the proposed approach first estimates the input function
through the intersection of activity subspaces. Then, with the
estimated input function, the distribution volume (DV) parame-
ters are iteratively estimated, and the estimated input function is
refined at the same time. The basic idea is intuitively explained
as follows. Since the TAC of each voxel is determined by the
plasma input function and the dynamics of this voxel, it can be
derived from the compartmental models that for each voxel, a
2-D activity subspace can be defined from its TAC; the inte-
gral of the input function belongs to the activity subspace. It is
noted that a common input function is shared by all the voxels.
Therefore, theoretically, given several different voxels and their
corresponding activity subspaces, the integral of the common
input function belongs to all these different activity subspaces,
and thus, can be estimated by finding the intersection of the ac-
tivity subspaces. Very recently, Naganawa et al. [15] proposed a
method, called robust EPISA, for robust extraction of the cumu-
lative integral of the input by jointly using ISA and clustering,
and found successful applications in real PET analysis. It was
shown that the calculated neuroreceptor images by the robust
EPISA have a quality equivalent to that using the measured input
after metabolite correction [15]. However, despite the promise of
EPISA, there are still two disadvantages remained with the cur-
rent activity-subspace-based approaches: one is that it is shown
to be sensitive to noise; the other is that the monotonicity of
the estimated integral is not guaranteed. To overcome these two
problems, in this paper, we propose to use a novel clustering al-
gorithm [16] jointly with the activity-subspace approach, which
can efficiently reduce the noise in PET data. We also propose
an iterative LS procedure that refines the estimated integral ob-
tained by the activity-subspace approach, where the monotonic-
ity of the estimated integral is enforced in the iterative procedure.

This paper is organized as follows. In Section II, we first
describe the models in the voxel domain, including the two-
compartment model, three-compartment model, and the graphi-
cal analysis (GA) plot of [17]; we then formulate the problem. In
Section III, we present the proposed activity-subspace approach
to estimate the input function and the parametric image of the
total DV. In Section IV, data simulations are put into operation.
The performance of the proposed scheme is examined using
brain PET datasets in Section V, followed by Discussions and
Conclusions.

II. SYSTEM MODEL AND FORMULATION

Accurate estimation of parametric images in neuroreceptor
studies often requires fitting the TACs to a mathematical model.
Compartment models are the most popular models used for

physiologically based quantification of the neuroreceptor con-
centration. In the literature, the in vivo tracer kinetics are of-
ten represented by a serial compartmental model [3]. Measures
such as binding potential (BP) and DV are then often calculated
based on the model parameters. A simple compartment model
is the two-compartment model, as illustrated in Fig. 1(a). The
ith voxel within the organ of interest is modeled by two com-
partments. One compartment cp(t) represents the radiotracer
concentration in arterial blood at time t, and the other repre-
sents radiotracer concentration in the tissue compartment ci(t).
The two-compartment model can be mathematically written as
a linear differential equation

dci(t)
dt

= ki1cp(t) − ki2ci(t) (1)

where the rate constants ki1 and ki2 represents blood–tissue
exchange parameters for the ith voxel. Equation (1) can be
integrated and rearranged into the following form:∫ T

0
ci(t)dt =

ki1

ki2

∫ T

0
cp(t)dt − 1

ki2
ci(T ). (2)

Another widely used compartment model is the three-
compartment model. For instance, in serotonin transporter SERT
imaging, brain regions containing receptors have the minimal
number of three compartments. The three-compartment model
is illustrated in Fig. 1(b). The ith voxel within the organ of
interest is modeled by three compartments, where cp(t) rep-
resents radiotracer concentration in arterial blood, cin (t) is the
radioactivity in the nonspecific binding compartment, and cis(t)
is the radioactivity in specific binding compartment. The arrows
represent the direction by which radioligand can move between
compartments with model parameters ki1 , ki2 , ki3 , ki4 . Mathe-
matically, Fig. 1(b) can be represented by two linear differential
equations:

dcis(t)
dt

= ki3cin (t) − ki4cis(t)

dcin (t)
dt

= ki1cp(t) − (ki2 + ki3)cin (t) + ki4cis(t).

In PET imaging experiments, cis(t) and cin (t) cannot be mea-
sured separately. The observed receptor activity in the ith brain
voxel is the total concentration ci(t) = cis(t) + cin (t). Follow-
ing the same derivation as in [18], the dynamics of each voxel i
at time T satisfies the following equation:

ci(T ) = γi1

∫ T

0

∫ s

0
cp(t)dtds + γi2

∫ T

0

∫ s

0
ci(t)dtds

+ γi3

∫ T

0
ci(t)dt + γi4

∫ T

0
cp(t)dt (3)
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where the parameters γi1 ∼ γi4 are uniquely determined by the
parameters ki1 ∼ ki4 .

In the GA plot introduced by Logan et al. [17], an asymp-
totically linear relationship can be observed for the three-
compartment model. For voxel i∫ T

0 ci(t)dt

ci(T )
= ViT

∫ T

0 cp(t)dt

ci(T )
+ bi (4)

where the slope ViT is the total DV (which is expressed as
(ki1/ki2)(1 + ki3/ki4)), and bi is the intercept that becomes
constant for T > t∗. This linear relationship is asymptotically
valid for the late part of the dynamic PET experiment. By rear-
ranging (4), for T > t∗, we can obtain a form that is very similar
to (2) ∫ T

0
ci(t)dt = ViT

∫ T

0
cp(t)dt + bici(T ). (5)

Therefore, this relationship (5) is valid both for the two-
compartment model and three-compartment model when
T > t∗.

In existing literature, assuming that the input function cp(t)
is known, models in (2), (3), and (5) allow estimation of kinetic
parameters by multilinear regression analysis of the voxel TACs
[18]. However, in the problem of interest here, the knowledge of
the input function cp(t) is not available. Therefore, our goal is to
estimate both the input function cp(t) and the kinetic parameters.

We now describe the basic idea by first introducing the dis-
crete version of the model in (5). In practice, the PET images
are generally acquired with increasing time intervals. Let t =
{tl , tl+1 , . . . , tn} denotes the sampling time points that are later
than t∗. By evaluating the terms in (5) at time points in t, we de-
fine the following vectors, ci = [ci(tl), ci(tl+1), . . . , ci(tn )]T ,
cint

i = [
∫ tl

0 ci(t)dt,
∫ tl + 1

0 ci(t)dt, . . . ,
∫ tn

0 ci(t)dt]T , and cint
p =

[
∫ tl

0 cp(t)dt,
∫ tl + 1

0 cp(t)dt, . . . ,
∫ tn

0 cp(t)dt]T . Equation (5) can
be written in a vector form

cint
i = ViT cint

p + bici , (6)

where the superscript int represents the single integral operation.
Therefore, in the voxel domain, we can observe the following
relationship for each voxel:

cint
p =

−bi

ViT
ci +

1
ViT

cint
i . (7)

From (7), it can be observed that the integral of the input function
cint

p can be written as the linear combination of the ith voxel’s
TAC and the integral of the ith voxel’s TAC. For the ith voxel, we
define the space spanned by ci and cint

i as its activity subspace,
which is of dimension two. From (7), the integral of the input
function cint

p lies in the activity subspace of the ith voxel. Since a
common input function is shared by all the voxels, the integral of
the input function belongs to the activity subspaces of all voxels
within the organ of interest. Therefore, we can estimate cint

p by
finding the intersection of the different activity subspaces. After
obtaining the estimate of cint

p , we can apply iterative LS method
to iteratively estimate the kinetic parameters in (7) and refine
the estimate of cint

p .

III. PROPOSED SCHEME

In this section, the proposed activity-subspace approach is
described in detail. In order to estimate the integral of the input
function based on the noisy PET measurements, the problem
of finding the intersection of different activity subspaces is for-
mulated as an optimization problem. To reduce the noise effect,
mixture principal component analysis (mPCA) [19] is employed
to group the voxel TACs into several clusters. Since each clus-
ter contains voxels with similar TACs and kinetic parameters,
the cluster average TAC will follow the model in (7). Through
averaging, the noise effect is reduced. The activity-subspace ap-
proach will operate on the cluster average TACs, estimating the
integral of the input function by finding the intersection between
the activity subspaces defined by cluster average TACs.

A. Activity-Subspace Intersection for Estimating the Integral of
the Input Function

In (7), assuming that ci and cint
i are noise free, we can see

that the vector cint
p lies in the subspace spanned by ci and cint

i ,
which is defined as voxel i’s activity subspace. For any two
different voxels i and j with different kinetic parameters, ide-
ally the vector cint

p should belong to both the activity subspace
spanned by ci and cint

i and the activity subspace spanned by
cj and cint

j . Equivalently, in the ideal noise-free situation, the
intersection of the two activity subspaces is a 1-D subspace (a
line), which defines the direction of the vector cint

p . This obser-
vation motivates us to estimate the vector cint

p by exploring the
intersection of the activity subspaces.

Another observation is that although the direction of the vec-
tor cint

p can be determined through the intersection of activity
subspaces, we are not able to determine the length of the vec-
tor. In other words, we are able to estimate the shape of the
curve

∫ T

0 cp(t)dt, but the amplitude remains unknown. As far
as the DV parametric image is concerned, not knowing the am-
plitude will not cause a problem. For example, if we determine
the direction of the vector cint

p from the intersection of activity
subspaces and constraint the length of the vector to be 1, the
estimated integral of input function ĉint

p will be a scaled version
of the integral of the true input function, i.e., ĉint

p = ηcint
p , where

η is a scalar. If we use ĉint
p to estimate the kinetic parameters in

(6) using linear regression, the parameter bi will be estimated
accurately, and the estimated total DV V̂iT will be scaled by a
factor of 1/η, i.e., V̂iT = 1/ηViT . Since the estimated total DV
is scaled by the same factor for all voxels, the total DV para-
metric image will not be affected. Therefore, in the proposed
method, we constrain the estimated integral of the input function
to be a vector of unit length, i.e., |ĉint

p | = 1.
In practice, ci(t)’s are noisy measurements, and thus, the in-

tegral of ci(t) appears as a noise source too. The noisy nature of
ci(t) certainly will affect the precision of the activity subspace
spanned by ci and its integral cint

i , and thus, the intersection
of the activity subspaces. As mentioned earlier, in the ideal
noise-free case, the intersection line between span(ci , cint

i )
and span(cj , cint

j ) defines the integral of the input function
cint

p . However, because of the measurement noise, both activity
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subspaces are disturbed and the intersection line may no longer
exist. Therefore, we propose to approximate the intersection
by the following. In the ideal noise-free case, the intersection
between span(ci , cint

i ) and span(cj , cint
j ) can be equivalently

regarded as a pair of lines, one in each activity subspace, that
share maximum correlation. Through a similar methodology,
with the presence of measurement noise, we can find a pair of
lines, such that one belongs to span(ci , cint

i ), the other belongs
to span(cj , cint

j ), and this pair of lines share maximum corre-
lation. The average of this pair of lines could be a reasonable
approximation of the intersection line in the ideal case, which
is the integral of the input function.

Mathematically, assume that vectors vi1 and vi2 are the or-
thonormal basis of the subspace span(ci , cint

i ). Then, any unit
length vector ui in span(ci , cint

i ) can be written as

ui = cos(θi)vi1 + sin(θi)vi2 (8)

where θi ∈ [0, 2π). Therefore, the problem of finding the ap-
proximation of the intersection line between two activity sub-
spaces can be formulated as the following optimization problem:

max
θi ,θj

uT
i uj

s.t.




ui = cos(θi)vi1 + sin(θi)vi2
uj = cos(θj )vj1 + sin(θj )vj2
θi ∈ [0, 2π) θj ∈ [0, 2π)

(9)

where vi1 and vi2 are the orthonormal basis of the activity sub-
space span(ci , cint

i ), and vj1 and vj2 are the orthonormal basis
of the activity subspace span(cj , cint

j ). This maximization prob-
lem can be solved by grid search of possible values of θi and
θj over the range of [0, 2π) (in the current implementation, the
grid search interval is 0.001, meaning that we examine θi and θj

that take any values, which are multiples of 0.001). Assume that
θi = θ∗i and θj = θ∗j maximizes the objective, the corresponding
ui(θ∗i ) anduj (θ∗j ) are the pair of lines, from activity subspaces of
voxel i and j, that maximize the correlation. Note that if ui(θ∗i )
and uj (θ∗j ) is the solution to the maximization problem in (9), so
does −ui(θ∗i ) and −uj (θ∗j ). We choose one of the two solutions
based on the fact that the elements of cint

p are all positive. If the
number of positive elements is greater than the number of nega-
tive elements in vectors ui(θ∗i ) and uj (θ∗j ), the integral of the in-
put function is approximated by ĉint

p = 1/2(ui(θ∗i ) + uj (θ∗j )).
Otherwise, the integral of the input function is approximated by
ĉint

p = 1/2(−ui(θ∗i ) − uj (θ∗j )).

B. Clustering of Voxels

To yield a fine approximation of the integral of the input func-
tion, it is desirable to reduce the noise level in the voxel TACs,
which are used to define the activity subspaces. To achieve this
purpose, we cluster the voxels into several clusters according
to their TACs. This idea is similar with working on the virtual
regional TACs (e.g., each cluster represents a virtual regional
TAC, which is not necessarily a spatially contiguous brain re-
gion). After clustering, each cluster is represented by the average
TAC based on which the cluster’s activity subspace is defined.

The integral of the input function can be estimated from the
intersection of the activity subspaces of different clusters.

Clustering voxels can be regarded as identifying different
voxel activity patterns where each activity pattern can be rep-
resented by a different underlying model. As demonstrated in
many areas, the idea of mPCA has been a promising framework
to deal with such problems by modeling the underlying nonlin-
earity and complexity with a mixture of local linear submod-
els [16]. In our study, we propose to apply the mPCA approach
for clustering.

The concepts in mPCA is related with the PET parametric
imaging problem as follows. In the mPCA approach, a set of
probabilistic PCA models is introduced by associating a prob-
ability density with the conventional PCA model. Assume that
there exist K clusters of functionally different voxels, whose
activity patterns are different. mPCA describes each cluster by
a probabilistic PCA model. The relative size of each cluster is
modeled by a set of prior probabilities. Therefore, a voxel i with
probability p(k) (prior) belongs to the kth cluster, and thus, can
be represented by the kth probabilistic PCA model

yi = Wkx + µk + εk (10)

where yi is voxel i’s TAC. x is assumed to be an independent
Gaussian vector with unit variance, x ∼ N(0, I) and dimension
q. The columns of the matrix Wk are the q principal components
of the activity pattern in the kth cluster. The principal compo-
nents are not necessarily unitary, so that the energy of each com-
ponent can be taken care of in the Wk matrix. The parameter
µk represents the mean activity pattern, and εk represents mea-
surement noise. For the case of isotropic noise εk ∼ N(0, σ2

i I),
the conditional probability of observing TAC, yi can be written
as follows:

p(yi |x, k) = (2πσ2
k )−d/2e−(1/2σ 2

k
)‖yi −Wk x−µk ‖2

. (11)

Integrating the previous equation over the distribution of x, we
obtain the distribution of observation yi given the kth proba-
bilistic PCA model

p(yi | k) =
∫

p(yi |x, k)p(x | k)dx

= (2π)−d/2 |Ck |−1/2e−(1/2)(yi −µk )T C −1
k

(yi −µk ) (12)

where Ck = σ2
k I + WkWT

k . Given the prior probabilities p(k)
of the set of K probabilistic PCA models, according to Bayes
rule, the posterior probability of the kth model can be expressed
as

p(k | yi) =
p(yi | k)p(k)∑K

k=1 p(yi | k)p(k)
. (13)

The posterior probability can be used for the purpose of
clustering.

As in [19], an EM algorithm of mPCA is derived. In the
E-step, given the observed TACs and model parameters from
previous iteration, the posterior probability of the kth model
can be calculated. In the M-step, the model parameters are up-
dated based on the previous model parameters and the posterior
probabilities. The detailed EM algorithm is described in the Ap-
pendix. When the algorithm converges, for each voxel, we obtain
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the posterior probability of the voxel belonging to each proba-
bilistic PCA model conditioning on the observed TAC. Based
on the posterior probabilities, voxels are grouped into clusters.
For each cluster, the average TAC is calculated, based on which
the activity subspace of the cluster is defined. The integral of
the input function is estimated from the intersection of activity
subspaces of different clusters, using the method described in
Section III-A.

C. Iterative LS for Refining the Estimated Integral

After voxel clustering, the integral of the input function is
estimated from the intersection of activity subspaces defined
by the clusters’ average TACs. We extend the analysis to the
voxel domain to further improve the accuracy of the estimated
integral. Since each voxel TAC is a function of the same input
function, we explore this property using the iterative LS method.
For each voxel i, the noisy model of (6) can be expressed as

ci =
−ViT

bi
cint

p +
1
bi

cint
i + ni = (cint

p , cint
i )

( −Vi T

bi
1
bi

)
+ ni

(14)
where the noise term ni contains the measurement noise, the
error from numerical integration, and the model mismatch error
due to the asymptotically linear assumption. Define the observa-
tion matrix C = [c1 , . . . , cN ], S = [cint

p , cint
1 , . . . , cint

N ], the co-
efficient matrix A with A(1, i) = −ViT /bi , A(i + 1, i) = 1/bi

and all other elements being zero, and the noise matrix N =
[n1 , . . . ,nN ]. Combining (14) of multiple voxels, we obtain the
block formulation

C = SA + N. (15)

In order to estimate the kinetic parameters ViT , bi , the LS for-
mulation yields the following minimization problem:

min
c in t

p ,{Vi T ,bi }
||C − SA||2F . (16)

Searching for the global minimizer is computationally pro-
hibitive even for modest number of voxels under consideration.
To achieve an affordable computational cost, we apply the iter-
ative LS method. The basic idea is that we start from the initial
estimate of cint

p based on the intersection of activity subspaces
of voxel clusters, as described in Sections III-A and III-B. Based
on the estimated integral of input function, the coefficients in
A can be estimated by LS regression. Using the estimate of A,
which is the estimated {ViT , bi} for all voxels, the integral of
the input function can be calculated from (7) for each voxel. The
estimate of cint

p can be updated based on the calculated integrals
from all the voxels. Note that the initial estimate is obtained by
the intersection of activity spaces, where the monotonicity is
not guaranteed. In the iterative LS procedure, the monotonicity
can be easily enforced by updating cint

p based on the average
of the calculated integrals that are monotonically increasing.
The process iterates until convergence, when the difference be-
tween estimated cint

p in consecutive iterations is below a certain
threshold.

The minimization problem in (16) has many local minimizers.
Therefore, in order to solve for the global minimizer, a good

initialization is required. In our scheme, the activity-subspace
approach is employed to obtain the initial estimate of cint

p , which
aims at finding the estimate of cint

p that fits the activity subspaces
defined by several voxel clusters. We believe that such an initial
estimate is naturally a good choice as it follows the underlying
signal model. During the iterative LS procedure, we iteratively
refine the estimate of the integral of the input function, the
kinetic parameters are estimated at the same time. (Please note
that, although we express the formulation in matrix form, the
estimates are obtained in a voxel-by-voxel fashion.)

D. Summary of the Proposed Scheme

In summary, the following steps are taken.
1) Initialization: We apply the activity-subspace approach

to obtain the initial estimate of the integral of the input
function. More specifically
a) Preprocess time-activity data and identify voxels that

belong to the brain region.
b) Cluster the voxels TACs into M clusters using mPCA.

A reasonable value of M should be chosen. Based
on our observations, M = 2 could be a good choice.
Denote the average cluster TACs asxj , j = 1, . . . , M ,
and their single integrals as xint

j .
c) For each pair (i, j), where i, j ∈ [1,M ], the inter-

section of the activity subspaces span(xi ,xint
i ) and

span(xj ,xint
j ) is obtained by (9). The intersections

are the estimates of the integral of the input function.
The average of them will serve as the initial estimate
of cint

p .
2) Iterative Refinement: With the initial estimate of cint

p , the
iterative LS is applied to further improve the estimation
accuracy. At each iteration
a) Given the estimated cint

p from the previous iteration,
for each voxel i, the coefficients ViT and bi are esti-
mated using LS regression.

b) For each voxel, given the coefficients {ViT , bi}, the
integral of the input function can be calculated from
(7).

c) The estimate of cint
p is updated by the average of the

calculated integrals that are monotonically increasing.
The estimate of cint

p is then normalized to a unit length
vector.

d) Iterate until convergence, the difference between esti-
mated cint

p in consecutive iterations is below a certain
threshold.

Note that, if the data dynamic follows the two-compartment
model, (6) holds during the entire experiment. In this case,
t∗ = 0 and the integral of the input function during the en-
tire experiment can be estimated. If the data follow the three-
compartment model, (6) is an asymptotic relationship that holds
for the later duration of the experiment. In this case, t∗ > 0, and
for the integral of the input function, only the time points later
than t∗ can be estimated. The value of t∗ needs to be carefully
chosen. The choice of t∗ is a tradeoff between bias and variance.
Since the GA plot is an asymptotical relationship for the later
part of the PET experiment, if we choose a larger t∗, (6) and (7)
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Fig. 2. (a) Input function used in the simulation. (b) Integral of the input function, resampled at the time points that correspond to the sampling point of voxel
activity. (c) Normalized integral of the input function. (d) TACs of the two simulated voxels.

will better fit the TACs. On the other hand, since only the time
points after t∗ are used to define the activity subspaces, larger
t∗ will reduce the available time points, and thus, decrease the
robustness of the estimated activity subspaces.

IV. SIMULATION RESULTS

In the previous section, a novel idea of estimating the input
function from activity subspaces is proposed. In this section, we
examine the performance of the activity-subspaces approach
through simulation.

The time activities of two voxels are simulated by the
three-compartment model. The kinetic parameters of the
simulated voxels are k11 = 3.6247, k12 = 0.0659, k13 =
0.0306, k14 = 0.0372 and k21 = 4.0716, k22 = 0.0387,
k23 = 0.0507, k24 = 0.0229, respectively. The parameters
are derived from a brain PET study of healthy control
subjects using C-11 labeled DASB (3-11C-amino-4-(2
dimethylaminomethylphenylsulfanyl) benzonitrile), as de-
scribed in Section V. The input function used in the simula-
tion is shown in Fig. 2(a), where the circles indicate the time
points when the input function is sampled. Similar with the brain
PET study in Section V, the activity of the simulated voxels are
measured at 18 serial time points, which are different from the
sampling time points of the input function. Since our vector
form formulation in (7) evaluates the integral of the input func-
tion at the time points that correspond to the measured voxel
activity, we integrate the input function and resample it at the
18 time points of the voxel activity measurement, as shown in

Fig. 2(b). Moreover, in Section III-A, it is mentioned that the
activity-subspace approach is only able to estimate the direction
of cint

p (the shape of the integral of the input function), and the
estimated integral of the input function ĉint

p is constrained to be
a unit length vector. Therefore, a successful estimation ĉint

p will
equal to the normalized integral of the input function, denoted as
c̄int

p = (1/|cint
p |)cint

p . The normalized integral of the input func-
tion is shown in Fig. 2(c), which is what we plan to estimate us-
ing the activity-subspace approach. The value of parameter t∗ is
chosen to be t∗ = 20. In the simulated data and the real PET data,
there are six time points after t∗ = 20. We choose t∗ to be as large
as possible, while guaranteeing enough time points for estimat-
ing the activity subspaces and the integral of the input function.

Using the input function in Fig. 2(a) and the kinetic parame-
ters listed earlier, we simulate the TACs of the two voxels under
the noise free case, shown in Fig. 2(d). Base on the noise-free
TACs and the integral of the input function, the kinetic param-
eters in (6) can be obtained through linear regression. We also
calculate the kinetic parameters based on the noise-free TACs
and the normalized integral of the input function. The results
are shown in Table I. In this table, we can see that the relative
ratios between the two voxels’ DVs in both cases are the same.
In the case where normalized integral of the input function is
used, the calculated distribution parameters of the two voxels
are scaled by the same factor, compared with the case where the
true integral of the input function is used. Therefore, for the pur-
pose of estimating DV parametric image, the knowledge of the
normalized integral of the input function will lead to the same
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TABLE I
KINETIC PARAMETERS OF SIMULATED VOXELS, CALCULATED BASED ON TWO CASES: NOISE FREE TACS AND TRUE INTEGRAL OF THE INPUT FUNCTION;

NOISE-FREE TACS AND NORMALIZED INTEGRAL OF THE INPUT FUNCTION

performance with the case where the true integral of the input
function is known. In the following, the normalized integral of
the input function and the kinetic parameters in the bottom row
of Table I will serve as the ground truth of the simulation.

In order to examine the impact of noise on the proposed
activity-subspace approach, we consider a realistic noise model.
As suggested in [18], the measurement error variance is propor-
tional to the imaged radioactivity concentration and is inversely
proportional to the scan duration. Therefore, we consider the
noise model that noise terms are independent Gaussian with
variances

σ2(i, tj ) = α
eλtj ci(tj )
tj − tj−1

(17)

for j = 1, . . . , n, where α is a constant determining the noise
level; ci(tj ) is the simulated noise-free TAC of voxel i at time
tj ; and λ is the radioisotope decay constant. Here, we define

the percent noise level as
√∑n

j=1 σ2(i, tj )/
∑n

j=1 c′i(tj )2 , with

{c′i(tj )} being the noise-free TAC for voxel i. The noise levels
ranging from 0% to 5% are tested in the simulation.

At each noise level, we simulate 1000 runs, generating 1000
pairs of noisy TACs of the two simulated voxels. In each run, the
activity-subspace approach in Section III-A is used to estimate
the integral of the input function from the noisy TACs. With
the estimated integral, the DVs of the two simulated voxels
are estimated by LS regression of (6). The ratio between the
estimated DVs is used to show the estimation performance. At
each noise level, we calculate the average and standard deviation
of the ratio from the 1000 simulation runs.

For the purpose of comparison, we implemented the IQML,
because IQML yields the best performance among the three
blind estimation algorithms compared in [13]. There are both
two-compartment model and three-compartment model ver-
sions of IQML [20]. Since the simulation is based on the three-
compartment model, due to the reason of no model mismatch,
the three-compartment model IQML yields more accurate result
than that of the two-compartment model one under noise-free
case. However, the estimated DV in three-compartment IQML is
very sensitive to noise even when very small noise is added and
can be less accurate than that of the two-compartment IQML. We
think the intuitive reason is as follows. The three-compartment
model IQML does not directly estimate the DV, and it estimates
a set of four parameters instead; the DV is calculated via a
complicated function of the estimated parameters, and thus, its
estimation error can be severely amplified. Moreover, we believe
that the comparison with the two-compartment model IQML is
more fair, because it has essentially the same complexity as
the Logan plot in terms of the number of model parameters.

TABLE II
MEAN AND STANDARD DEVIATION OF THE RATIO BETWEEN THE ESTIMATED

DVS OF THE TWO SIMULATED VOXELS

Therefore, we choose to compare the proposed method with
the two-compartment model version of IQML. To ensure that
IQML achieves its best performance, we use the true kinetic
parameters as its initial. The results are shown in Table II.

In Table II, at the 0% noise level, although the integral of
the input function is estimated based on the noise free TACs,
the estimation is not perfect. This is because of two reasons.
First, the activity-subspace approach is based on the Logan plot,
which is an asymptotically linear relationship for the later part
of the TACs. Since the noise-free data are simulated based on
the three-compartment model, there is model mismatch between
the true three-compartment model and the Logan plot. Second,
the activity subspace of a voxel is spanned by the voxel TAC and
its integral. With the 18 available time points of the voxel TAC,
the numerical integration of the voxel TAC introduces error. For
the same reason, IQML method also gives nonzero error at 0%
noise level. Since the IQML method assumes two-compartment
model for the entire TAC, the model mismatch is larger, and
thus, a larger error is observed. At 0% noise level, since no
noise is added, the estimation results from the 1000 runs are
identical, which results in 0 standard deviation of the estimation
error.

From Table II, we can see that the proposed activity sub-
space is more sensitive to noise. This result is also confirmed
in [15]. In this table, we can see that the IQML method, al-
though more robust to noise, consistently generates biased es-
timates. This is again because of the model mismatch between
the two-compartment model assumed by IQML and the three-
compartment model based on which the data are simulated.
On the other hand, the propose activity-subspace approach es-
timates the integral of the input function, which leads to more
accurate estimates of the relative DV. The only concern, so far,
is the noise sensitivity.

Therefore, in order to obtain reliable estimates using the
activity-subspace approach, the noise level needs to be kept
small. This is our motivation for employing mPCA cluster-
ing. We also apply iterative LS method to further improve the
accuracy of the estimated integral of the input function and
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simultaneously estimate the DV parameters. In the following
section, we analyze the dataset from a brain PET study, and
demonstrate that the activity-subspace approach, together with
the mPCA and iterative LS methods, is able to estimate both the
integral of the input function and the DV parametric image.

V. REAL DATASETS

We now examine a brain PET study. The PET data of healthy
control subjects are obtained after intravenous injection of C-
11-labeled DASB, a radioligand used for imaging the SERT.
The experimental details are the same as in [2]. In total, ten
subjects are tested. A dynamic PET study is performed with a
GE advance PET camera with an axial resolution [(full width at
half maximum (FWHM)] of 5.8 mm and an in-plane resolution
of 5.4 mm. This scanner acquires 35 simultaneous slices of
4.25 mm thickness. A transmission scan is first obtained with
twin 10 mCi germanium-68 pin sources for 10 minutes for
the purpose of attenuation correction of the emission scans.
Eighteen serial dynamic PET images are acquired during the first
95 min after injection using the following image sequence: four
15 s frames, three 1 min frames, three 2 min frames, three 5 min
frames, three 10 min frames, and two 20 min frames. All PET
scans are reconstructed using the ramp-filtered back-projection
technique in a 128 × 128 matrix, with a transaxial voxel size of
2 × 2 mm. All PET data are corrected for attenuation, injected
dose, and radionuclide decay.

For the invasive measurement of the input function, a radial
artery line is placed by an anesthesiologist. During the PET
study, arterial blood samples are withdrawn every 5–7 s during
the first 2 min, then with increasing time intervals until the end
of study 95 min postinjection. Exact times of blood sampling
are registered. The blood samples are centrifuged, and plasma
activities are counted in a gamma counter cross-calibrated with
the PET scanner every day. The exact time difference between
the start of camera and the start of gamma counter is regis-
tered for decay correction. The input function is corrected for
metabolized radioligand activity. For this purpose, 2 ml arte-
rial plasma samples are obtained 5, 15, 30, 60, and 90 min
postinjection. The extent of metabolism of C-11 DASB is deter-
mined using high performance liquid chromatography (HPLC).
Missing data points of the correction function that describes
the percent unmetabolized tracer are obtained by biexponential
interpolation [2].

For the dynamic brain PET image data, we first perform
preprocessing to identify voxels that belong to the brain re-
gion. A simple masking method is applied to sketch out the
brain region. Based on the 18 dynamic PET images of the 18
time points, the sum of intensities of the observed TACs for all
voxels are calculated. Voxels with intensities less than 5% of
the highest intensity voxel are discarded. The remaining vox-
els are considered as the brain region for further estimation
of the integral of the input function and the DV parametric
image.

After preprocessing, the brain region is identified. In
Section IV, it is shown that the proposed activity-subspace ap-
proach is sensitive to noise. Therefore, we cannot directly apply

the activity-subspace approach based on the noisy voxel TACs.
To reduce the noise, we take voxels from the brain regions
of all slices, and apply the mPCA approach in Section III-B
to group the brain voxel TACs into two clusters. The activity
of each cluster is represented by the average of voxel TACs
within this cluster. Through averaging, the noise is reduced.
Then, the integral of the input function is estimated using the
activity-subspace approach, which operates on the cluster av-
erage TACs. In Fig. 3(a), we use the data for subject 2 as an
example. The estimated integral of the input function is shown
by a solid line labeled with stars. The normalized integral of
the measured input function is shown by the solid line labeled
with circles. To improve the accuracy of the estimated integral
of the input function, the iterative LS method in Section III-C
is applied to iteratively refine the estimated integral of the input
function based on the TACs of all brain voxels. In Fig. 3(a), the
refined estimate of the integral is shown by the solid line labeled
with triangles.

After obtaining the estimated integral of the input function, we
further estimate the relative DVs. Based on the estimated integral
of the input function, the relative DV parameters are obtained
by linear regression of (7) for each voxel [18]. For comparison,
the relative DV parameters are also calculated based on the nor-
malized integral of the measured input function. In Fig. 3(b),
the scatter plot of the relative DV parameters is shown, where
each dot corresponds to one voxel, the horizontal and vertical
axes represent the estimated parameters with the measured and
estimated integral of the input function. The scatter plot closely
follows the 45 degree line, which indicates high estimation ac-
curacy. To quantify the estimation accuracy, we compute the
normalized relative distance (PM) between the true and esti-
mated parametric images. PM is defined to compare the two
parametric images

PM =
1
N

N∑
i=1

∣∣∣∣ (V̂iT − V̄iT )
V̄iT

∣∣∣∣ (18)

where V̄iT is the relative DV obtained by the normalized integral
of the measured input function, V̂iT is the estimated relative DV
based on the estimated integral of the input function, and N
is the total number of voxels in the brain region. For subject 2,
PM = 0.012, meaning that the DV image based on the estimated
integral contain 1.2% error, compared with the DV image based
on the measured input function. In Fig. 3(c) and (d), we use
slice 15 as example to show the DV parametric images based
on the measure and estimated integral of the input function. The
difference image is shown in Fig. 3(e). The images shown are
after three-by-three neighborhood median filtering. In Fig. 3(c)
and (d), both images show the expected high binding in the
region of basal ganglia and the midbrain.

In total, we analyze ten subjects. In Table III, we show the
PM that quantifies the difference between the DV parametric
images based on the estimated and measured integrals of the
input function. From Table III, the PM error for most of the
subjects are small, and the average PM is 5.2%. Excluding
subject 8 with extremely large PM, the average error reduces
to 2.8%. To better illustrate the estimation error, in Fig. 4, we
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Fig. 3. Results from subject 2. (a) Normalized the integral of the measured input function, the estimated integral of the input function based on activity subspaces,
and the refined results by further applying iterative LS. (b) Scatter plot of the estimated DVs based on the measured and estimated integrals. (c) DV parametric
image of slice 15 based on the measured integral. (d) DV parametric image based on the estimated integral. (e) Difference between Fig. (c) and (d). The images
shown are after three-by-three neighborhood median filtering.

TABLE III
PM METRIC THAT QUANTIFIES THE DIFFERENCE BETWEEN THE DV

PARAMETRIC IMAGE BASED ON THE PROPOSED METHOD AND THAT BASED ON

THE MEASURED INPUT FUNCTION

show the estimated integral and the scatter plot of estimated
DVs: (a) and (b) for subject 1, whose PM is 2.4%; (c) and
(d) for subject 9, whose PM is 4.1%; (e) and (f) for subject
8, whose PM is 26.1%. For subject 8, the proposed method
gives an incorrect estimate of the integral. The scatter plot in
Fig. 4(f) shows a linear relationship. The estimated DV image
is of lower contract, compared with the case where the input
function is measured. Therefore, the estimated DV image is
qualitatively meaningful but quantitatively incorrect. For the
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Fig. 4. Left column is the measured and estimated integrals of the input function. The right column is the scatter plots of the estimated DV parameters. (a) and
(b) Correspond to subject 1. (c) and (d) Correspond to 9. (e) and (f) Correspond to subject 8.

other nine subjects, the proposed method is able to estimate
the integral of the input function and the DV parametric image,
giving an average error of 2.8.%.

VI. DISCUSSION

In this paper, we presented an activity-subspace approach
for estimating the integrated input function and the relative DV
parametric image. Rather than providing absolute quantifica-
tion, the proposed method only estimates the relative DV within
a scale factor. The scale factor is a common issue to any blind
identification methods where no assumptions are made on the
unknown input function. When analyzing PET data of a sin-
gle subject, the relative DV is useful for comparisons across

different slices or ROIs. For comparisons across subjects, an
important issue, absolute quantification of the DV, needs to be
addressed, and therefore, additional assumptions or additional
data are required. For example, if the total amount of dosage is
controlled such that the integrals of the input functions of differ-
ent subjects are the same, the proposed method can be applied.
If the artery is included in the dynamic images, after metabolite
correction, the ratio between the input functions of two subjects
can be inferred from the intensities of the artery voxels, and we
can further use the ratio to adjust the estimated relative DVs of
the two subjects. Another possible option for achieving absolute
quantification is to take a single arterial sample during scanning
(or a venous sample if the relationship between arterial concen-
tration and venous concentration is well established) to provide
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a reasonable estimate of the scale factor, though more research
efforts may be needed for determining the optimal time point to
take the sample.

In the analysis of the PET DASB study in Section V, the mea-
sured input function is considered as the gold standard. Frankle
et al. [4] shed light on the validity of this gold standard. It
was shown in [4] that the estimated kinetic parameters by sev-
eral methods were consistent, including the Logan plot [17] and
a reference tissue method, simplified reference tissue method
(SRTM) [9]. Logan plot assumed knowing the measured input
function, while SRTM assumed a reference region. Although the
two methods started from different assumptions, the estimated
kinetic parameters were consistent, indicating that both the mea-
sured input function and the reference region were correct. In
Section V, we observe that, in most subjects, the estimated in-
tegral of the input function is close to the normalized integral
of the measured input function. This observation enhanced our
belief that it is reasonable to regard the measured input as the
gold standard in this study.

A challenging question general to blind identification meth-
ods is that how to tell whether the estimates are correct or not,
when the true parameters are unknown. We are lack of a the-
oretical answer to this question. Heuristically, it is observed
from Fig. 4(e) that the estimated integral of the input function
is incorrect since the shape of the integral is clearly incorrect.
For more challenging cases where the shape of the estimated
integral may look correct, though not observed in our study, one
possible solution is to examine the statistical stability via boot-
strap, similar to the reproducibility idea in [4]. We can generate
bootstrapped datasets and estimate the integral from each boot-
strapped dataset. If the estimated integrals from different boot-
strapped data are statistically consistent, we can have certain
confidence in the result; if otherwise, this can be an indication
of failure.

VII. CONCLUSION

Of interest in this paper is the estimation of the total DV
parametric image in PET study when the knowledge of the
plasma input function is not available. In this paper, we have
presented a novel concept of activity subspace, and derived
the method for estimating the integral of the input function by
exploring the intersections of the activity subspaces spanned by
the voxel cluster TACs and their integrals. No prior information
regarding the input function or the reference region is needed in
the proposed method. We presented the mPCA to group the brain
voxels into clusters so that the noise is reduced and the activity-
subspace approach is able to estimate the integral of the input
function more reliably. An iterative LS method is incorporated
to further improve the accuracy of the estimated integral of
the input function. Results from a PET brain study show that,
for the noninvasive studies when the measurement of plasma
input function or a reference region is unavailable, the proposed
activity-subspace approach, together with the mPCA method
and the iterative LS method, is able to efficiently estimate the
integral of the input function and the DV parametric images.
In a real dynamic PET dataset of ten subjects, the proposed

method achieved an average error of 5.2% compared with the
case where the true input function is measured and known.

APPENDIX

An EM algorithm for estimating mPCA model is proposed
in [19]. The algorithm can be summarized as follows. Given the
model parameters from initialization or previous iteration, the
probability of observation yi conditioning on the kth probabilis-
tic PCA model parameters can be calculated

p(yi | k) =
∫

p(yi |x, k)p(x | k)dx

= (2π)−d/2 |Ck |−1/2e−
1
2 (yi −µk )T C −1

k
(yi −µk ) (19)

where Ck = σ2
k I + WkWT

k . Given the prior probabilities p(k)
of a set of K probabilistic PCA models, the marginal probability
of observation yi is

p(yi) =
K∑

k=1

p(yi | k)p(k) (20)

and the posterior probability of the kth probabilistic PCA model
can be expressed as

p(k | yi) =
p(yi | i)p(k)

p(yi)
. (21)

Therefore, the posterior probability can be used for the clas-
sification purpose.

In the M-step, the update of model parameters can be summa-
rized as follows. Suppose that there are in total N voxels under
consideration.

p̃(k) =
1
N

N∑
i=1

p(k | yi)

µ̃k =
∑N

i=1 p(k | yi)yi∑N
i=1 p(k | yi)

W̃k = SkWk (σ2
k I + M−1

k WT
k SkWk )−1

σ̃2
k =

1
d
tr(Sk − SkWkM−1

k W̃ T
k )

where p̃(k), µ̃k , W̃k , and σ̃2
k are the updated model parameters

for the kth probabilistic PCA model in the mixture, and

Sk =
1

p̃(k)N

N∑
i=1

p(k | yi)(yi − µ̃k )(yi − µ̃k )T

Mk = σ2
k I + WT

k Wk
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