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ABSTRACT

Inertial measurements are critical to almost any mobile applications.

It is usually achieved by dedicated sensors (e.g., accelerometer, gyro-

scope) that suffer from significant accumulative errors. This paper

presents RIM, an RF-based Inertial Measurement system for precise

motion processing. RIM turns a commodity WiFi device into an

Inertial Measurement Unit (IMU) that can accurately track moving

distance, heading direction, and rotating angle, requiring no addi-

tional infrastructure but a single arbitrarily placed Access Point

(AP) whose location is unknown. RIM makes three key technical

contributions. First, it presents a spatial-temporal virtual antenna

retracing scheme that leverages multipath profiles as virtual an-

tennas and underpins measurements of distance and orientation

using commercial WiFi. Second, it introduces a super-resolution

virtual antenna alignment algorithm that resolves sub-centimeter

movements. Third, it presents an approach to handle measurement

noises and thus delivers an accurate and robust system. Our experi-

ments, over a multipath rich area of >1,000 m2 with one single AP,

show that RIM achieves a median error in moving distance of 2.3 cm

and 8.4 cm for short-range and long-distance tracking respectively,

and 6.1◦ mean error in heading direction, all significantly outper-

forming dedicated inertial sensors. We also demonstrate multiple

RIM-enabled applications with great performance, including indoor

tracking, handwriting, and gesture control.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting; • Computer systems organization→ Embedded and

cyber-physical systems;

KEYWORDS

Inertial Measurement, Wireless Sensing, Motion Tracking

ACM Reference Format:

Chenshu Wu, Feng Zhang, Yusen Fan, K. J. Ray Liu. 2019. RF-based Inertial

Measurement. In ACM SIGCOMM 2019 Conference (SIGCOMM ’19), August

19–23, 2019, Beijing, China. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3341302.3342081

1 INTRODUCTION

Motion measurements are essential inputs for a range of applica-

tions such as robot navigation, indoor tracking, and mobile gaming,
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etc., and have been widely used in robots, drones, automotive, un-

manned vehicles, various consumer electronics, and pretty much

anything that moves. The mainstream has been using Inertial Mea-

surement Units (IMUs) for motion tracking1. The rise in demand of

accurate and robust motion tracking, coupled with the increase in

smart device production, has been driving the IMU market, which

is projected to grow from $15.71 billion in 2016 to $21.74 billion

by 2022 [23]. An improvement to motion measurements will pro-

foundly impact a number of systems and applications.

Precise and robust motion measurement, however, is non-trivial.

The prevalent IMUs realized by MEMS sensors, namely accelerom-

eters that measure linear acceleration, gyroscopes that calculate

angular velocity, and magnetometers that report orientation, are

well known to suffer from significant errors and drifts that are non-

trivial to be recalibrated [33, 47]. For example, an accelerometer

is hardly capable of measuring moving distance due to the noisy

readings; magnetometer does not report heading direction and is

easily distorted by surrounding environments; while gyroscope

experiences considerable drifts introduced by integration especially

in long run. These limitations prevent many applications that re-

quire accurate motion processing, such as indoor tracking, virtual

reality, motion sensing games.

Recent years have witnessed much progress in using radio sig-

nals to localize and track targets. Despite novel systems that have

led to decimeter or even centimeter location accuracy [13, 14, 43],

they only address location while all suffer from significant common

limitations that prohibit ubiquitous accurate inertial measurements:

(1) They all require one or multiple precisely installed APs, as well

as accurate information about their locations and/or orientations.

A small error in the APs’ geometry information will lead to large

location errors. (2) They do not directly measure multiple motion

parameters but rather can only determine one or two of them from

successive location estimates. Nor can they track in-place angular

motion. (3) Many of them face accuracy limitations dictated by

frequency bandwidth, antenna amount, and synchronization errors

on commercial off-the-shelf (COTS) WiFi, and degenerate or even

fail in complex Non-Line-Of-Sight (NLOS) scenarios.

In this paper, we present RIM, an RF-based Inertial Measure-

ment system that measures multiple parameters of object motions,

namely moving distance, heading direction, and rotating angle. RIM

turns standard COTS WiFi radios into precise IMUs, without sup-

port from additional infrastructure or external sensors. RIM does

not require large bandwidth, many phased antennas, or multiple

APs as reference anchors, nor does it need a priori calibration or

fingerprinting of the environment. It has minimal requirements of

mere antennas available on COTS WiFi receivers, in addition to a

single arbitrarily placed AP as a transmitter, without knowing the

1For ease of understanding, we casually refer inertial measurement to motion parame-
ter estimation of moving distance, heading direction, and rotating angle, and use both
interchangeably in this paper.
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Figure 1: An illustration of virtual antenna alignment.When

the antenna array moves, Antenna #1 will retrace the locations

Antenna #2 has traveled and will be spatially aligned with a virtual

antenna when and only when it arrives at the particular location

where Antenna #2 generated that virtual antenna Δt time ago. The

moving speed can thus be estimated as v = Δd/Δt .

AP’s location or orientation. RIM passively measures the Channel

State Information (CSI) of packets transmitted by the AP, without

any other support from it. In contrast to many prior indoor tracking

proposals that are flawed in NLOS, RIM works anywhere the AP

signal reaches, be there LOS or through multiple walls.

RIM leverages an unseen opportunity with MIMO WiFi radios

present in most smart hardware. We illustrate the intuition in Fig.

1. When an antenna array moves, one antenna may retrace the

trajectory of another and observe the same channel when and only

when it arrives at a location traveled by the preceding antenna,

allowing for a possibility of “self-tracing” of the array at micro and

transient scale. This observation leads to the design of RIM, struc-

tured around three components, which thwarts the conventional

burdensome “outside-in” tracking solutions and enables precise

motion measurement in a ubiquitous “inside-out” system:

(1) Spatial-temporal virtual antenna retracing: Take the two-

antenna array as shown in Fig. 1 as an intuitive example. When the

array moves, each antenna captures a channel snapshot at every

point along its trajectory as if it sets up a virtual antenna there.

The antenna travels later (i.e., the following antenna, Antenna #1

in this example) will retrace every location the preceding antenna

(Antenna #2) has traveled. From the time offset the following an-

tenna takes to be spatially aligned with (i.e., arrive at the location

of) a virtual antenna that the preceding antenna emulated, we can

estimate the moving speed by dividing the travel distance by the

time offset. Here the travel distance is identical to the antenna sep-

aration, which is known and fixed and independent of how they

move. Extending to 2D antenna arrays (e.g., a circular array as in

Fig. 2), we can track the speed in multiple directions designated by

different pairs of antennas. That is, we can measure the moving dis-

tance and heading direction using a 2D array. The main challenge,

however, is to detect the spatial alignment of two virtual antennas

with high precision.

(2) Super-resolution virtual antenna alignment: The key in-

sight behind highly accurate antenna alignment is that signals

received at different locations undergo diverse reflecting paths and

delays, resulting in a unique multipath profile for each location

(virtual antenna). Achieving super-resolution alignment, however,

is non-trivial because: 1) channel measurements on COTS WiFi

are considerably noisy, 2) there is only one single measurement

associated with one virtual antenna, and 3) it is performed upon

measurements from different antennas with hardware heterogene-

ity. In RIM, we achieve sub-centimeter resolution virtual antenna

alignment by three folds. First, we leverage the physics of time-

reversal focusing effects in electromagnetic waves and employ an

effective metric to distinguish two channel snapshots, which sig-

nificantly improve location distinction [17, 39]. Second, although a

single measurement may not be robustly distinctive, the alignment

can be boosted by leveraging a number of virtual antennas, forming

a virtual massive array. Yet different from some previous works

using virtual arrays for Synthetic Aperture Radar [15], we do not

need any information on how the virtual antennas are located in

space. Third, we only focus on potential alignment within a short

period (e.g., 0.5 seconds) over a small space (e.g., centimeters), for

which the channel is unlikely to be changed.

(3) Precise motion reckoning: Built upon virtual antenna retrac-

ing and alignment, we devise a novel algorithm to 1) accurately and

robustly pinpoint the temporal delays when two antennas are spa-

tially aligned, 2) reliably determine which pair of antennas, among

others, are aligned at a specific time, and 3) systematically inte-

grate all information together to output moving distance, heading

direction, and rotating angle if there is any.

We implement RIM on COTS WiFi chipsets and deploy it over

one floor of busy office space. We evaluate the accuracy of RIM us-

ing three antennas available on commodity WiFi Network Interface

Cards (NIC) and further extend its capability by designing a hexag-

onal array that combines two unsynchronized NICs. Experiments

show that, with an unmodified WiFi receiver measuring a single

unknown AP on a standard channel, RIM achieves a median error

in moving distance of 2.3 cm and 8.4 cm for on-desk short-range

movement and on-cart long traces respectively, 6.1◦ degrees mean

error in heading direction, and around 30◦ mean error in rotating

angle (corresponding to about 1.3 cm error in rotating distance). A

set of case studies are conducted to demonstrate RIM’s potential ap-

plications, including indoor tracking, handwriting, gesture control,

and system integration with inertial sensors. With the promising

performance, RIMwould upend the way inertial measurement tradi-

tionally has been practiced, complementing and perhaps ultimately

precluding the need for erroneous inertial sensors.

2 OVERVIEW

RIM enables inertial measurement purely based on RF signals, turn-

ing COTS WiFi radios into accurate IMUs. Specifically, it aims at

measuring three dimensions of motion parameters as traditional

IMUs do, yet at a much finer precision:

• Moving distance: The translation distance the target has

moved, which is usually coarsely sensed by an accelerometer

by step counting [44];

• Heading direction: The moving direction, which is very

difficult for conventional sensors to measure [28] and thus

usually assumed as the device orientation reported by a

magnetometer;

• Rotating angle: The angle of angular rotation, typically

measured by a gyroscope.

RIM estimates all these parameters for 2D motions in a universal

scheme termed as spatial-temporal virtual antenna retracing (§3.1),

and boosts the precision by a novel approach for super-resolution
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NIC 1 NIC 2

Figure 2: 6-element circular array (which is built by plac-

ing together the antennas of two commodity WiFi radios in

RIM’s prototype) for 2D measurement.

virtual antenna alignment (§3.2). Then we strive to enable RIM on

COTS WiFi, delivering a comprehensive system for accurate and

robust inertial measurement (§4).

3 VIRTUAL ANTENNA ALIGNMENT

3.1 Virtual Antenna Retracing

Our key idea to turn aWiFi radio into an IMU lies in a novel scheme

for local motion tracking, named spatial-temporal virtual antenna

retracing (STAR). In this section, we illustrate how STAR enables

measuring linear and angular motion, first in 1D and then 2D cases.

1D case: Recall the simplest scenario of a two-antenna array in

1D case, as shown in Fig. 1. When two antennas are moving along

the line formed by themselves, one antenna will lead the trajec-

tory while another immediately follows its “footprints”. Whichever

antenna will take a snapshot of a location it passed through by

recording the CSI observations, as if it set up a virtual antenna

there. Since the two antennas are moving along the same trace, one

after another, the following antenna will continuously encounter

the virtual phantoms of the leading one. Considering time tk in

Fig. 1, the blue following antenna arrives at the location where the

green leading antenna traveled through at time t1. By examining

the arriving time difference Δt = tk − t1, we can derive the antenna

array’s traveling speed v = Δd/Δt , where the traveling distance

during this time offset is known a priori as the separation distance

Δd between the two antennas. Then by continuously aligning the

following antenna with the leading antenna’s “footprints”, we will

obtain the real-time speeds along the whole trajectory. The moving

direction is, obviously, the orientation of the ray formed by the two

aligned antennas.

In one word, the key to estimate motion distance and orientation

is to determine (1) whether or not two antennas are aligned, and

(2) if yes, what the time delay Δt is. We leave this task to the next

section and first present how to resolve motion in the 2D case.

2D case: To measure distance and orientation in 2D space, we re-

sort to 2D arrays of antennas. Similar to the 1D case, each pair

of antennas enables distance measurement for the two directions

of the line formed by them. Therefore, multiple pairs offer multi-

ple directions in which we can measure moving distances. Fig. 3

illustrates several examples of antenna arrays. As shown in Fig.

3a, a two-element array (or any linear array) only supports two

directions in a line. With three antennas arranged in a triangle (Fig.

3b), we can track motion along three lines (each with two moving

(a) Line (b) Triangle (c) Quadrangle

Figure 3: Examples of different antenna arrays. A (a) linear,

(b) triangular, and (c) quadrangular array produces 2, 6, and 12

tractable directions at most, respectively.

directions). By adding one more antenna to form a quadrangle (Fig.

3c), we obtain 6 antenna pairs, providing at most 12 directions.

Ideally,m antennas will formm∗(m−1)/2 lines in 2D space, each

corresponding to a pair of antennas, yieldingm ∗ (m − 1) supported

directions that lead to an orientation resolution of 2π/(m ∗ (m − 1)).

Practically, however, the resolution will be lower since some pairs

may be parallel with each other and the corresponding directions

become the same. For example, a square array of 4 antennas only

has 8 directions, while ideally, a quadrangular array supports 12

directions (Fig. 3c). Fortunately, those parallel antenna pairs can be

leveraged for augmented alignment to facilitate distance and angle

measurement, as will be detailed later in Section 4.2.

The angle of rotation for angular motion is derived differently

from the heading direction. For linear motion in a specific direction,

only several pairs (at most 3 in the hexagonal case) of antennas

would be aligned. Differently, in the presence of rotation, every

adjacent pair will be aligned at the same time since all of themmove

along the same circle. As a consequence, we can sense rotation by

detecting concurrent alignment between all adjacent antennas, and

further calculate the rotating angle.

Hexagonal array: In principle, the more antennas are available,

the finer distance and orientation resolution we can have. In this

paper, considering that most COTS WiFi radios are equipped with

3 antennas, we prototype RIM with a hexagonal array built from

two COTS WiFi cards2, as shown in Fig. 2. Such an array provides

12 different directions in total and thus an orientation resolution of

30◦. For each possible direction, there will be at least two pairs of

antennas being aligned, making the estimation more robust (§4.2).

Note that our hexagonal design does not require cumbersome

phase synchronization across multiple antennas or between the two

WiFi NICs (§3.2). We also remark that RIM generally applies to dif-

ferent antenna arrays, especially the upcoming WiFi chipsets with

more antennas and shorter wavelengths, which will immediately

offer a better resolution in both distance and orientation.

3.2 Super-resolution Antenna Alignment

To put the idea of STAR into practice, however, is a highly challeng-

ing task that requires to accurately pinpoint a space-time point that

two virtual antennas are aligned with each other, at sub-centimeter

precision.

2We term this design as hexagonal array instead of the commonly used uniform
circular array since it is a physical combination of two arrays rather than a regular
phased array.
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This task might seem similar to but significantly differs from

traditional fingerprint matching [30]. In particular, previous fin-

gerprinting (1) needs a priori calibration, (2) requires CSI to be

unique over the whole space and stable over a long time, and (3)

usually accumulates a number of training samples. In contrast, RIM

requires no calibration and consumes only channel measurements

in a narrow space (e.g., a few centimeters) and in a transient period

(e.g., within 0.5 second). Besides, RIM needs to align two individual

antennas, each with only one single channel measurement and

expects the largest similarity (meaning that the two antennas are

best aligned) to be only observed by the measurements recorded by

the two antennas at the same space location, with a millimeter-level

resolution.

We introduce two techniques to achieve sub-centimeter resolu-

tion in RIM: (1) a similarity measure, i.e., Time-Reversal Resonating

Strength (TRRS), for channel samples inspired by the time-reversal

focusing effects [17], and (2) an approach to exploit a large number

of virtual antennas as a virtual massive array for alignment. In the

following, we first present a primer on time-reversal focusing effect,

followed by the definition of TRRS and then the enhancement by

virtual massive antennas.

Time-reversal focusing effects: Time reversal is a physics phe-

nomenon that the energy of the transmitted signal will be focused

in both space and time domains when combined with its time-

reversed and conjugated counterpart. It has been studied since the

1950s [3] and later applied to and experimentally verified in the

fields of ultrasonics, acoustics, light, and electromagnetism [17, 18].

To put it in the context of the WiFi channel, the received CSI,

when combined with its time-reversed and conjugated counterpart,

will add coherently at the intended location but incoherently at any

unintended location, creating a spatial focusing effect as has been

analyzed in [39, 46]. This explains, fundamentally, why multipath

profiles using CSI can underpin high-resolution location distinction

[5]. Therefore we introduce TRRS, a metric that quantifies the time-

reversal focusing effect, as the similarity measure for CSI as follows.

Time-reversal resonating strength:The TRRS between twoChan-

nel Impulse Responses (CIRs) h1 and h2 is defined as [39]

κ(h1, h2) =

(
maxi

�� (h1 ∗ g2
)
[i]
��)2

〈h1, h1〉〈g2, g2〉
, (1)

where ∗ denotes linear convolution, 〈x, y〉 is the inner product

between vector x and y, and g2 is the time-reversed and conjugated

version of h2, i.e., g2[k] = h∗2[T − 1 − k],k = 0, 1, . . . ,T − 1.

In practice, the frequency domain Channel Frequency Response

(CFR) is more often used. Equivalently, the TRRS in Eqn. 1 can be

expressed for two CFRs H1 and H2 as:

κ(H1,H2) =
|HH

1 H2 |
2

〈H1,H1〉〈H2,H2〉
. (2)

If H1 and H2 are both normalized, then the TRRS becomes the

square of their inner product, i.e., κ(H1,H2) = |HH
1 H2 |

2. Obviously,

κ(H1,H2) ∈ [0, 1], and κ(H1,H2) = 1 if and only if H1 = cH2 where

c � 0 is any complex scaling factor. Note that while previouslymany

heuristic metrics were used to compare CSI, the TRRS exploits the

physics of time-reversal focusing effects in an uncomplicated form.
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Figure 4: Spatial resolution of TRRS. (a) Three antennas are

moving at a constant speed and the TRRS for each antenna with

respect to itself is calculated. As seen, the TRRS drops immediately

(significantly by up to 0.3) when the antenna moves for a few mil-

limeters, and monotonously decreases within a range of about 1 cm.

(b) The spatial decay holds for cross-antenna TRRS, especially with

virtual massive antennas, although the absolute values decrease.

CSI measured on COTS WiFi is well-known to contain phase off-

sets, including carrier frequency offset (CFO), sampling frequency

offset (SFO), and symbol timing offset (STO) due to unsynchronized

transmitters and receivers, in addition to initial phase offset caused

by the phase locked loops. As can be seen from Eqn. 2, the impact of

the annoying initial phase distortion, which could only be manually

calibrated with a wired connection or an external clock previously

[43], is eliminated by taking the absolute value in Eqn. 2. We cal-

ibrate the other linear offsets by using the sanitation approach

employed in [13].

Time-reversal focusing effects will be intensified with larger

bandwidths. To facilitate the robustness and uniqueness of TRRS,

we exploit spatial diversity attributed by multiple transmit antennas

to gain larger effective bandwidth. Specifically, suppose there are N
antennas on the AP. The CSI measured on the ith receive antenna

at time t is Hi (t) = {Hi,1(t),Hi,2(t), · · · ,Hi,N (t)} where Hi,k (t)
is the CSI between the ith receive antenna and the kth transmit

antenna. We then take the average TRRS of the ith and jth receive

antenna as

κ̄
(
Hi (ti ),Hj (tj )

)
=

1

N

N∑

k=1

κ
(
Hi,k (ti ),Hj,k (tj )

)
. (3)

By the above definition, we avoid the need of synchronizing two an-

tennas, but instead take the average of their individually calculated

TRRS values.

Virtual massive antennas: Mainstream APs only have a few an-

tennas, limiting the resolution and robustness of the average TRRS

in Eqn. 3 to measurement noise. To boost super-resolution align-

ment, we propose to leverage a number of virtual antennas emulated

by the sequence of channel snapshots recorded by a moving an-

tenna, forming a virtual massive antenna array whose size is the

number of channel snapshots. As shown in Fig. 1, we extend themul-

tipath profile of an antenna i at time t from a single snapshot Hi (t)
to a sequence of samples Pi (t) = [Hi (t + k),k = −V /2, · · · ,V /2],

where Hi (t + k) indicates the channel measurement emulating the

virtual antenna set up by antenna i at time t+k , andV is the number

of virtual antennas.
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Figure 5: Alignment matrices of a square-shape trajectory.

The aligned pairs of the hexagonal array are 1 vs. 3 followed by 1

vs. 6, and then again 3 vs. 1, 6 vs. 1 in turn. Other pairs in parallel

with one of the above are not shown.

Accordingly, we calculate the TRRS with V virtual massive an-

tennas as

κ
(
Pi (ti ), Pj (tj )

)
=

1

V

V /2∑

k=−V /2

κ̄
(
Hi (ti + k),Hj (tj + k)

)
, (4)

whereHi (ti −k) andHj (tj −k) denote the respective virtual antenna
placed at certain space location by the ith and jth antenna at time

ti − k and tj − k . By using the virtual massive antennas, we largely

boost the effective bandwidth of the multipath profile and thus

enhance the time-reversal focusing effect, or equivalently, attain

highly precise antenna alignment. As shown in Fig. 4, the TRRS

touches the maximum only when two antennas are closest to each

other (precisely aligned) and drops even when they are separated

by several millimeters.

TRRS matrix: To pinpoint the precise temporal delay when two

antennas i and j are spatially aligned, we match the multipath

profile of antenna i against those of antenna j throughout a sliding
window. Consider a window of length 2W , the TRRS vector is

calculated as Gi j (t) = [κ(Pi (t), Pj (t − l)), l = −W , · · · ,W ]T where

l denotes the time lags. Thus if the antennas move for a period of

T , we obtain a TRRS matrix

Gi j = [Gi j (t1) Gi j (t2) · · · Gi j (tT )]. (5)

Fig. 5 illustrates an example of the TRRS matrix, which is also

termed alignment matrix hereafter. The window lengthW should

be larger than the expected time delay for two antennas to be

spatially aligned. A larger window will incur higher computation

overhead and is not needed.

In RIM, we calculate such TRRS matrix for every pair of antennas

(Fig. 5). The motion parameters are then estimated by identifying

the aligned pairs from the TRRS matrices and continuously estimat-

ing the time delays, and accordingly the moving speed, as detailed

in the next section.

Deviated retracing: So far we assume that the antenna array is

moving along a certain direction in which at least two antennas will

be well aligned with each other. In practice, however, the device

may be swinging in directions slightly deviated from the exact

aligned line, as shown in Fig. 6a, where the array is moving along

a direction that deviates an angle of α from their aligned direction,

i.e., the horizontal line. Fortunately, we realize that noticeable TRRS

peak still exists, albeit weaker, for two antennas that are close

enough yet not exactly aligned in case of deviation angles. Hence

virtual antenna alignment is still feasible since we only focus on

v 1 2{

(a)

0.2

0.4

0.6Deviated by 0o

Deviated by 15o

(b)

Figure 6: Antenna alignment in case of deviation retracing.

(a) Deviated retracing results in (b) much weaker but still evident

TRRS peaks. The example shows a forward-then-backward move.

the relative TRRS peaks within a window instead of the absolute

values, circumventing the impacts of reduced TRRS values due to

deviated retracing.

In theory, the width of the TRRS peak without ambiguity is about

δ = 0.2λ [46]. Recall Fig. 4, the TRRS peak without ambiguity is

about δ = 10 mm, in accord with the theoretical value. Thus, given

an antenna separation Δd , the proposed antenna alignment can

theoretically tolerate amaximumdeviation angle ofα = arcsin( δ
Δd ),

approximately 24◦ for Δd = λ
2 . As shown in Fig. 6b, real-world

experiments show that RIM can confidently tolerate as large as

15◦ deviation, which suffices to cover the complete 2D plane with

6-element circular array. As a result, RIM can track motions in

any direction within the plane of the antenna array. For the same

reasons, RIM does not require the antenna array to be perfectly

leveled on the same plane. As will be shown in our experiments in

§6, our designed array with imperfections in antenna arrangement

yields good performance.

As shown in Fig. 6a, in case of deviation, the “deviated” antenna

separation becomes Δd ′ = Δd cosα . Since we have no information

about the deviation angle α in advance, we directly let Δd ′ ≈ Δd in

RIM, leading to an overestimated factor of 1/cosα in distance esti-

mation. In terms of our 6-element circular array, the overestimated

error will be 1.20% on average, assuming the moving directions are

uniformly distributed in [0◦, 360◦], and reaches the worst of 3.53%

when the deviation angle α = 15◦, which is tolerable in practice.

The deviation angle may be resolvable by quantitatively comparing

the reduced TRRS to the expected value of perfect alignment, which

we keep as future work.

The above discussion assumes that the Rx is moving, listening

to a static Tx. RIM also applies to the opposite case when the Tx is

moving with a static Rx measuring CSI due to channel reciprocity

[39]. In either case, RIM estimates the motion of the moving device,

be it the Tx or Rx. This is a useful feature for certain applications,

e.g., in drone tracking where the drone may serve as a mobile AP

(the Tx) rather than an Rx.

4 MEASURING MOTION

The millimeter resolution antenna alignment underpins inertial

estimation in centimeter accuracy in practice. This section presents

how to measure motions on this basis. We first examine whether

movement exists. If yes, we then attempt to obtain the alignment

matrix of each antenna pair and accordingly determine when and

which pairs are well aligned. From the aligned pairs, we will derive

the distance, heading direction, and angle of rotation if there is any.
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Figure 7: Movement detection. RIM is more robust than ac-

celerometer (Acc) and gyroscope (Gyr) that both fail to detect the

three transient stops during movements.

4.1 Detecting Movement

It is straightforward to detect antenna movement from TRRS, since

it is, with the virtual massive antennas, highly sensitive to arbitrary

location changes. Yet for movement detection, we only need to

examine the TRRS for one single antenna based on its own mea-

surements. Specifically, we calculate κ(Pi (t), Pi (t − lmv)), the TRRS

between the current measurement and the one lmv seconds ago.

lmv is the time lag chosen as a conservative period during which

location would change by at least millimeters if motion happens.

For example, if the antenna is moving at 1 m/s, a time lag of 0.01

second would expect a movement of 1 cm. Fig. 7 illustrates an ex-

ample of a stop-and-go trace. As seen, there is a clear gap between

the TRRSs for movement and non-movement. Thus we can apply a

threshold to detect movement, as indicated by the red horizontal

line in Fig. 7. The thresholding works generally because the TRRS

based on the same antenna always touches close to 1 when it is

static and decreases with movement.

4.2 Tracking Alignment Delay

Given an alignment matrix, we need to identify the TRRS peaks of

interests that indicate the time lags of antenna alignment. For an

ideal case, we can pinpoint the time lags corresponding to the max-

imum values in each column of the TRRS matrix as the alignment

delays. In practice, however, the maximum values could deviate

from the true delays due to measurement noise, packet loss, or wag-

ging movements, etc, and thus an approach is needed to robustly

track the peak sequence corresponding to the alignment delays. To

this end, we propose a novel algorithm based on dynamic program-

ming, which has been widely used to solve pitch tracking problems

in signal processing [48]. When applying in our case, however, it

still needs elaborate design.

For clarity, we simplify the notation of the TRRS matrix G for

two antennas from time t1 to tT as Q = [qi ] where qi = [qil ], i ∈
[1,T ], l ∈ [−W ,W ]. As shown in Fig. 8a, now suppose we want to

search the best path of the TRRS peaks from time point ti to tj ,
denoted as qi � qj . Define a score of the optimal path qi � qj
that ends at point qjn as S(qi � qjn ). Our approach is to search

all 2W possible candidate paths qi � qjn that end at time lags

n ∈ [−W ,W ] and then select the best one among all.

Suppose we already have all the optimal paths from ti to tk , each
ending at qkl , l ∈ [−W ,W ], and the optimal paths from tk to tj ,

(a) Peak tracking via dynamic programming
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Figure 8: TRRS peak tracking. The alignment peaks are accu-

rately and robustly identified regardless of measurement noises and

imperfect retracing.

each starting at qkl and all ending at qjn , then we have

S(qi � qjn ) = max
l ∈[−W ,W ]

{
S(qi � qkl ) + S(qkl � qjn )

}
, (6)

which stands for the score of the optimal path from qi � qjn since

S(qi � qkl ) and S(qkl � qjn ) are both the scores of the respective
optimal paths. When k = j − 1, the score of the peak transition

between subsequent columns qkl and qjn is calculated as

S(qkl � qjn ) = ekl + ejn + ωC(qkl ,qjn ) (7)

where ekl and eln are the TRRS values at qkl and qln respectively.

C(qkl ,qjn ) is the cost for stepping from qkl to qjn and is simply

defined as C(qkl ,qjn ) =
| |l−n | |
2W . ω is a negative weighting factor

for the cost. The designation of the cost function punishes jumpy

peaks. The rationale is that in general cases the moving speed (thus

the aligned delays) will not fluctuate too much within successive

measurements.

Once we have the scores for paths qi � qjn for any n ∈

[−W ,W ], the best path from qi to qj can be found as qi � qjn�

where

n� = argmax
n∈[−W ,W ]

{
S(qi � qjn )

}
(8)

The entire path of peaks can then be easily identified by tracing

back the previous steps from qjn� until the starting point ti . Fig. 8b
depicts an example of the peak tracking results for a back-and-forth

movement consisting of two periods of alignment.

In principle, the above peak tracking should be performed on ev-

ery pair. Two steps, however, are taken to optimize the complexity:

(1) Antenna pairs that are very unlikely to be aligned are skipped
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(See §4.3); (2) In our implementation with 6-element array, we fa-

cilitate it by averaging the alignment matrix of parallel isometric

antenna pairs (e.g., antenna pairs (1, 4) and (3, 6), (2, 4) and (3, 5) as

in Fig. 2) and conduct peak tracking on the averaged matrix, which

is augmented since the two pairs have the same alignment delays.

4.3 Detecting Aligned Pairs

For the sake of robustness, we detect aligned antenna pairs in two

steps, a pre-check before peak tracking, and a post-check after that.

Pre-detection: In practice, we perform a pre-detection operation

to preclude the unaligned pairs before peak tracking. In particular,

for a specific period, we consider only antenna pairs that experience

prominent peaks most of the time as prospective candidates and

exclude the others that are unlikely aligned. The peak tracking is

then only employed on the selected candidate pairs.

Post-detection: After peak tracking, we obtain a path of identified

peaks for each antenna pair. We then further examine the extracted

paths, accounting for the continuity, TRRS values, smoothness, and

orientations they indicate, to ultimately confirm the most likely

aligned pairs.

4.4 Putting It All Together

Suppose the ith and jth antennas are detected to be aligned at time

t , with a separation distance of Δdi j and an alignment delay of

Δli j (t). Then we can measure the following results:

(1) Moving distance: The moving speed v(t) at time t is derived
as v(t) = Δdi j/Δli j (t). The moving distance can then be simply

derived by integrating the instantaneous speed over time, i.e.,d(t) =∫ t

0
v(τ )dτ . Here we approximate v(t) to be constant during the

period of Δli j (t), which is reasonable since Δli j (t) is very short, e.g.,
<0.5s even the moving speed is as low as 0.05m/s (given Δdi j = λ/2)
and even shorter with larger speeds. The varying speed will be

captured by continuous estimation.

(2) Heading direction: It is straightforward to obtain the moving

direction when we know the aligned antenna pairs. Specifically,

θ (t) is assigned as the direction of the ray pointing from antenna i
to antenna j if Δli j (t) ≥ 0, and the opposite direction if Δli j (t) < 0.

(3) Rotating angle: At a certain moment, if every adjacent pair of

antennas is aligned simultaneously, then a rotation occurs. For a

very short window, we can assume that the rotation happens in

place. The angle of rotation is estimated from the rotated distance

of each antenna as Δθ = R/r , where r denotes the radius of the

circular array and R is the arc length estimated by the rotating

distance. In the case of in-place rotation, we can estimate an in-

dividual speed from each pair of adjacent antennas. Thus we can

use the average speed for rotating distance calculation. Note that

the effective antenna separation for rotation becomes π
3 Δd , the arc

length one antenna needs to travel to hit another.

The above estimates are all smoothed and then integrated to

recover the relative moving trajectory.

5 IMPLEMENTATION

Hardware: We implement RIM using commercial WiFi NICs. Fig.

9 illustrates our hardware equipment. We mainly use Qualcomm

Atheros 9k series chipset, which is attached to an Intel Galileo Gen2

microcontroller board equipped with a Bosch Sensortec BNO055

WiFi NIC 1 WiFi NIC 2

Hexagonal array
Handwriting

unit

APBluetooth

BNO055 sensors

Galileo Gen2
(front) (back)

(a) (b)
(c) (d)

Battery

Figure 9: Hardware setup of RIM prototype.

sensor unit. We modify the driver to report CSI on Linux. The

Galileo system supports at the most 200Hz sampling rate. To study

higher sampling rates, we employ the 802.11 CSI Tool [10] for the

Intel 5300 WiFi card equipped on laptops. In our evaluation, we

employ two different antenna arrays: a 6-element circular array

combining two standard WiFi radios (Fig. 9(a)), and a 3 antenna

linear array that is directly available on a COTS chipset. Adjacent

antennas are spaced at a half wavelength distance (2.58 cm), which

is also the arrangement preferred in commodity APs. Both line

dipole antennas and chip antennas are used and tested. For the

Galileo device, we run another board with the same NIC as the AP

(Fig. 9(d)). While for Intel 5300, a laptop acts as the AP. In both cases,

the AP is equipped with three antennas and is set to a broadcast

mode on a 5GHz channel.

Software: We implement all algorithms in MATLAB, mainly for

micro benchmark analysis. For CSI collection on Galileo Gen2, we

develop a tool in C++. To assess the application in indoor track-

ing (§6.3.3), we further build a real-time system in C++, including

the CSI collection running on Galileo Gen2, and key algorithm

components plus a Windows GUI that displays the tracking results.

Packet synchronization and interpolation: RIM does not re-

quire phase synchronization among antennas3. Due to potential

packet loss, however, it is needed to synchronize CSI measurements

(i.e., packets) on two NICs for cross-antenna mapping (and only

needed for our implementation using two commercial NICs). In

RIM, we accomplish this by letting the AP broadcast packets, using

it as a coarse external clock. In particular, two packets with the

same sequence number are synchronized, since they are from the

same broadcast packet on the AP and thus received simultaneously,

ignoring the insignificant propagation delay. In the case of packet

loss, a null CSI is inserted.

We would like to point out RIM’s packet synchronization is com-

pletely different from the requirements of precise phase synchro-

nization of previous works like [13, 26, 43]. All these works utilize

phased array antennas for geometrical channel measurements. In-

stead, we merely need packet-level synchronization, which could

be skipped shortly in the future as one NIC will come with more

antennas, e.g., 60GHz chipsets.

Minimum initial motion: There is a minimum requirement on

the initial moving distance or rotating angle below which RIM

cannot measure the motion. The minimum moving distance is,

intuitively, the separation distance Δd between the two antennas.

From the moment of starting moving, only after a translation of

at least Δd will the following antenna “hit” the leading antenna,

for the first time. In practice, to reimburse this “blind” period, the

3The linear phase calibration based on [13] for calculating TRRS in Eqn. 2 is conducted
for individual antenna independently.

123



SIGCOMM ’19, August 19–23, 2019, Beijing, China Chenshu Wu, Feng Zhang, Yusen Fan, K. J. Ray Liu

36.5 m

28
 m

Different locations 
of the same AP

01

2

3

4

5
6

Figure 10: Testbed environment. The AP is tested at different

locations, as marked by red stars.

estimated distance will be compensated by Δd . Note that such

minimum requirements on the initial motion is different from RIM’s

motion resolution. Once two antennas are aligned for the first time,

RIM will continuously and precisely track motion after that.

6 EVALUATION

6.1 Methodology

We conduct experiments in an office environment to evaluate RIM,

including system performance analysis (§6.2) and application study

(§6.3).We deploy a single AP (Fig. 9(d)) to cover the experimental

areas of > 1, 000 m2, as shown in Fig. 10. To demonstrate RIM’s ad-

vantages in through-the-walls measurements, we by default place

the AP at the farthest location #0, a corner of the floor. We conduct

motion measurements at different locations over the floorplan (ex-

cept for some areas where we do not have access), covering areas

both near to, and far away (as far as 40 meters) from the AP. During

the experiments, the AP keeps broadcasting packets at 200Hz on a

40MHz channel in the 5GHz band.

To obtain ground truth, we set up a camera-based tracking sys-

tem. Specifically, the target is marked with high contrast color

and tracked by the cameras. The motion trace is first calculated

in the pixel frames and then converted to 2D world coordinates.

The outputs are synchronized with RIM’s estimates by the initial

point when the target starts moving and are pairwise compared

subsequently. There might be slight time offsets, which do not favor

our evaluation.

6.2 Micro Benchmarks

We now evaluate the overall performance in estimating moving

distance, heading direction, and rotating angle, and study how

various factors impact accuracy. Unless otherwise stated, the device

is moving at a speed of about 1 m/s, and the lengths of traces for

analysis all exceed 10 meters.

6.2.1 Accuracy of moving distance. To fully understand RIM’s

centimeter accuracy in moving distance estimation, we use a 3-

antenna linear array present in COTS WiFi and move it roughly

along lines in two scenarios: 1) Desktop: we move the array on

a desk surface for traces around 1 m; 2) Cart: we put the array

on a cart and push it straight forward by more than 10 meters in

different areas. As shown in Fig. 11, RIM achieves a median error
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Figure 11: Accuracy of moving distance.

of 2.3 cm for the more stable, thus better aligned, desktop moving.

For the less controlled cart movement, it yields 8.4 cm median error.

Specifically, it yields 7.3 cm median accuracy in LOS scenarios and,

more importantly, a similar accuracy of 8.6 cm in complex NLOS

conditions. The 90%tile and maximum errors are under 15 cm and

21 cm, respectively. We do not include results using accelerometer

because it easily produces errors of tens of meters [44]. To the

best of our knowledge, no existing system can achieve comparable

performance under similar settings (i.e., NLOS over a large area

using a single unknown AP). Improved tracking accuracy of RIM

is due to its novel method in utilizing rich multipath profiles as

distinct spatio-temporal virtual antennas.

6.2.2 Accuracy of heading direction. We study RIM’s heading

direction estimation accuracy by moving the hexagonal array in

diverse directions. In particular, we traverse a 90◦ range with an

increased step of 10◦, together with each of their opposite directions.

For each direction, we move the device for about 1 meter and

examine the heading direction estimation errors. As depicted in

Fig. 12a, RIM correctly identifies the closest heading direction that

it can resolve for most cases, except for a few outliers (e.g., in

direction -40◦ and -20◦). Fig. 12b further integrates the results for

all directions, which shows that >90% of heading errors are within

10◦, with an overall average accuracy of 6.1◦. Most of the estimates

are either correct without any error (e.g., well-aligned directions) or

with 10◦ errors (e.g., deviated directions), because RIM only resolves

a set of discrete directions that are integral multiples of 30◦. We

will further demonstrate RIM’s heading estimation performance

for free movements in real applications in the next section. Again,

the magnetometer is not compared here because it can not address

heading direction.

6.2.3 Accuracy of rotating angle. To evaluate rotating angle ac-

curacy, we attach the hexagonal array on a fan and manually rotate

the array for different angles, ranging from 30◦ to 360◦. We repeat

each angle for 10 times and calculate the relative errors. As shown

in Fig. 13, RIM tracks rotating angles with a median error of 30.1◦

(about 17.6% in relative error) for the total 80 tests, corresponding

to an error of merely 1.3 cm in arc lengths (i.e., moving distances).

Unfortunately, gyroscope produces much better results in this case.

The currently achieved performance of RIM is limited by that the

antenna separation is at the same magnitude as the array radius.

Given that the adjacent antenna separation and radius are both

half wavelength for the hexagonal array, even a 0.5 cm error in the
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Figure 12: Accuracy of heading direction.

distance could lead to 11◦ error in rotating angle. Nevertheless, the

results still validate the feasibility of RIM’s rotating angle sensing

capability, which will be drastically improved by denser and smaller

antenna array in the future.
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Figure 13: Accuracy of rotating angle.

6.2.4 Coverage and impacts of AP locations. RIM can work any-

where the AP signals can reach. To study whether AP location

affects its performance, we place the AP at different locations, as

marked in Fig. 10, and perform distance measurements in the mid-

dle open spaces. As shown in Fig. 14, RIM achieves consistently

high median accuracy of less than 10 cm for any AP location, be

it close LOS or far away through multiple walls and pillars. The

results show RIM is truly multipath resilient and achieves best-ever

coverage, which allows it to work wherever there are WiFi signals.

6.2.5 Impact of accumulative distance. Inertial sensors are known

to suffer from accumulative errors over long trajectories. As a rela-

tive tracking approach, however, errors may accumulate. Thus it
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Figure 14: Impact of AP location.

would be interesting to examine how RIM performs with respect to

different movement lengths. We move for about 10 m for multiple

times and calculate the tracking errors during trace progressing. As

shown in Fig. 15, the median errors in moving distance vary from

about 3 cm to 14 cm, which do not considerably accumulate over

long distances. The performance is further confirmed by longer

traces as shown later in Fig. 20. The performance gains attribute to

RIM’s high precision in speed estimation, which does not drift over

time. In practice, however, we note an error correction mechanism

may be needed to overcome potential accumulative errors (See an

example of tracking in Fig. 21).
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Figure 15: Impact of movement distances.

6.2.6 Impact of sampling rate. Sufficient sampling rate is re-

quired to achieve high accuracy in RIM. Thus we downsample the

CSI from 200Hz down to 20Hz and rerun the distance tracking. The

results are integrated in Fig. 16. As expected, the distance track-

ing accuracy increases with higher sampling rates. For a moving

speed of 1 m/s, a sampling rate of 20Hz or 40Hz is not enough,

which results in about a displacement of 5 cm per sample. To en-

sure sub-centimeter displacement within one sample, at least 100

Hz is needed for a speed of 1 m/s. Higher sampling rate may further

improve the accuracy, yet the improvement would be marginal com-

pared to the computation overhead incurred. In general, the target

moving speed is the major factor determining the required sam-

pling rate. Faster speeds demand higher sampling rates to gather

adequate samples during a movement of Δd . Higher sampling rates,

however, are not requested by factors like environmental dynamics.

6.2.7 Impact of virtual antenna number. Using virtual massive

antennas is a key to boost RIM’s resolution. Thus we study how
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Figure 16: Impact of sampling rate.

the number of virtual antennas impacts accuracy. As shown in Fig.

17, we increase the virtual antenna number V from 1 to 100 and

calculate the distance errors. The results show the median accuracy

decreases from about 30 cm to 10 cm when V increases from 1

to 5, and further reduces to 6.6 cm when V = 100. In practice, a

number larger than 30 should suffice for a sampling rate of 200Hz

and should be larger for higher sampling rate and smaller for lower.
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Figure 17: Impact of virtual antenna number.

6.2.8 Robustness to environmental dynamics. Building upon spa-

tial multipath profiles, it is interesting to see if RIM is immune to

common environmental dynamics, e.g., walking humans. Consider-

ing our experiments, there are always at least two persons doing

the experiments, in addition to others performing normal activities

around the environment. Imagine when a user moves the device

(e.g., pushing a cart), both his/her body and the cart are moving

closely to the receiver, altering the multipath distributions. Yet the

above results show robustness to these kinds of dynamics. The

reasons are two-fold: 1) There are a number of multipaths indoors

[8], coming from different directions. As a walking human will only

change part of them, the TRRS behavior underpinning RIM still

holds. 2) RIM does not rely on absolute TRRS, which may vary with

environmental dynamics.

6.2.9 System complexity. The main computation burden lies in

the calculation of TRRS. For every sample, RIM needs to calculate

TRRS over a window of 2W , leading tom × (m − 1) ×W values in

total for an array ofm antennas. Since the MATLAB code is not

optimized for speed, we measure the C++ system on Surface Pro,

which is equipped with Intel Core i7 4650U and 8 GB RAM. RIM’s

core modules run in real-time, using around 6% of CPU and about

10 MB of RAM.

6.3 Applications

RIM has a range of potential applications in indoor tracking, hand-

writing, gesture control, movement detection, VR headset tracking,

drone tracking, etc. In this section, we evaluate RIM in three ap-

plication scenarios. Note that existing state-of-the-art in motion

tracking [13, 14] may also support some of these applications under

their favored settings, yet at considerably high costs. However, we

do not compare with them since they do not work in the same

conditions as RIM (i.e., single AP with unknown location and NLOS

cases with rich multipaths).

6.3.1 Desktop Handwriting. With RIM’s fine precision inmotion

tracking, it supports handwriting on a whiteboard or desk. To show

a proof-of-concept scenario, we ask a user to move the antenna

array by freely writing some letters on a desk surface. Fig. 18 depicts

some examples of the recovered letters, with comparison to the

ground truths captured by a camera system. Due to lack of precise

timing-synchronization between the trajectories tracked by RIM

and the camera, we approximate the tracking error as the minimum

projection distance from the estimated location to the trajectory.

As seen, RIM accurately reconstructs not only relatively straight

segments but also curved strokes in different directions, resulting in

recognizable letters. Specifically, the mean error of the trajectories

of the letters written in Fig. 18 is 2.4 cm, similar to the errors of

straight line trajectories (Fig. 14). Albeit currently the antenna array

may be too large to act as a “pen”, we demonstrate our technology

will directly shape it for writing when smaller antennas with shorter

wavelengths become ubiquitous in the near future.

20
cm

Figure 18: Examples of handwriting using RIM. The trajecto-

ries in green are estimates of RIM, while the gray ones are the

ground truths captured by a camera.

6.3.2 Gesture Recognition. We demonstrate a gesture control

application by integrating RIM into a pointer-like unit, as shown

in Fig. 9(c). To make it compact, we use one WiFi NIC with three

small chip antennas arranged in an “L” shape. The experiments

involve three users, each performing four different gestures (moving

towards left/right/up/down and then back) for 20 times with their

left and right hand, respectively. In total, we collect 480 actions

for testing. As shown in Fig. 19a, RIM will observe speed in one

direction in which the user’s hand moves towards, immediately

followed by a speed in the opposite direction when the hand moves

back, from a specific pair of antenna depending on the moving

direction. We use this information to detect and identify a gesture.

Fig. 19b illustrates the recognition results. Since all detected

gestures are all correctly recognized, we only plot the detection

rates. As shown, RIM achieves an average detection accuracy of

96.25% for different gestures and users, with 23 miss detections

(4.79%) and 5 false triggers (1.04%) over the total of 480 tests. The
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Figure 19: Gesture recognition. (a) Different gestures produce

distinct patterns in alignment matrices on certain antenna pairs.

(b) Detection rates for three users with their left/right hands.

false trigger rate is less than the miss detection rate, which is also

favored in practical cases because one can simply repeat the gesture

for miss detection while a false trigger is annoying. Moreover, the

performance is consistently high across different users and actions,

and left/right hands. The results demonstrate promising gesture

capability that can, e.g., turn a smartphone into a presentation

pointer.

6.3.3 Indoor Tracking. We particularly implement two differ-

ent cases to extensively demonstrate RIM’s capability for indoor

tracking. During the tracking test, the AP is placed at location #0.

Pure RIM for indoor tracking: We first deploy RIM with hexag-

onal array as a sole tracking system over the whole floorplan in

Fig. 10. The antenna array is put on a cart, which is pushed by a

user along different traces. To particularly show RIM in the case

of sideway movements (i.e., changing heading direction without

turning), which are common in industrial Automated Guided Vehi-

cles (AGVs), we directly move the cart sideway, instead of making

a turn, in this experiment. Fig. 20 illustrates two example trajec-

tories, about 36 m and 76 m respectively with multiple sideway

movements. As seen, the trajectories are accurately tracked and

no significant errors accumulate, even for very long traces over a

large area. Note that conventional inertial sensors, gyroscope, and

magnetometer, fail to capture such direction changes because there

is no turning, meaning that the device orientation keeps the same

although the heading direction has changed.

RIM integrated with inertial sensors: RIM has superior advan-

tages in moving distance estimation, even with only three antennas.

To fully reveal its potential with COTS WiFi devices with only one

NIC, we implement a system by integrating RIM’s distance mea-

surement with direction information reported by the gyroscope.

Specifically, we use the Galileo Gen2 board equipped with one WiFi

NIC of three chip antennas and the BNO055 sensor unit.

We test the integrated tracking system by putting the device

on a cart and pushing it throughout the whole floor, as the way a

customer pushes a shopping cart in a mall, or a smart home robot

moves around. Fig. 21 illustrates an example tracking result, with

an initial location and direction given in advance. As seen, while

the distances, measured by RIM, are highly accurate, the direction

information obtained by inertial sensors may suffer from large

errors. To put it into a practical system, we implement a particle

filter (PF) to leverage the geometric constraints provided by the

Trace 1

Trace 2

25 m

20
m

Figure 20: Tracking by sole RIM. Both traces contain sideway

movements that inertial sensors do not support.

w/o PF

w/ PF

36 m

20
m

Figure 21: Tracking by RIM integrated with sensors. The re-

sults are obtained by fusing the distance estimates by RIM and

direction estimates by inertial sensors.

digital floorplan to correct errors. The PF will discard every particle

that hits a wall and let others survive. The result, with PF based

enhancement, gracefully reconstructs the real trajectory, as shown

in Fig. 21. Relying on only one single APwith unknown information,

the encouraging results demonstrate the great potential of RIM in

enabling ubiquitous and accurate indoor tracking system especially

for robots and objects, a long-standing challenging problem that

has attracted numerous research efforts.

7 DISCUSSIONS AND FUTUREWORK

RIM is an early step towards ubiquitous and precise RF-based in-

ertial measurements, and there is obviously room for continued

research in various perspectives.

Antenna array: The current prototype of RIM employs two COTS

WiFi cards. AsWiFi technology matures with many antennas and at

higher frequencies, e.g., 60 GHz, one single radio will be abundant

and the size will be smaller to be embedded in mobiles. For the cur-

rent prototype, RIM with its relatively large form factor is already

attractive especially for dedicated interactive gaming devices and

various industrial applications, e.g., tracking carts and machines.

Packet loss: Ideally, uniformly sampled CSI offers the best per-

formance of RIM. In practice, RIM can tolerate packet loss to a

certain extent by interpolation. However, a relatively clean channel

is needed to ensure delightful performance.
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Angle resolution: Currently, RIM only exploits discrete directions

defined by the antenna array (e.g., 30◦ resolution with a 6-antenna

uniform circular array). Noticing that the TRRS decreases differently

with respect to different deviation angles, we believe it is promising

to investigate finer-granularity directions in continuous space by

leveraging the geometric relationship of adjacent antenna pairs.

Limitation of rotating angle: The current prototype of RIM can

only sense in-place rotationwith coarse resolution, and is not able to

monitor the rotating angle of swinging turns (i.e., move while turn).

It remains open to exploring more general and accurate angular

motionmeasurement based on RIM. Furthermore, althoughwe have

demonstrated the ability to track movements during turnings in

§6.3.3 by integrating inertial sensors, it is interesting to investigate

simultaneous translational and rotational motions using RIM only.

3Dmotion:While RIM achieves better precision and robustness, it

cannot measure 3Dmotion like traditional inertial sensors. Building

a specialized 3D array will immediately break the limitation, which

may be impractical in some scenarios but still valuable for special-

purpose applications like drone tracking. Incorporating existing

techniques such as WiBall [46], which is based on TRRS as well,

may offer (less accurate) distance estimation in arbitrary directions,

without the need of a 3D array. The 3D direction, however, remains

open for future research.

Fusing inertial sensors: RIM promotes inertial measurements

especially for distance and heading estimation, which traditional in-

ertial sensors can hardly measure. Nevertheless, gyroscope provides

a reasonably high accuracy of rotating angles while magnetome-

ter reports absolute orientation. Considering that inertial sensors

almost always present alongside with WiFi radios, we keep it as a

promising direction to fuse them together, both by applying RIM

to calibrate inertial sensors and by incorporating inertial sensors

with RIM, which would boost ubiquitous inertial measurements for

many applications such as indoor tracking and virtual reality.

8 RELATEDWORKS

Related works fall in two areas.

Wireless tracking and sensing: Numerous efforts have been de-

voted to wireless tracking and sensing during the past decades.

Many existing works employ different channel parameters for track-

ing, such as Angle of Arrival (AoA) [13, 15, 43], Time of Flight (ToF)

[9, 29], or their fusion [26, 41]. The latest of them [14] pushes the

accuracy to sub-centimeter level. These approaches, however, usu-

ally require a large phased array or a large frequency bandwidth,

typically together with clear LOS condition, to achieve good perfor-

mance. Efforts have been made to expand bandwidth by frequency

hopping [35, 40] and extend antenna array [42], which however

incur extra spectrum or hardware overhead. In addition, the exist-

ing works require cooperation across multiple APs (four or five)

[13, 15, 43]. A few prior proposals attempt to track using a single

AP, which again, still need precise AP location and orientation

[29, 35], or achieves decimeter accuracy [46]. Moreover, many of

the existing works degrade or fail in NLOS conditions. In contrast,

RIM is truly multipath-resilient. It has centimeter motion tracking

even in complex NLOS scenarios, and resolves direction simultane-

ously, using only a single arbitrarily placed AP without knowing

any of its information.

Other works leverage fingerprinting of dense APs [1, 27, 30]. [25]

employs CIR for movement detection, but does not address motion

tracking. Centimeter granularity fingerprinting is studied using

CIR [39], which is further enhanced by multiple antennas [5] and

by frequency hopping [4]. [37] leverages multipath profiles of RFID

channel parameters for fine-grained fingerprinting. These proposals

require exhaustive calibration prior to deployment and deteriorate

due to temporal dynamics. Differently, RIM does not need any

calibration. [38] tracks orientationwith an array of RFID tags, which

relies on precise phase difference of arrival only available on RFID

and does not address moving distance. [31] utilizes phase profiles

to determine the relative order of RFID tags, yet does not solve the

relative distances nor directions. The emerging 802.11mc [11] and

Bluetooth 5.1 [34] standards provide Round Trip Time and AoA

measurement respectively. Both of them, however, offer limited

accuracy, especially in indoor environments.

Inertial sensing: Inertial sensing and its applications have been

widely studied in aerodynamics, robotics, and mobile computing

[6, 19, 28, 32, 44]. To reduce measurement errors, various algorithms

have been proposed for efficient sensor fusion among accelerometer,

gyroscope, and magnetometer [2, 22]. Regarding inertial sensing

on mobile and wearable devices, the state-of-the-art orientation is

probably achieved by A3 [47] and MUSE [33]. Compared to orienta-

tion, tracking moving distance with inertial sensors is a much more

challenging task. Prior works only track coarse-grained inertial

distance for short-time motion, by counting steps and estimating

step lengths [36, 44]. Low-cost inertial sensors however, are hardly

able to track precise distance [12], for which RIM offers a superior

complement. Inertial sensors have also been employed for activity

recognition and classification, which we envision RIM will enable

better. We note that RIM is particularly complementary to conven-

tional inertial sensors and we envision the comprehensive fusion

of them in the future.

Many other modalities can also track the location of objects,

including computer vision [7, 24], visible light [16, 20], acoustic

sensing [21, 45], etc. These technologies usually require special in-

frastructure or are vulnerable to dynamic ambient contexts, making

them less favorable for ubiquitous motion measurements. They do

not resolve multiple inertial parameters either.

9 CONCLUSION

This paper presents RIM, a precise inertial measurement system

that estimates centimeter-level moving distance, heading direction,

and rotating angle using commercial WiFi radios. It works over a

large multipath rich area wherever is covered by a single unknown

AP that is arbitrarily placed, without the support of additional in-

frastructure or sensors. By doing so, RIM opens up WiFi-based

motion sensing to new applications demanding accurate and reli-

able motion measurements, such as robot monitoring, VR tracking,

mobile gaming, etc. This work does not raise any ethical issues.
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