
1997 IEEE International Symposium on Circuits and Systems, June 9-12> 1997, Hong Kong -_____

Low Power/High Speed design of a Reed Solomon Decoder

Arun Raghupathy and K. J Ray Liu
Electrical Engineering Department and Instj t u te for Systems Research

University of Maryland, College Park

ABSTRACT OF T H E PAPER
With the spread of Reed Solomon codes t o portable appli-
cations, low power RS decoder design has become impor-
tant. This paper discusses how the Berlekamp Massey
Decoding algorithm can be modified in order t o obtain a
low power architecture. In addition, modifications thut
speed-up the syndrome and error computations are sug-
gested. T h e n the VLSI design of a low power/high speed
decoder i s described. T h e power reduction when com-
pared t o the normal design i s estimated.

I. INTRODUCTION

Reed Solomon (RS) codes, in recent years, have found
widespread use in applications range from consumer
products (such as audio CD players) to space communi-
cations. RS codes are good candidates for use in portable
wireless receivers as a part of concatenated coding sys-
tems with convolutional codes. In portable systems low
power operation is extremely desirable because of the
need to extend battery lifetimes. In this paper, we pro-
pose a modified Berlekamp Massey (BM) algorithm that
leads immediately to an efficient high speed/low power
VLSI architecture for RS decoding.

Various approaches have been used for decoding RS
codes ([2],[3],Chap.5 in [4]). The approach we have used
first involves the computation of the syndrome. This is
followed by the application of the BM algorithm to corn-
pute the error locator and error evaluator polynomials.
Finally, a Chien search is performed in conjunction with
Forney's method to find the error locations and error
values.

Algorithm/architecture modifications can be used to
favorably impact the power consumption of a VLSI de-
sign. Using parallelism enables the circuit to operate at
lower speeds while maintaining the overall throughput
constant [5] , [6] . Basically, area is tradedoff for low power
operation. We apply an interesting transformation to
create additional parallelism in the BM algorithm while
reducing the number of iterations from 2t to t , where t is
the error correcting capability of the RS code. In addi-
tion, parallelism is exploited in the syndrome and error
computations.

In section 11, we propose modifications to the BM de-
coding algorithm for an (n , k) RS code that can correct
t errors, where n - IC = 2t . In the section 111, we discuss
the VLSI architecture of a low power decoder and esti-
mate the power reduction when compared to a normal
design.

*This work is supported in part by the NSF NYI Award
MIP9457397 and the ONR grant N00014-93-10566.

11. REED SOLOMON DECODING
Let the syndromes of an (n, n - 2 t) RS code,be denoted
b y v j , j = 0 , 1 , . . . , 2 t - l . Wewilltrytofollowasclosely
as possible the notation used in [l] . The syndrome com-
putation is just an FFT computed on a Galois field.

n-1

i=O

Each syndrome can be computed by performing a series
of multiply-adds. The computation can be reorganized
as

so that tlh%mber of iterations re&%ed to compute the
syndromes gets halved. Therefore, the input data rate
can be doubled.

The error computation can be written as

where A(.) is'the error locator and I?(%) is the error
evaluator polynomial [1] . In this case, two et's can be
computed in parallel. Again this leads to a 2 times speed
up in computation.

The modifi~a~tioins required in the BM Algorithm are
more involved. The BM Algorithm can be written as
follows
Berlekamp Massey Algorithm
1. for T = 1 to 2t
2. A, =I. ~ , - 1 - ~

3.
4.

LP-1 A(,.-1)

if A,. # 0 then b l = 0 else b l = 1
i f 2 L - 1 <=I (T - 11 then b2 = 0 else 62 = 1

7. end for

Table 1: Updating A(z) ,B(z) and L for the BM algo-
rithm

A number of observations can be made. The degree
of h (x) increases in iteration r only when A, # 0 and
2 L 5 r - 1. This indirectly implies that while A(z) can

0-7803-3583-X/97 $10.00 01997 IEEE 2060

change every iteration, its degree can increase only once
every two iterations.

In addition, we note that B (z) and L need to be up-
dated only when the degree of A(.) increases. Otherwise
B (z) is just shifted and L remains the same. This seems
to suggest that if we looked at updating the pair of poly-
nomials (%), (.)) to (A (2 k) y), (.))
without going through (A (2 k - 1) (z) , B(2k-1 (z)) we can
halve the number of iterations. Ofcourse, this modified
iteration will be more complicated than a single itera-
tion of the original alg9rithm. In general, the modified
iteration takes time T > T . In order to get an im-
proved algorithm in terms of speed/power, it is enough
if T' < 2T. In particular, the modified algorithm must
expose additional parallelism s? that the above holds.
Ideally, we would like to have T as close to T as possi-
ble to get a doubling in speed.

Let A21;-1 be the discrepancy in the k th iteration
of the modified algorithm. We want to design the new
algorithm, so that this matches the discrepancy A of the
original algorithm at the odd iteration. Let 621; be the
predicted discrepancy at the even step of the original
algorithm.

Let us look at 2 consecutive iterations (one odd and
one even) in the original algorithm. There are 5 pos-
sibilities for updating A(.). In the first case , A(.) is
unchanged. The next 2 cases correspond to A(.) getting
updated in an odd iteration with or without an increase
in L, respectively. Cases 4 and 5 correspond to A(.)
getting updated in an even iteration with or without an
increase in L, respectively. As far as B (z) is concerned
there are 4 possibilities. In the first case, B (z) is just
shifted in both iterations. The next two cases, corre-
spond to an update in one of the iterations and a shift
in the other. The final case in which updates occur in
both iterations is impossible.

We note that the 2 tests on L21c-2 and L 2 k - 1 (Le
2 L 2 k - 2 5 2k - 2 and 2 L 2 k - 1 5 2k - 1) are equivalent
for our purposes. To show why, we consider two cases.
If the degree of A(.) does not change in the odd itera-
tion, then L 2 k - 2 = L 2 k - 1 . In this case, both the tests
are equivalent. This is because 2L2k-2 5 2k - 2 =+
2 L 2 k - 1 = 2L2k-2 5 2k - 1 and 2L2k-1 = 2 L 2 k - 2 5
2k - 1 + 2 L 2 k - 2 5 2k - 2 (since 2 L 2 k - 2 cannot equal
2k - 1). The other case occurs when the degree of A(.)
increases in the odd iteration then we are uninterested

A(.) cannot increase in 2 consecutive iterations.
In the case when &1;-, = 0, 6 2 k equals A 2 k because

A(2k-1) (x) = A(2k-2)(z) . We also have L 2 k - 1 = L 2 k - 2

and B(2k-1) (z) = B (2 k - 2) (z) . If now, 6 2 k = 0 then
A(2k)(z) = A2"'(z), L 2 k = L 2 k - 2 and B (2 k) (z) is just a
twice shifted version of B (2 k - 2) (z) (See 1st row of Table
2) . On the other hand, if 62k # 0 there are 2 subcases
corresponding to 2 L 2 k - I 5 2k - 1 and 2 L Z k - 1 > 2k - 1
respectively. When 2 L 2 k - 1 5 2k - 1, the degree of A(.)
can increase at the even iteration and B (z) needs to hold
the the old contents of A(.) as B (2 k) (z) = 6;iA(2k-2)(z)
(See 2nd row of Table 2) . When 2L2k-1 > 2k - I, A(.)

in testing whether 2 L 2 k - 1 5 2 k - 1 since the degree of

is updated in the even iteration without degree changing
and B(")(z) is updated by just shifting it as B(")(z) =
z2 B(2k -2) (z) (See 3rd row of Table 2) .

The case when A,,-, # 0 is more difficult to handle.
The first subcase occurs when 2L2k-2 5 2k - 2 , so that
A(.) can increase in degree in the odd iteration and B (z)
is updated to hold the old contents of A(.) as B('"') =
A-' 2 k - 1 A(2k-2)(z) (See 4th row of Table 2) . In the even
iteration, as mentioned before, A(.) cannot increase in
degree, therefore = z B (2 k - 1) . The update for
A(z) can be derived as below. The derivation proceeds
along the lines used in [l] to prove the BM Theorem.
The odd iteration update can be written as

(x) l \ (z k p l) (z) = A(2"2)(z) + Alzz
The even iteration can be written as

R (2 k) (z) = A(2"2)(z) + Alz' A("-')(z) + A2z A(2"2)(z)
Let us choose m as the last iteration at which an in-

crease of degree in A(%) occurred. If we now choose I
such that 2k - 1 - 1 = m then we get

- L l e - l A (2k-1)
Aik-1 - E,=, ~ 2 k - 2 - 3 = Azk-1 +AlAm

Shk 1 C;:,' A j 2 " ~ 2 k - 1 - J 6 2 1 ~ + A2A21c-1 + Alym
where -ym = cjz0 Lk-1 f i j m - 1) U 2 k - 1 - 3 - l . Using the condi-

tions] Aik-l = 0 and 6i1; = 0, we get A1 = --Ak1A2k-1
and A2 = -&k-1 (6 2 k - A ; 1 y m A 2 1 ; - 1) .

Note in table 2 that we update A;'y, instead of both
A, and y,.This variable changes whenever L changes.
If L changes at an odd iteration, A, = A Z k - 1 and y, =
6 2 k so that must be updated to hold &1;--162k.

When we look at the case when L changes at an even
iteration, we see that A, = 6 2 k . In order to find ym
for this case another variable r/2k has to be introduced.
Then we have -ym = 721;.

The second subcase occurs when Azk-1 # 0 and
2L2k-2 > 2k - 2. In this case A(.) cannot increase
in degree during either of the 2 iterations. This means
that = xzB(2rc-2) (see 5th row of Table 2) .

The odd iteration update can be written as before.
The even iteration can be written as

(x) A (2 k) (z) + Alzz A(m-l)(z) + AZzz++l A("-')

where I and m are chosen as before.

A2k-i = AD-1 + AI&
61, I 6 2 k -CA2Am+A,ym

Again choosing AI and A2 such that = 0 and
6ak ,= 0, we get A1 = - - A i 1 A 2 k - 1 and A2 = -Am1(62k-

The complete algorithm is shown in Table 2. Upto this
point, we have discussed the computation of A(z) with-
out referring to I'(z). We can compute r(z) by a set of
parallel iterations on (r(z), A(z)) with the same update
matrix & f k (z) (See Chap. 8 in [I]). The only difference
is that the initialization is r(z) = 0 and A(z) = -zP1.

A, ymA2k-1).

Modified Berlekamp Massey Algorithm
0. Initialize A(. r) = 1, B (z) = 1

2061

1 1 [] 1 2 k - 1- L2k-2 1 A;:-162k
"A;;-1

b l b2 L 2 k - 2 f f 2 k - 2

Table 2: Updating A(x) ,B (z) and L for the BM allgo-
rithm where G(z) = 1 + AF~-,,&k-~x and Gl(z) =

1. for k = 1 to t

p 2 k - 1 z 2 + A Z k - l X

b2 == 1 fi

10. Q 2 k = g k (a 2 k - 2)
11. end for

111. VLSI ARCHITECTURE AND DESIGN
In this section, we describe the VLSI architecture used
for 2 decoders for the (63,57) RS code over GF(64) that
can correct upto 3 errors. The first one is a design based
on the normal BM Algorithm and the second is a design
that incorporates the algorithm modifications that we
suggested in earlier sections. Both designs were imple-
mented as a 3 stage pipeline comprised of a syndrome
stage, the BM stage and the error stage. Each stage was
implemented as a state machine.

The Galois field multipliers and inverters were implie-
mented using the "recursive" representation of the Ga-
lois field in terms of its subfield (the Galois field is the
quadratic extension of the subfield)(Chap. 10 in [4]).
This allows for an efficient implementation. In addition,
the binary representation was chosen to minimize area
while not sacrificing speed.

A. Syndrome Computation Stage
The summation in the normal case can be computed in
a straightforward manner using Horner's rule as

(4) s, = ((. ' . (TJn-lab+J + 7 + ') f f b + J + . ' .)ab+J + 00
In the modified case, again Horner's rule can be alp-
plied to compute the 2 sub-summations. The 2 sub-
summations can be computed in parallel. Figure 1 shows

(a) Cell j for syndromes
CLW2

REG

CLW2 a2(b+j)

9
REG

DODD+

Z &+i)

(b) Modified Cell j for syndromes
Figur'e 1: Syndrome Computation

:; a2(b+j) _1_; DI -

the computation for the 2 cases.

B. BM Algorithm Stage

In the normal case, 2t iterations are required whereas
just t iterations are needed in the modified case. This
means the modified BM stage can accept syndromes at
twice the rate of the normal BM stage as long as the
critical pa,th remains the same. In both cases, the inner
products required to evaluate A, S and 7 are computed
serially in t + 1 iterations (since the degree of A($) is
atmost t . Each inner product is computed using just
1 multiplier and 1 adder. In addition, the polynomial
updates required in the algorithm are computed serially
in t + 1 iterations (since the degrees of R (z) and B(z)
are atmost t) .

C. Error Computation

Note that we need to compute A(a-'), A'(a-') and
r(aP) in order to compute et. In any field of char-
acteristic 2,

t

h' (x) -3 khkZk- ' = hkZ"' (5)
k=O k:odd

therefore, (~x-~)A'(d) can be obtained as part of the . ,
computation for A(&). In addition, the circuit com-
putes I?l(x) = d'(x) . We can write the error computa-
tion in these term.s as

if A(a?) # 0
r i (c i) if A (K i) = 0 (6) { :- a (b - l) i a - ' *A'(a-<)

ei ==

This implies that choosing b = 1 avoids the scaling by
& l - l) i

The Figure 2 shows one of the modules in the nor-
mal and modified cases. In the normal case, adding
the outputs of the odd cells a t time instant k gives
(a-k)A,,,(a-zk) while the sum of the even cells gives
Aeven(a - -2k) . Summing the 2 results gives A (Q - ~) . In
the modified case, adding the upper outputs of all the
odd cells gives (a -2k)A , ,d (a -4k) while the sum of the

2062

4 < il, AT a-k THE ’
Kth INSTANT

(a) Cell i for error computation

I ’ A T T H E
Kth INSTANT

CLWZ dZI

v

,--i

upper outputs of all even cells gives (ileuen(a-lk). On
the other hand, adding the lower outputs of all odd
numbered cells gives (a : - (2 k + 1)) A o d d (~ - (4 k + 2)) while
the sum of the lower outputs of all even cells gives
(Reven(a-(4k+2)). Since the critical path remains the
same, this means that the error computation cells can
produce output at twice the rate of the normal cells be-
cause of the 2 fold parallelism.

D. Power Estimate

Let us assume that the normal circuit can work at a
maximum clock speed of fJ and the modified one at a
maximum clock speed of f . We can operate the mod-
ified design in 2 modes - high speed and low power. In
the high speed mode the modified design is operated at
the same vo$age as the normal design. The throughput
will be 2 * f / f times the throughput of the normal de-
sign. So a speedup can be expected as long as f ‘ > f 12.
In the low power mode, the throughput is maintained a
constant and the voltage of the modified design is scaled
down. This means that the clock rate of the low power
design can be slowed down to f 12. If the critical paths of
the normal and modified designs,& the maximum volt-
age V are T = 1/ f and T = 1/ f respectively, then the
voltage can be reduced to V’ (at this voltage the critical
path in the modified design becomes T“ = 2T). The
ratio of capacitances can be estimated as the ratio of ac-
tive areas (A) of the designs. So the ratio of the power
consumption in the modified design to the normal design
can be estimated as

(7)

These kind of simple first order estimates can be fairly
accurate based on our prior experience [6]. The behav-
ioral decription was specified in the hardware description
language(sfl) for PARTHENON [7] and then synthesized
into a .layout using a 2p double metal SCMOS library.

Table 3 shows the transistor counts and the active area
of the layout. We note that the transistor count is more

or less doubled while the ratio A M / A N is 2.37. Also,
note that T‘ = 35ns and,T = 30ns. This gives us a
bit rate speedup of 2T/T = 1.71. Based on the first
order model for the delay in terms of the power supply
[5], we can scale the voltage for the modified design from
V = 5V to V’ = 3.6V (the delay increases from T’ =
35ns to T“ = 60ns). Using the above equation, this
leads to a power saving of about 35%. All our speed
estimates are based on IRSIM, in which each node has a
capacitance and each transistor is modeled as a resistor
in series with a voltage-controlled switch. At present, we
are in final testing stages before we can send our chips
for fabrication.

Bit Rate(1RSIM’I

Table 3: Comparison of Normal and Modified Designs
IV. CONCLUSION

In this paper, we first proposed an algorithm that leads
to a high speed /low power RS decoder. Then we showed
how this leads to an efficient VLSI architecture. Our
present IRSIM estimates indicate that a speed-up of 1.71
can be obtained with the modified algorithm. Alterna-
tively, we can scale down the voltage to reduce the power
consumption by 35% when compared with the normal
design.

REFERENCES
Blahut, Algebraic methods for Signal processing and
Error control coding, Springer-Verlag, 1992.
S . Whitaker,J. Canaris and K. Cameron, “Reed
Solomon VLSI Codec for Advanced Television,”
IEEE Transactions o n Circuits and Systems for
Video Technology, vol. 1, no. 2,pp. 230-236, June
1991.
H. M. Shao, T. K. Truong, L. J . Deutsch, J. H. Yuen
and I. S. Reed, “A VLSI Design of a Pipeline Reed-
Solomon Decoder,” IEEE Transactions on Comput-
ers,vol. C-34, no. 5,pp.393-402 May 1985.
Wicker and Bhargava,Reed-Solomon codes and ap-
plications, IEE Press, 1994.
A . P Chandrakasan and R. W Brodersen, “Mini-
mizing Power Consumption in Digital CMOS Cir-
cuits,”Proceedings of the IEEE, Vol. 83, no. 4,
pp.498-523, April 1995.
A.-Y Wu, K. J . R Liu, Z. Zhang, K. Nakajima,
A. Raghupathy, “Low-Power Design Methodology
for DSP Systems using Multirate Approach,” Pro-
ceedings IEEE Symposium on Circuits and Systems,
May 1996.
Y. Nakamura, K. Oguri and A. Nagoya, “Synthesis
from pure behavioral descriptions,” in High Level
VLSI Synthesis (R. Camposano and W. Wolf,eds.),
Kluwer Academic Publishers, 1991,pp.205-229.

