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ABSTRACT 
In this paper, we develop an efficient architecture for video 
scaling based on the adaptive image scaling algorithm [3] ,[4]. 
We then develop the design of the computation units and 
perform synthesis to show that the chip area required to 
perform scaling from QCIF to 4CIF is about 20mm2 using 
0 . 5 ~  technology. 

In video applications, the data rate involved is extremely 
high. When the available bandwidth is limited, the im- 
age size is restricted. A high-performance real time scaling 
technique that can scale an image while introducing little 
distortion will allow us to transmit video data using a small 
bandwidth while maintaining perceptual quality. Another 
motivation for developing a good scaling algorithm is to 
enable display of lower resolution images on higher resolu- 
tion monitors (For eg., an NTSC format picture on HDTV 
monitors). Simple scaling techniques (such as simple pixel 
replication, bilinear interpolation and cubic interpolation) 
cause visible effects such as jagged or blurred edges when 
the images contain sharp edges or thin lines. Non-linear 
model based interpolation techniques have been proposed 
in [2] and [3]. However, these technique were considered 
difficult to implement in practical systems because of the 
complexity of the classification and the filtering require- 
ments. 

We develop an architecture based on the algorithm in 
[3],[4]. Specifically, we consider an architecture for scaling 
QCIF images to 4CIF format at 30 frames/sec. A straight- 
forward architecture cannot meet the speed requirements. 
We apply transformations to the data flow graph to obtain 
an efficient architecture that meets the throughput require- 
ments. The ASIC area requirements are then estimated 
based on a synthesis starting from a Verilog description of 
the computation units. 

1. INTRODUCTION 

2. ARCHITECTW AND DESIGN 
In this section, we develop an efficient hardware architec- 
ture for scaling by a factor of two in each dimension. The 
algorithm for scaling of 24-bit YUV images is summarized 
below. Simple bilinear interpolation is used for the U and 
V components. The data flow graph for the Y component 
is shown in Fig. l(b). In Fig. l(b), the 4 output pix- 
els corresponding to pixel p[O,O] in the original image are 
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being computed. In Fig. l (b) ,  a[-1:2,-1:2] correspond to 
the orientation angles of the pixels p[-1:2,-1:2], respectively. 
The filter coefficients, used in computing the 4 output pix- 
els corresponding to the input pixel p[O, 01, are represented 
by r[-1:2,-1:2]. The pixel memory stores the pixels of the 
original image. The Sobel block computes the gradients fx 
and fv in the x and y directions at p[2,2] using the pixels 
within dotted lines in Fig. l(a). The angle block computes 
edge orientation at p[2,2] by calculating tan-'( -fi/f,) 
and quantizing the result into 8 possible orientations. The 
neighborhood is classified as oriented if there is a dominant 
orientation (in particular, if an orientation occurs more than 
6 times within the 16 pixel neighborhood). Otherwise, the 
pixel's neighborhood is classified as non-oriented. Filters 
corresponding to the 8 possible orientations are pre-stored 
in ROM. If the neighborhood is oriented, then the appropri- 
ate oriented filter coefficients are loaded from ROM and the 
interpolated pixels. If the neighborhood is non-oriented, the 
Y components are interpolated bilinearly using the same fil- 
tering unit (using coefficients corresponding to the bilinear 
case). 

l (b) ,  the memory 
bandwidth required from the pixel memory is 9 + 16 = 25 
pixels for every input pixel (or every 4 output pixels). Sim- 
ilarly, the memory access rate per input pixel for the angle 
memory is 15. This memory bandwidth can be reduced 
by introducing some storage elements (i.e. registers) into 
the Sobel, histogram and filtering units. In particular, the 
memory access rate for the pixel data memory can be re- 
duced to 7 per input pixel by providing storage for 9 pixels 
within the Sobel operator. Similarly, the memory access 
requirements for the angle memory can be reduced from 15 
to 3. The pixel memory access requirements can be further 
reduced to 5 by sharing data available in the Sobel unit 
with the filtering unit (See [l]). Due to the structure of 
the data accesses for pixels and angles, delay lines can be 
used instead of random access memories. Also, since the 
graph is feedforward, we can pipeline the architecture at 
any feedforward cutset. 

2.1. Sobel Computation 
A straightforward implementation of the Sobel operator 
would require 10 adders to  compute f x  and f,. We can 
use sub-expression sharing to reduce the complexity of the 
Sobel operator to 8 additions (See Fig. 4(a) where f ( i , j )  is 
the Y component pixel value a t  position (2 ,  j ) ) .  The critical 
path, if the data flow graph is implemented as a combina- 
tional circuit, is given by 2 1-bit full adders and 1 12-bit 
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(corresponding to  the output precision of 12-bits assuming 
8-bit inputs) carry propagate adder (CPA). If the through- 
put of the system is not constrained by the Sobel operator, 
we can fold the data flow graph so that we use only 4 adders 
and reuse the adders over 3 clock cycles. Folding reduces 
the adder complexity in half at the cost of some registers 
and additional control. 

2.2. Orientation Angle Computation 
The most obvious approach to compute the quantized ori- 
entation is to compute the ratio fz/fv at an appropriate 
precision and follow that by a ROM table lookup. The an- 
gles 4% = 11.25' + 22.5' x i; i = 0,1,. . . 7  correspond to the 
transition levels and the angles 7% = 22.5" x i; i = 0,1, . . . 7  
correspond to the reconstruction levels of the quantization 
of tan-'(- fz/f,). For a 2" error in the specification of the 
transition levels, we need to choose the precision so that we 
can represent the difference tan(11.25'+2')-tan(11.25') = 
0.036 (i.e. a precision of atleast 5 bits after the decimal 
point). This requires that the divider provide an output of 
12+5 = 17 bits (or, a ROM look-up of 217 = 128K words of 
size 3 bits each). This leads to high hardware complexity. 

The CORDIC processor in angle accumulation mode [5] 
can be used to find the angle 0 = t an - ' (Y /X)  correspond- 
ing to the initial point with coordinates (XI Y ) .  The angle 
is found by applying a series of shift and add operations on 
the initial coordinates ( X , Y ) .  Note that the angle can be 
represented as a sequence of ptls (the angle is accumulated 
as z ( i + l )  = z ( i ) -p%u( i )  where u( i )  = 2-'(*)). If we want to 
define the quantization regions with an accuracy of 2", when 
using the shift sequence s ( i )  = i we need atleast 6 stages 
of CORDIC followed by a look-up table (addressed by the 
vector pt ;  i = 0,1, " . , n  - 1). The look-up table has 26 
words of size 3 bits. This procedure can be modified to per- 
form the required computation using 5 stages followed by a 
look-up table of size 24 words of 3 bits. For example, we can 
write 78.75' M tan-'(2') + (tan-'(2-') + t ~ n - ' ( 2 - ~ ) )  + 
( t ~ n - l ( 2 - ~ )  + tan-' (T4)). Similarly, we can express other 
transition angles using s ( i )  = 0,2,3,3,4; i = 0,1,2,3,4 
(See [l] for details). Using appropriate control to decide 
whether to  add or subtract at each stage, we can obtain 
the required quantized orientation angle. The complete ar- 
chitecture is shown in Fig. 2(a). This signal flow graph can 
be folded onto a single CORDIC-like processor to obtain 
an area efficient implementation or can be directly imple- 
mented as a combinational circuit. 

2.3. Histogramlike Computation 
We need to find the dominant orientation in the neighbor- 
hood as well as the number of times that orientation occurs. 
One efficient approach is the folded architecture shown in 
Fig. 3. The contents of the orientation angle registers are 
compared with the 3 bit-counter output every clock cycle. 
The outputs of the comparators are fed to a (16,4) com- 
pressor to obtain the total number of pixels that have the 
same orientation corresponding to the 3-bit counter con- 
tents. The dominant orientation and maximum count reg- 
isters are both initialized to zero. Also, during each cycle 
the output of the (16,4) compressor is compared with the 
previous contents of the maximum count register. If the 
present output of the (16,4) compressor is larger than the 
previous contents of the maximum count register, both the 

maximum count and dominant orientation registers are up- 
dated. The maximum count register is updated with the 
output value from the (16,4) compressor, while the domi- 
nant orientation register is updated with the present 3-bit 
counter contents. Therefore, after 8 cycles the desired his- 
togram data is obtained in the maximum value register <and 
dominant orientation registers. 

2.4. Oriented and Non-oriented Filtering 
It was found (See [l]) based on an analysis of the required 
oriented filters and the resultant magnitude of quantization 
errors that 11 bits are sufficient to represent the filter coef- 
ficients. Clearly, the fastest implementation would require 
16 multipliers (corresponding to the number of pixels in 
the neighborhood) per output pixel. This means a total of 
48 multipliers. Since the filters corresponding to different 
orientations are different, general purpose (not fixed coeffi- 
cient) multipliers are required. It would be too expensive 
to have such a large number of multipliers on a single chip. 
We need to apply some transformation so that the multi- 
plier hardware can be reused. One approach is to fold the 
computation required for each output pixel onto a smaller 
number of multiply-accumulate (MAC) units (the folding 
factor can be determined based on the throughput require- 
ments). The architecture for computing one interpolated 
Y component output is shown in Fig. 2(b). The partial 
sums of the filtering operation are accumulated in carry 
save form. The final addition is performed after the 16 
MAC'S have been completed. 

3. SYSTEM DISCUSSION A h 9  VLSI DESIGN 
We consider here a design that can scale from QCIF (144 
rows by 176 columns) to 4CIF (576 rows by 704 rows) at 30 
frames per second. As suggested in [4], performing the scal- 
ing in 2 steps (i.e. from QCIF to CIF and then from CIF 
to 4CIF) rather than a direct scaling leads to better pler- 
formance. The system architecture is shown in Fig. 4(b). 
Four input delay lines are needed for the Y component and 
two lines (of half the size) for the U and V components. In 
order to convert the output pixels to progressive scan order, 
output sync delay lines are required (4 lines are required for 
each of the Y, U and V components, out of which 2 lines 
are used to store the output from the filter/bilinear units 
when the other 2 lines are used to provide the outputs in 
progressive scan order). See [ l j  for details. 

A QCIF video sequence at 30 frames/sec has a pixel 
rate of 7.6 x lo5 pixels/s (a CIF video sequence has a r,ate 
3 . 0 4 ~ 1 0 ~  pixels/s). For QCIF to CIF (CIF to 4CIF) conver- 
sion we need to compute the 4 output pixels corresponding 
to one input pixel within 1315ns (328ns). In order to deter- 
mine whether pipelining between units is required, we first 
estimate the number of clock cycles required by each unit 
to complete the computation. Based on the architecture 
shown in Fig. 2(b), atleast 17 clocks are needed to compllete 
the filtering computation. Similarly, the folded Sobel com- 
putation, the folded histogram architecture and the foldled 
angle computation require 3, 10 and 7 clock cycles, resplec- 
tively. Finally, taking into account the interface between 
these units as well as with the output synchronization de- 
lay lines, about 42 clock cycles are required to compute the 
output pixels corresponding to one input pixel. This trans- 
lates to a clock cycle of requirement of 328/42 % 7.81ns for 
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‘ Unit Std. Cell Std. Cell 
Count Area ( p 2 )  

Sobel 702 911601.00 
Angle I 815 I 769414.50 I 7 I 10.81ns 

Histoeram I 410 I 393295.50 I 10 I 8.0411s 

Clock Timing 
Cycles 

3 10.761s 

” 
Filter 

B i 1 in ear 
Table 1: Cell Area and Timing from Synthesis 

CIF to 4CIF conversion. We showed that the throughput 
can be attained in a real design by describing the various 
blocks in Verilog, synthesizing them and performing a static 
timing analysis to estimate the speed (See [l]). The syn- 
thesis was performed using a 0 . 8 ~  standard cell library with 
Cadence’s Synergy tool. If a straightforward approach does 
not lead to the required throughput, then there are two pos- 
sible approaches. The first approach is to apply pipelining 
to meet the throughput requirements. Alternately, we can 
assume a newer technology such as 0.5,~ and perform ap- 
propriate scaling of our 0 . 8 ~  results. If we assume a linear 
scaling of propagation delay [6] with technology, then it is 
enough to obtain a critical path of 8 x 0.8/0.5 = 12.8ns (in 
reality, close to linear scaling is possible [7]). 

Various logic optimizations and re-organizations were 
applied to meet the throughput requirements. The results 
summarized in Table 1. In addition, we also need a con- 
troller (with cell count 2311 and cell area 2793393~’) that 
has all the required registers and provides appropriate com- 
mands for the computation units. Note that three copies 
of the filter unit are required to compute all three inter- 
polated output pixels in parallel. We estimated the area 
based on an automatic layout of the standard cells using 
Cadence’s Silicon Ensemble corresponding to the computa- 
tion and control circuitry. The area of the delay lines and 
ROM were estimated based on the designs in 181, [9]. The 
computation and control parts required an area of 35.3mm’ 
at 0 . 8 ~ .  The delay lines required an estimated area (based 
on [9]) of x 43mm2 at 0 . 8 ~ .  This implies a total area 
of M 78.3mm’ at 0 . 8 ~ .  Assuming that the areas scale by 
(5/8)2, an area of about 30.6mm2 at 0 . 5 ~ .  The results indi- 
cate that without pipelining between units we can achieve 
the throughput required to scale a QCIF image to a 4CIF 
image at 30 frames/sec using a 0 . 5 ~  technology. 

We have shown that an efficient VLSI architecture and 
implementation can be obtained for QCIF to 4CIF con- 
version at 30 frames/sec. The total chip area for such an 
implementation was estimated to be about 20mm2 at 0 .5 ,~.  
Further speed-up can be obtained by pipelining so that the 
scaling architecture can be used with larger image formats. 

841 815625.00 20 9.8011s 
258 395838.00 2 9.12ns 
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