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Abstmct- To determine protein structure by means 
of NMR spectroscopy, the parameters of NMR spec- 
troscopy have to be estimated. This paper proposes a 
novel parameter estimation algorithm for NMR spec- 
troscopy. The new algorithm is based on the matrix 
pencil consisting of the NMR data. Compared with 
the Kumaresan-Tufts (KT) algorithm [l], The new al- 
gorithm improves the noise threshold by about 6dB. Its 
effectiveness is demonstrated by computer simulation. 
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I. INTRODUCTION 
To determine protein structure by means of NMR spec- 

troscopy, the parameters of NMR spectroscopy have to be 
estimated. At early stages of NMR spectroscopy analy- 
sis, the application of discrete Fourier transform (DFT) 
has made a great progress in this field. However, the fie 
quency resolution of the DFT-based algorithms is limited 
by the short aquisition time of the NMR signal and mea- 
surement noise. Since NMR spectroscopy can be modeled 
as the summation of damped sinusoids, the model-based 
algorithms have been used in the parameter estimation of 
NMR spectroscopy to improve the frequency resolution. 
The Kumaresan-Tufts (KT) algorithm [l] is one of the 
most effective algorithms. But, it is still sensitive to mea- 
surement noise. Therefore, it has high noise threshold. To 
alleviate noise effect and improve resolution, we propose a 
matrix pencil algorithm in this paper. 

11. MATHEMATICAL MODEL OF NMR SPECTROSCOPY 
Before developing our algorithm, we will briefly describe 

the mathematical model of NMR spectroscopy. The de- 
tailed description is given by [2] .  

Discrete NMR spectroscopy can be expressed as [2] 

K 

k r l  

where K the order of the signal, 8 k  = - a k  + p k ,  and 
Wk E [-T, TI, Qk E R+, Which k4 called the damping factor. 
The larger the a k ,  the faster the sinusoid with frequency 
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Wk decays. Without loss of generality, we suppose that Sk 
be distinct. If the meafllrement enor or noise {w(n)}  is 
considered, the measured NMR data can be expressed as 

ar(4 = 44 -t. ( 2 )  

for n = 0, 1, . . . , N - 1. Normally, we have to make 
sure N 1 2K to estimate the frequencies and the damping 
factors of NMR spectroscopy. 

111. ALGORITHM DEVELOPMENT 
From the measured data, we first set K x K data ma- 

trices 
V ( 4  e * *  ~ ( n  + K - 1) ) . (3) 

A n = ( :  . .  

) . (5) w n = ( :  . .  

* * ~ ( n  + K )  . .  . .  
Y(n + 1) 

y ( n + K  - 1) * * .  y(n+ 2K - 2) 

for n = 0 , 1, 
shown that 

where 

, N - 2K + 1. From (1) and ( 2 ) ,  it can be 

An STC9"S + Wn, (4) 

44 ~ ( n f K - 1 )  
w(n + 1) w ( n + K )  

. .  . .  
U J ( ~  + K - 1)  - a *  t ~ ( n  + 2K - 2) 

In the above expression, 

diag{+} = [ea1, ea2,. * , edK], (6) 

diag{C} = [Cl, CZ,"', CK], (7) 
s = [~(sl),r(sz),...,r(sK)IT, (8) 

If there is no measurement noiq, the6 W, = 0 for all 
n = 0 ,  1,..-, N - 2 K + 1 .  Sinceskfork=l ,  2 , . - - ,  K 
are distinct, S and 9 are of full rank. Hence, An for 
n = 0, 1, - -. , N - 2K + 1 are invertable and 

A;'A,,+~ = s - l ~ .  (10) 

Therefore, the eigrnvalues of A,'An+l are eel, eU2,- - I, 
if there is no measurement noise. Hence, Sk can be esti- 
mated from the eigenvalues of A,''An+l. 
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Iv. SELECTION OF WEIGHING FACTORS VI. CONCLUSION 
The estimation performance of sk relys on how accurate 

the estimation of S " W  is. To obtain a good estimation 
of P = S-'@S, we construct the following statistics 

This paper propose a novel parameter estimation al- 
gorithm for NMR spectroscopy. Computer simulation 
demonstrates that the new algorithm can estimate the pa- 
rameter of NMR spectroscopy effectively. We are currently 
trying to generalize the algorithm to the parameter esti-. 
mation of multi-dimensional NMR spectroscopy. 

N - 2 K  

i ;= C a n ~ ; l ~ n + l r  (11) 
n5i0 

where an's are the weighing factors to be determined. 
To make the estimation unbiased, we must choose 

From (4), if the signal-to-noise ratio is high, by direct 
c:::" an = 1. 

matrix calculation, we have 
N-OK 

n=O 

where W,, represents the  effect of the measurement noise 
which can be written as 
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W, = A,'{WnP + Wn+l}. (13) 

From the statistics theory, to minimize 11 f; - P 11, an 
should be inverse proprotional to the variance of the ele- 
ments in W n .  Hence, 

(14) 
Idet(An)12/K 
Var(w(n)) ' an a 

To reduce the effect of the measurement noise, the rank- 
deficient and Hankel properties of the prediction matrix 
can be used to supress noise in advance as described in [3]. 
After the noise reduction, 

- r r w  

alar.# 

Var(tUn) cx L + 1 - 11; - T I ( ,  L = [N/21. (15) 
Therefore, the optimum a, will be m L, 

(16) 
Idet(An)(2'K(L + 1 - IL - nl) 

Idet(Ak)lZ/"(L 4- 1 - IL - kl) * a, = 

As such, from (11) and (16), we can get the optimum esti- 
mation of P. By means of it, the parameters of the NMR 
signal ;an be estimated. 

V. COMPUTER SIMULATION 
We will test the performance of the new algorithm and 

compare it with the KT algorithm [l] by a computer sim- 
ulation example. 

The simulated data are generated by 

y(n) = e**" + esan + w(n),  n = 0, 1, * ,  24 (17) 
where SI = -0.2 + 32n(0.42), s 2  = -0.1 + 32~(0.52), and 
w(n) is complex white Gaussian noise with variance a2. 
The SNR used in this paper is the peak signal-to-noise 
ratio defined as 

1 
2 0 2  

SNR = lolog( -). 

W I , ~  and w2 for the new algorithm 
are shown in Figure 1 (a)-(d). From 
e threshold of our new algorithm is 
that of KT algorithm. 

Fig. 1. The MSE of (a) ai, (b) w, (c )  a 2  and (d) w2 obtained 
in 500 trails of the new algorithm and KT algorithm when 
81 = -0.2 + ~ 2 ~ 0 . 4 2 ,  ~2 = -0.1 4 - ~ 2 ~ 0 . 5 2  and N = 25. 
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