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Abstract—In this paper, we consider the downlink rate control
problem in a wireless channel. A dynamic programming optimiza-
tion method is introduced to obtain the optimal bit-rate/delay con-
trol policy in the downlink for packet transmission in wireless net-
works with fading channels. We assume that the base station is ca-
pable of transmitting data packets in the downlink with different
bit rates, 0 1 1. It is assumed that the symbol
rate is fixed in the system, and different bit rates are achieved
by choosing the transmitted symbols from the appropriate signal
constellation (adaptive modulation). The derived optimal rate con-
trol policy, in each time slot, selects the highest possible bit rate
which minimizes the delay and at the same time minimizes the
number of rate switchings in the network. The optimal bit-rate
control problem is an important issue, especially in packet data
networks, where we need to guarantee a quality of service (QoS) in
the network. Our analytical as well as simulation results confirm
that there is an optimal threshold policy to switch between different
rates.

Index Terms—Adaptive modulation, dynamic programming, op-
timal bit-rate control, wireless packet networks.

I. INTRODUCTION

T HE INCREASING popularity of the wireless network ser-
vices with limited amount of available resources calls for

highly efficient resource allocation methods [1], [2]. One of the
major issues in wireless data networks is the bit-rate control
problem [2], [3]. This is especially important in the downlink,
since in a wireless data network most of the traffic flow is from
the base station to mobiles, e.g., an Internet connection or a mul-
timedia (voice/image/data) connection. A good rate control al-
gorithm has a great impact on the network performance.

In this paper, we investigate the rate control problem for wire-
less channels from an optimal control point of view. There ex-
ists some literature on obtaining the nature of optimal control
policies for a wide range of related problems [1], [4]–[8]. In [5],
Lambadaris and Narayan have considered the problem of jointly
optimal admission and routing at a data network node. Another
good example is [9], which deals with optimal control of service
in tandem queues. In [10], the authors consider the problem of
stochastic control of handoffs in cellular networks and try to find
an optimal policy for the handoff problem.
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In this paper, we derive some properties of a class of optimal
rate control-problems using the theory of dynamic program-
ming (DP). The general nature of the problem considered is as
follows. The base station transmits the data packets over a wire-
less channel to mobile users (downlink problem). We assume
that the base station is capable of transmitting data packets with
different bit rates, . It is assumed that
the symbol rate is fixed in the system and different bit rates are
achieved by choosing the transmitted symbols from the appro-
priate signal constellations (adaptive modulation). The received
signal-to-noise ratio (SNR) by the mobile users is subject to
fluctuation due to fading and noise. In our system model, we as-
sume that no power control mechanism is in effect in the down-
link, and the base station transmits the packets always with its
maximum available power. Therefore, each user can be served
with highest possible bit rate, depending on channel condition,
and only the rate-control algorithm determines the appropriate
bit rate for each user. This would relieve the system from com-
plexities of the power control algorithm also. This is an impor-
tant advantage of our proposed system model which has clear
benefits in practical systems.

We assume a finite-state Markov model (FSMM) for the wire-
less channel. The mobile constantly monitors the received SNR.
At each measurement instant, the mobile observes the state of
the channel and determines the current channel state. At each
decision making instant by employing an optimal strategy, the
mobile decides whether to send a request to the base station to
switch the rate for the next time slot or not. To facilitate this,
the system needs a feedback channel (assumed to be noise-free)
so the mobile terminal can send its requests to the base station.
If there are admissible rates in the system, then we require
a -bit feedback channel. For example, in a system with
two admissible rates and , the feedback channel needs to
be only one bit. Fig. 1 illustrates the block diagram of a system
where the mobile employs an optimal strategy in choosing the
rate in the network.

The optimal policy which determines the choice of rates (or
modulation schemes) should try to use the highest possible rate
which minimizes the delay in sending the packets and at the
same time minimizes the number of rate switchings. We show
that under certain conditions the optimal strategy has the form of
a threshold policy. Intuitively, it makes sense that, for very low
SNRs, packets are transmitted in the downlink with the lowest
bit rate (e.g., transmitted symbols are chosen from a QPSK
constellation) and at very high SNRs packets are transmitted in
the downlink with the highest bit rate (e.g., transmitted
symbols are chosen from a 64-QAM constellation).

A properly designed rate control algorithm would result in
high data transmission quality (low delay) and low signaling
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Fig. 1. Block diagram of a system where the mobile employs an optimal strategy in choosing the data rate in the network.

and switching costs. In a wireless fading channel, signal strength
fluctuates due to multipath. Because of the statistical SNR fluc-
tuations, the bit rate during a data transmission session needs
to be switched between different admissible rates ranging from

to . In the absence of an optimal rate control policy,
this may cause unnecessary and frequent rate switchings which
results in protocol overheads (due to rate negotiation process).
If decisions are made solely on the basis of the “lowest delay”
without any penalty for switching the rate, then the “chattering”
effect may develop. It is clear that if there is no switching cost
for switching from one rate to the other, then the optimal rate
switching policy is trivial, which is to switch to the rate with the
smallest delay. On the other hand, delaying rate switching deci-
sions, as the signal strength received from the base station starts
to deteriorate, may result in the termination of the data transmis-
sion in the middle of a session (due to the SNR dropping below
the minimum acceptable threshold defined by the standard). A
sluggish policy which delays rate switching decisions for too
long will result in a high probability of forced termination.

Therefore, the objective of the rate control algorithm must be
to minimize the number of rate switchings while maintaining
the minimum delay in transmitting the packets. This calls for an
efficient rate switching algorithm which can capture a tradeoff
between data transmission quality and switching cost, in an ap-
propriately balanced manner.

The paper is organized as follows. In Section II, a finite-state
Markov channel model for wireless Rayleigh fading channels
is presented. Section III reviews some of the relevant results
from the theory of dynamic programming. The optimal data rate
control problem cast as an infinite horizon discounted cost dy-
namic programming problem forms the subject of Section IV.
The average delay of transmitting the packets and the expected
number of rate switchings and also a practical method to choose
a reasonable value for the rate switching cost are studied in Sec-
tion V. Simulation results are presented in Section VI. Finally,
Section VII includes our conclusions and remarks.

II. M ARKOV MODEL FORWIRELESSCHANNELS

The study of the finite-state Markov channel (FSMC)
emerges from early work of Gilbert [11] and Elliot [12]. They

study a two-state Markov channel known as the Gilbert–Elliot
channel. In their channel model, each state corresponds to a
specific channel quality which is either noiseless or totally
noisy. In cases when the channel quality varies dramatically,
modeling a radio channel as a two-state Gilbert–Elliot channel
is not adequate. This is the case for urban wireless fading
channels. The idea is to form a finite-state Markov model for
such wireless channels [13]–[15]. Let
denote a finite set of states. By partitioning the range of the
received SNR into a finite number of intervals, FSMC models
can be constructed for Rayleigh fading channels [13]–[15].
The members of set correspond to those partitions. Now let

, be a stationary Markov process. Since a
stationary Markov process has the property of time-invariant
transition probabilities, the transition probability is independent
of the time index and can be written as

(1)

If we assume that the transitions only happen between adja-
cent states, we obtain

(2)

In a typical multipath propagation environment, the received
signal envelope has the Rayleigh distribution. With additive
Gaussian noise, the received instantaneous SNRis distributed
exponentially with probability density function (PDF)

(3)

where is the average SNR. An FSMC model can be built
to represent the time-varying behavior of the Rayleigh fading
channel. We start by partitioning the received SNR into a finite
number of intervals. Let
be the thresholds of the received SNR. Then the channel is in
state if the received SNR is between and . For a
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Fig. 2. K-state noisy channel with Markov transitions modeling a Rayleigh fading channel.

packet transmission system, we assume that a one-step tran-
sition in the model corresponds to the channel state transition
after one packet time period . A received packet is said to be
in channel state , , if the SNR values
in the packet varies in the range . In this case, the
steady-state probabilities of the channel states are given by

(4)

In this FSMC model, we allow transitions from a given state
to its two adjacent states only. The transition probabilities
in Fig. 2 can be determined using the following equations [14],
[15]:

(5)

(6)

where is the packet transmission time, where
is the symbol rate in the system and is the packet size (in
our system model both and are fixed for all modula-
tion schemes). In (5) and (6), is the level crossing function
given by

(7)

where is the maximum Doppler frequency defined as

(8)

where is the mobile’s speed, andis the wavelength. Equa-
tions (5) and (6) are used in Section VI to compute the transition
probabilities of the FSMC model. From this model, we proceed
to obtain an optimal policy for the rate control problem over
Rayleigh fading wireless channels.

III. D YNAMIC PROGRAMMING

In this section, we review some of the relevant results from the
theory of dynamic programming [16]–[19] which will be used
subsequently to derive the nature of optimal policies for a class
of rate control problems. The stochastic model of the wireless
channel is such that the states of the underlying Markov model
of the channel evolve according to a time-invariant Markov tran-
sition rule independent of past and present rate control decisions
made by the mobile. Let be a discrete time
process. At any given time, the state of the channeltakes its

value from a finite-state space denoted by the set of nonnega-
tive integers . In our problem, this set rep-
resents the finite-state space of the underlying Markov model
of the channel. At the beginning of the time slot ,
for , the channel is in stateand the packets are
transmitted in the downlink with rate and a decision must be
made as to which rate to select for transmitting the packets in
the downlink during the time slot . Let denote the

-valued random variable which encodes the
decision taken at time, i.e., if , ,
then the rate will be used during the time slot . We
set which denotes the bit rate at which the packets
are transmitted during the time slot . Now let us define
the aggregate state of the system as which takes values
in . Suppose that for
time slot the mobile chooses the action (rate)while
the aggregate state of the system is . Then we incur an
instantaneous cost , which is a bounded mapping
from the finite space :

, where denotes the set of
real numbers. We define a Markov policy,, as a mapping for
choosing the sequence of decisions, . Therefore,
a policy is a mapping from the aggregate state space to the ac-
tion space, i.e., :

. Given the evolution of the aggregate state
of the system , we are interested in the solution of
the following problem. Choose such that

(9)

is minimized, where is the initial state of the system, and
denotes the expectation under the policy, with being

arbitrary, and is the discount factor. This problem is
called an infinite horizon discounted cost problem. The above
cost reflects the fact that, while choosing the ratefor time
slot , we would like to take into account the effect of
this decision on the future behavior of the system. For the case
where , the use of the discount factor is motivated by
the fact that a cost to be incurred in the future is less important
than one incurred at the present time instant.

It is important to mention that has a nice practical meaning
in the system. A session initiated at time will last a random
number of time slots. We may interpret as the probability
that a session is terminated in a time slot and thereforeis the
probability that a session continues in a time slot. Consequently,
session duration random variableis geometrically distributed
with

(10)
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Fig. 3. Delay functionsd , d , d , andd in a multirate system with four admissible ratesR ,R ,R , andR (for four different modulation schemes QPSK,
8-PSK, 16-PSK, and 32-PSK, respectively) versus SNR.

IV. OPTIMAL DATA RATE CONTROL

In order to formulate the optimal rate control problem as a sto-
chastic optimization problem, we need to define a cost structure
which quantifies the cost associated with operating the system
under any policy. Obviously there is no unique way of defining
the cost function. The choice of cost function clearly affects the
optimization problem and the structure of the optimal policy.
We attempt to choose the cost function in such a way that the
incurred cost makes physical sense in the actual network.

A. Cost Function Structure for Optimal Rate Control

In this section, we introduce a cost function which cap-
tures the desired tradeoff between data transmission quality
and switching cost, in an appropriate balanced manner for
the optimal rate control (allocation) problem. First we need
to introduce a transmission quality metric. We define the
transmission delay functions : ,

, as follows [20]:

(11)
where is the packet size in symbols per packet, is the bit
rate in bits per second (b/s), is the symbol time in seconds
(which is fixed in the system), is in b/s/Hz which
represents the number of bits transmitted per symbol (a.k.a.
spectral efficiency, for example for 32-ary PSK modulation
scheme, ), and is the symbol error rate (SER)
for -ary PSK modulation which is a function of channel
state (symbol SNR) [21]. Fig. 3 illustrates delay functions,

, , and for four different modulation schemes QPSK,
8-PSK, 16-PSK, and 32-PSK, in a multirate system with four

admissible rates , , , and , respectively. As expected,
at very low SNRs, QPSK has the minimum delay among these
four modulation schemes, and at very high SNRs 32-PSK has
the minimum delay response.

In order to have a reasonable cost-per-stageeach time the
mobile unit switches from one rate to another, this should be
penalized by a cost associated with rate switching. Letde-
note the cost of the rate switching. On the other hand, a reward
(which is a function representing the transmission quality) en-
courages the mobile unit to switch the rate in order to minimize
the delay in the network.

Let denote the delay for the current rate and de-
note the delay for the candidate rate to switch to. If

, then represents the reward for not switching
the rate but if , then represents the
missed opportunity for improving the transmission quality (re-
ducing the transmission delay) by not switching the rate. Since
there is a cost associated with switching the rate, our op-
timal rate control policy captures a tradeoff between data trans-
mission quality and switching cost, in an appropriate balanced
manner. In a multirate system, we must ensure that if the op-
timal policy chooses to switch the rate at a given state of the
system, then it must select the rate which has the minimum
delay among all admissible rates. From Fig. 3, it is clear that,
for any given SNR and current ratewith delay , the best
candidate rate with delay to switch to is the one that

. The “ ” operator
here forces the optimal policy to switch to the rate with min-
imum delay among all admissible rates, if it decides to switch
the rate (given the state of the system). For example, in Fig. 3,
at low SNRs the optimal policy must choose to stay with rate

with associated delay . In this case, as SNR increases,
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the best candidate rate to switch to would be ratewith as-
sociated delay , and the reward (or missed opportunity to
improve the call quality) for staying with rate would be equal
to . This is consistent with our proposed reward
function that, for the given rate, it selects the maximum delay
difference with other available rates in the system as the reward
for staying with the current rate. Having discussed the appro-
priate structure of the cost function for our optimal rate control
problem, we are now ready to introduce the cost-per-stage func-
tion as follows:

if
if

(12)
with denoting modulo addition and .
For the special case where , (12) for reduces to

when and to when .
Therefore, if there are only two admissible rates, and in
the system, then the cost function is simplified to

if
if

(13)

Now the problem at hand is to solve the following infinite
horizon discounted cost problem:

(14)

for every in
and policy . In order to ensure the existence of the expected
infinite horizon discounted cost, it suffices to have a uniformly
bounded cost function for all and

. In our rate control problem, the state and ac-
tion spaces are finite, for

, and with the interpretation of in a practical system
we always have . This set of conditions ensures ex-
istence of a solution for our optimal rate control problem. The
policy satisfying the problem cast in (14) is called the optimal
policy . Below we state a well-known result [17], [18] which
yields an implicit equation satisfied by the optimal discounted
cost function .

Theorem 1: satisfies the optimality equation:

(15)

where is the initial state of the system, and is the
state transition probability of the finite-state Markov model
of the wireless channel given by set of equations (5) and (6).
In effect, (15) provides that the cost incurred by choosing
an action at some time instant is the sum of the instanta-
neous cost , and the expected cost for the future

multiplied by the given discount factor.
The optimal policy chooses that actionwhich minimizes this
sum.

In the sequel, we attempt to find the solution of (15) using
an iterative method. For this purpose, we define the following
quantity:

(16)

Then the DP equation is simply

(17)
Equations (12), (16), and (17) are used in our computer sim-
ulations to find the solution for (15) in the general case. This
method is called value iteration or successive approximation. In
order to understand the structure of optimal policy, from now
on, we would like to restrict our attention to the mathematically
more tractable case. Therefore, without loss of generality, in the
following we only consider the case where and the set
of admissible rates is (corresponding to and ).
In this case, (17) can be rewritten as

(18)

where denotes modulo two addition. Moreover, the optimal
policy is a Markov stationary policy which selects to switch
in state if and only if

(19)

An important observation regarding the solution of the dis-
counted DP problem given by (17) is that it can be interpreted
as the fixed point of a well-defined operatorwhere .
Motivated by the form of the dynamic programming equation
(17), we associate -valued mappings and ,
defined on by setting

(20)

and

(21)

for . Next, we introduce
the operator by setting

(22)

for every . Now, using the important properties given in [10],
[17], and [18], we state the following important results.

Proposition 1: Under the model assumptions [stationary
Markov model for the channel, bounded cost-per-stage func-
tion , and , where is the probability of
terminating a session in a time slot], the following statements
hold.
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1) The operator is a strict contraction mapping.
2) The value function is the only solution of the fixed point

equation

(23)

3) Moreover, for every element, the recursive scheme

(24)

converges to the value function in the sense that
, where for

all .
Now we will use the results of the theorems given in [10],

[17], and [18] to investigate the structure of the optimal policy.
In fact, it turns out that the optimal rate control policybelongs
to the class of threshold policies. A rate switching policyis
said to be a threshold policy with threshold functions ,
if it is a Markov stationary policy such that

iff (25)

and

iff (26)

where , with :
. First we use Fig. 3 in an attempt to illustrate the optimal

threshold policy given by (25) and (26). From Fig. 3, we focus
our attention to the intersection point of the delay curvesand

, with . The optimal threshold policy
(25) simply states that if the current rate is, then there exist a

, and an such that the and the rate
must be switched from to . Otherwise, if the current rate
is , the optimal threshold policy (26) states that there exist a

and an such that and the rate
must be switched from to . Now we are ready to discuss
the following important result about the structure of the optimal
rate control policy for the problem at hand.

Proposition 2: Under the model assumptions (stationary
Markov model for the channel, bounded cost-per-stage function

, and , where is the probability of termi-
nating a session in a time slot), the optimal rate control policy

is a threshold policy with thresholds , ,
which are uniquely determined through the equations

(27)
Furthermore, .

Proof: Fix in , and
in . We begin by rewriting the dynamic pro-

gramming equation (18) in the following form:

The optimal policy is the Markov stationary policy which
selects to switch in state if and only if

or, equivalently, if and only if

(28)

where

(29)

For ( ), the left-hand side of the inequality (28) is
a monotone nonincreasing (nondecreasing) function of, while
its right-hand side is a strictly increasing (decreasing) function
of . It is now a simple matter to conclude that the switching
sets : ,

, are nonempty closed and connected sets which are disjoint
(owing to the condition ). In fact, with

, and with ,
and the optimal policy is of threshold type. Because and

are disjoint sets, we see that and this concludes
the proof ofProposition 2.

It is easy to see that the method described inProposition 2,
under a certain condition, can be used in multirate systems also
to determine the optimal rate switching thresholds in such sys-
tems. In fact, in multirate systems, must be upper bounded
by a positive number , i.e., to be able
to use (27) in such systems. depends on system param-
eters, and it can be easily determined through simulations. We
use Fig. 3 to illustrate how the optimal thresholds can be deter-
mined in a multirate system, usingProposition 2. For example,
for the delay curves and associated with rates and
in Fig. 3, given that , one can apply (27) to
these two delay functions to determine the optimal thresholds
to switch between , and . This point will become clear in
Section VI where we provide our simulation results for the op-
timal threshold policy in a multirate system.

V. AVERAGE DELAY AND RATE SWITCHINGS

Once a rate control (allocation) policy (be it optimal or not)
has been selected, it is of interest to compute the average delay
of transmitting the packets over the wireless channel and the
expected number of rate switchings that the mobile experiences
while the optimal policy is in effect. These two quantities consti-
tute good measures of the effectiveness of a rate control policy.

We define the average delay of the policy to be the mean
value of the delay of the selected rate to receive the packets from
the base station under the policyduring the packet transmis-
sion, namely

(30)
On the other hand, the expected number of rate switchings under
the policy is defined by

(31)

where is the indicator function and it is equal to one if the
condition is met. Therefore both and can be written
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as discounted cost functions. For any Markov stationary policy
, and in particular for any threshold policy, this fact can be ex-

ploited for numerical purposes by interpreting and as
fixed points for suitably defined contraction mappings. More
precisely, to evaluate the average delay, for each Markov sta-
tionary policy , we consider an operator of the form

(32)

for every , where for
each the operator is defined by

(33)

As in Proposition 1, the operator , , is a contraction
mapping and so is . It follows from the Markov property that
the average delay is the unique fixed point of and can
be evaluated through the recursion

(34)

To compute the expected number of rate switchings, we use the
operator which is of the form

(35)

for every , where for
each , the operator is defined by

(36)

This time, the operators , , are contraction map-
pings, and so is . The unique fixed point of is and is
obtained through the recursion

(37)

It is clear that both and are func-
tions of channel state and rate

. It would be useful to calculate the
average delay and average switching rate over all possible
channel states and admissible rates for a fixed. Therefore,
we have

(38)

(39)

where is the steady-state probability given by (4), and
is the probability of selecting rate under the adopted rate
control policy and channel model, i.e., ,

. For the special case where , we have
, and the threshold policy given by (25) and (26)

can be rewritten as

if
if
if

(40)

Using (40) and the i.i.d. assumption on the random variables
, it can be shown that the sequence of

Fig. 4. A typical graph forD andC versus switching costC .

random variables form a Markov chain on
with the following transition probabilities:

(41)

(42)

Using (41) and (42), we obtain

(43)

Now (43) can be used along with (39) to compute and
for a fixed . Intuitively, as increases, the average delay
increases while the expected number of rate switchings

decreases. Our simulation results in Section VI confirms this
observation.

A. A Heuristic Approach for Selecting the Switching Cost

One of the critical parameters on which the optimal rate con-
trol policy clearly depends is the value of the rate switching
cost . Given a rate switching cost , we can compute an op-
timal rate control policy which solves the minimization problem
posed in (14). Based on our previous discussion,is an in-
creasing function of , while is a decreasing function of

, similar to the graphs shown in Fig. 4. As a design proce-
dure, we can start from a desired value of and use the graph
in Fig. 4 (the actual graph is obtained in Section VI) to find
the respective value of and from there the respective value
of . If the resulting value of is satisfactory, then the rate
control policy is acceptable, otherwise the procedure has to be
restarted by choosing a larger . The above mentioned proce-
dure is summarized by a flowchart in Fig. 5.

VI. SIMULATION RESULTS

In the preceding sections, we studied the rate control problem
in wireless networks and offered a novel method based on DP
to obtain an optimal rate control policy. In this section, our sim-
ulations results for the solution of rate control problem posed
in (15) are presented. In these simulations, successive approxi-
mation method (a.k.a., value-iteration method) is used to solve
(15). Our simulation results indicate that the optimal strategy for
selecting the rates is indeed a threshold policy. This corroborates
the results of Proposition 2 presented in the previous section.

The wireless channel is modeled as a finite-state Markov
chain [14], [15]. The parameters for the simulations are as
follows: symbol rate Ks/s, packet size
symbols (i.e., ms), and Doppler frequency
Hz. We consider a 15-state Markov model for the fading
channel, with average SNR dB, and SNR thresholds
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Fig. 5. Flowchart of the design procedure to select an appropriate switching
costC .

dB and , , where
dB. Table I shows the state transition and steady-state

probabilities for this channel. Table I entries are calculated
using (4)–(6).

First we consider the optimal rate control policy in a system
with two admissible rates, i.e., . In this case we assume
that packets are transmitted in the downlink using either a QPSK
modulation or a 16-PSK modulation (i.e., b/s, and

b/s, where is the symbol rate). The simulation
results for optimal thresholds for two values of are shown
in Fig. 6. These optimal thresholds along with the transmission
delay curves, and , are plotted in the same figure for com-
parison purposes. The optimal policy for ,
plotted in Fig. 6, is illustrated in Table II. The optimal policy

, essentially dictates the rate to be used if the system
is in state . This notion is demonstrated in a matrix form
given by Table II.

As we discussed earlier, if there is no cost for switching the
rates, i.e., in (13), the optimal policy for the rate control
problem is simply to switch to the rate with smaller delay. There-
fore, in this case, the optimal thresholdsand are equal to
zero . Our simulations results confirms this obser-
vation. Fig. 6 illustrates this case, which is obtained for
in the cost function given by (13). The optimal threshold rate
control policy is also obtained for which is demon-
strated in Fig. 6. It is worth mentioning that, as increases,

increases as well, in other words, the optimal policy

TABLE I
STATE TRANSITION AND STEADY-STATE PROBABILITIES OF THE FSMC WITH

T = 0:4 ms,f = 10 Hz, AND 
 = 12 dB

Fig. 6. Optimal rate control policy in a system with two admissible ratesR ,
andR , in a Rayleigh fading channel, forC = 0 (top) andC = 45 (bottom).

becomes more sluggish. Our simulation results shown in Fig. 6
clearly supports this claim.

We should mention that both optimal policy and convergence
rate of the value-iteration method depend on. As decreases,
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Fig. 7. Optimal rate control policy in a multirate system with four admissible ratesR ,R ,R , andR in a Rayleigh fading channel, forC = 40.

TABLE II
OPTIMAL POLICY � (s; i) IN A SYSTEM WITH TWO ADMISSIBLE RATE 0:R

(QPSK)AND RATE 1:R (16-ARY PSK),FORC = 45

the value-iteration method converges faster to the final optimal
rate control policy. A detailed analysis of the value-iteration
method and the effect of on its convergence is provided in
[17, Vol. II]. The effect of on the optimal policy is as follows:
as decreases, the probability that the session is terminated in a
time slot increases. Since in this case it would be more probable
to terminate a session in the next time slot, the optimal policy
tends to stay with the current rate for wider range of states (to
avoid unnecessary switching costs, since it is more probable to
end the session in next slot), i.e., the optimal policy becomes
more sluggish. Consequently decreasinghas a similar effect
on optimal policy as increasing . Since in practical systems

is dictated by the traffic behavior in the system, which is

a parameter in system design has to be adjusted accordingly. As
a result, in our simulations we have fixed , and only the
effect of increasing is studied through simulations.

Next we consider the optimal rate control policy in multirate
systems. So far we have only considered the optimal rate control
policy for the systems with two admissible ratesand . The
important feature of our proposed optimal rate control method
is that, with a well-defined cost function, it can be generalized
to more than two rates. Now we consider the cost function pro-
posed in (12) and attempt to find the solution of (15). The next
set of simulations is performed to obtain the optimal rate control
policy for a system with , i.e., there are four admissible
rates , , , and in the system. In this case, we assume
that packets are transmitted in the downlink using one of the fol-
lowing four modulation schemes: QPSK, 8-PSK, 16-PSK, and
32-PSK modulations. The optimal rate control policy for such a
system is illustrated in Fig. 7. As we expect again, the optimal
rate control policy in a multirate system is also a threshold policy
as shown in Fig. 7, where the delay curves, , , and , as-
sociated with each modulation scheme, are plotted in the same
graph along with the optimal rate control policy (this way we
can compare the thresholds against intersection points of delay
graphs).

Finally, Figs. 8 and 9 illustrate how and vary as the
switching cost increases. We assess the effectiveness of the
proposed method by comparing the average delayand ex-
pected number of rate switchings for different values of the
switching cost . From Fig. 8, when ,
and it is when , which represents only a
1.3% increase in average delay. On the other hand, from Fig. 9,

for , and it is for ,
which represents more than a 38% decrease in rate switchings.
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Fig. 8. Average delayD versus rate switching costC .

Fig. 9. Expected number of rate switchingsS versus rate switching costC .

Therefore, with sacrificing only a 1% increase in average delay
in the system, we can save almost 40% in rate switchings.

VII. CONCLUSION

In this paper we have studied the problem of optimal rate
control in wireless networks with Rayleigh fading channels. A
stochastic optimization technique based on the dynamic pro-
gramming method was used to obtain the optimal rate control
policy in such networks. Using the results from the theory of dy-
namic programming, it was shown that the optimal rate control
policy is in the form of athreshold policy—a property of sig-
nificance both from the analytical and implementation points of
view. Simulation results confirmed that the optimal rate control
policy is indeed a threshold policy. These results also demon-
strated the effectiveness of our optimal rate control policy in

optimizing the overall delay and number of rate switchings in
the network. Simulation results indicate that by sacrificing only
1% of transmission quality in terms of the average delay one can
achieve almost 40% reduction in rate switchings in the network.
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