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Abstract—in this paper, we consider the downlink rate control In this paper, we derive some properties of a class of optimal
problem in a wireless channel. A dynamic programming optimiza- rate control-problems using the theory of dynamic program-
tio? mﬁthqd iii”gc’d“?eg ]fo obtaLn the Optima'_bit'_rate_/d?'ay CoN- ming (DP). The general nature of the problem considered is as
tro policy In the downlink for pac et transmission Iin wireless net- . . .
works with fading channels. We assume that the base station is ca- follows. The base stqtlon transmits th? data packets over a wire-
pable of transmitting data packets in the downlink with different €S channel to mobile users (downlink problem). We assume
bitrates, Ry < Ri < -+ < Ras_1.Itisassumed thatthe symbol that the base station is capable of transmitting data packets with
rate is fixed in the system, and different bit rates are achieved different bit ratesRy < R; < --- < Rp_1. Itis assumed that
by choosing the transmitted symbols from the appropriate signal the symbol rate is fixed in the system and different bit rates are
constellation (adaptive modulation). The derived optimal rate con-  5-hieved by choosing the transmitted symbols from the appro-

trol policy, in each time slot, selects the highest possible bit rate _ . . . . . !
whicph mi):ﬂmizes the delay and at the San?e timg minimizes the Priate signal constellations (adaptive modulation). The received

number of rate switchings in the network. The optimal bit-rate  Signal-to-noise ratio (SNR) by the mobile users is subject to
control problem is an important issue, especially in packet data fluctuation due to fading and noise. In our system model, we as-
networks, where we need to guarantee a quality of service (QoS) in sume that no power control mechanism is in effect in the down-
the network. Our analytical as well as simulation results confirm  |ink, and the base station transmits the packets always with its
that there is an optimal threshold policy to switch between different maximum available power. Therefore, each user can be served
rates. with highest possible bit rate, depending on channel condition,
Index Terms—Adaptive modulation, dynamic programming, op-  and only the rate-control algorithm determines the appropriate
timal bit-rate control, wireless packet networks. bit rate for each user. This would relieve the system from com-
plexities of the power control algorithm also. This is an impor-
tant advantage of our proposed system model which has clear
) ) benefits in practical systems.
HE INCREASING popularity of the wireless network ser- e assume a finite-state Markov model (FSMM) for the wire-
vices with limited amount of available resources calls fqgss channel. The mobile constantly monitors the received SNR.
highly efficient resource allocation methods [1], [2]. One of that each measurement instant, the mobile observes the state of
major issues in wireless data networks is the bit-rate contigle channel and determines the current channel state. At each
problem [2], [3]. This is especially important in the downlinkgecision making instant by employing an optimal strategy, the
since in a wireless data network most of the traffic flow is frorgyopile decides whether to send a request to the base station to
the base station to mobiles, e.g., an Internet connection or a Mifjitch the rate for the next time slot or not. To facilitate this,
timedia (voice/image/data) connection. A good rate control ke system needs a feedback channel (assumed to be noise-free)
gorithm has a great impact on the network performance. g the mobile terminal can send its requests to the base station.
In this paper, we investigate the rate control problem for wirgf there aress admissible rates in the system, then we require
less channels from an optimal control point of view. There ©X%log, M-bit feedback channel. For example, in a system with
ists some literature on obtaining the nature of optimal contrgl,g admissible rate8, and R, , the feedback channel needs to
policies for a wide range of related problems [1], [4][8]. In [S]pe only one bit. Fig. 1 illustrates the block diagram of a system
Lambadaris and Narayan have considered the problem of joinflyere the mobile employs an optimal strategy in choosing the
optimal admission and routing at a data network node. Anothgke in the network.
good example is [9], which deals with optima[ control of service The optimal policy which determines the choice of rates (or
in tandem queues. In [10], the authors consider the problembqulation schemes) should try to use the highest possible rate
stochastic control of handoffs in cellular networks and try to finghich minimizes the delay in sending the packets and at the
an optimal policy for the handoff problem. same time minimizes the number of rate switchings. We show
that under certain conditions the optimal strategy has the form of
a threshold policy. Intuitively, it makes sense that, for very low
Paper approved by K. K. Leung, the Editor for Wireless Network Access ail®NRs, packets are transmitted in the downlink with the lowest
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Fig. 1. Block diagram of a system where the mobile employs an optimal strategy in choosing the data rate in the network.

and switching costs. In awireless fading channel, signal strengtiidy a two-state Markov channel known as the Gilbert—Elliot
fluctuates due to multipath. Because of the statistical SNR fluchannel. In their channel model, each state corresponds to a
tuations, the bit rate during a data transmission session nesgscific channel quality which is either noiseless or totally
to be switched between different admissible rates ranging frawisy. In cases when the channel quality varies dramatically,
Ry to Ry;—1. In the absence of an optimal rate control policymodeling a radio channel as a two-state Gilbert—Elliot channel
this may cause unnecessary and frequent rate switchings whighot adequate. This is the case for urban wireless fading
results in protocol overheads (due to rate negotiation proces$annels. The idea is to form a finite-state Markov model for
If decisions are made solely on the basis of the “lowest delay{ich wireless channels [13]-[15]. L&t= {0,1,..., K -1}
without any penalty for switching the rate, then the “chatteringfenote a finite set of states. By partitioning the range of the
effect may develop. Itis clear that if there is no switching coggceived SNR into a finite number of intervals, FSMC models
for switching from one rate to the other, then the optimal raigyy pe constructed for Rayleigh fading channels [13]-[15].
switching policy is trivial, which is to switch to the rate with therne members of se correspond to those partitions. Now let
smallest delay. On the other hand, delaying rate switching de 'sn}, n = 0,1, ... be a stationary Markov process. Since a
sions, as the signal strength received from the base station S@{éﬁonary Markov process has the property of time-invariant

to de.teriorate., may result in_the termination of the data,tranSWFénsition probabilities, the transition probability is independent
sion in the middle of a session (due to the SNR dropping belQW o time index. and can be written as

the minimum acceptable threshold defined by the standard). A
sluggish policy which delays rate switching decisions for too
long will result in a high probability of forced termination.
Therefore, the objective of the rate control algorithm must be §€{0,1,..., K—-1}. (1)
to minimize the number of rate switchings while maintaining
the minimum delay in transmitting the packets. This calls for an If we assume that the transitions only happen between adja-
efficient rate switching algorithm which can capture a tradeofent states, we obtain
between data transmission quality and switching cost, in an ap-
propriately balanced manner. Pss = 0, |s—¢|>1,s5€{0,1,...,K—-1}. (2)
The paper is organized as follows. In Section Il, a finite-state
Markov channel model for wireless Rayleigh fading channejg 3 typical multipath propagation environment, the received
is presented. Section Il reviews some of the relevant resulfigina| envelope has the Rayleigh distribution. With additive
from the theory of dynamic programming. The optimal data rag, ;ssjan noise, the received instantaneous $i¢Rlistributed

control problem cast as an infinite horizon discounted cost dé‘)‘(ponentially with probability density function (PDF)
namic programming problem forms the subject of Section IV.

The average delay of transmitting the packets and the expected 1 <

Dss’ = Pr(Sn+1 it 3/|Sn = 3), n = 0, 1, ey S,

number of rate switchings and also a practical method to choose p(v) = —exp

—l), V20 @)
Yo

areasonable value for the rate switching cost are studied in Sec- o

tion V SimL!Iation results are prgsented in Section VI. Finallwhere% is the average SNR. An FSMC model can be built
Section Vil includes our conclusions and remarks. to represent the time-varying behavior of the Rayleigh fading
channel. We start by partitioning the received SNR into a finite
number of intervals. LeFg = 0 < I') < I'y--- < ' = 0

The study of the finite-state Markov channel (FSMChe the thresholds of the received SNR. Then the channel is in
emerges from early work of Gilbert [11] and Elliot [12]. Theystatek if the received SNR is betweel, andI';,;. For a

Il. MARKOV MODEL FORWIRELESSCHANNELS
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Fig. 2. K -state noisy channel with Markov transitions modeling a Rayleigh fading channel.

packet transmission system, we assume that a one-step tkatde from a finite-state space denoted by the set of honnega-
sition in the model corresponds to the channel state transititre integers{0, 1, ..., K — 1}. In our problem, this set rep-
after one packet time peridt],. A received packet is said to beresents the finite-state space of the underlying Markov model
in channel state,, K = 0, 1, ..., K — 1, if the SNR values of the channel. At the beginning of the time slot¢ + 1),
in the packet varies in the rangE;, I'x+1). In this case, the fort = 0, 1, ..., the channel is in state and the packets are
steady-state probabilities of the channel states are given by transmitted in the downlink with rat®; and a decision must be
- tmhadde as I’go |2Ndhich ratthe t?‘ sele%tfor trir;sTit:ilr}g (‘;he p;a(ilaets in
. o e downlink during the time slIdt, ¢ + 1). Let U; denote the
T = /F p(dy, k=01, K-1 (4 {0, 1, ..., M — 1}-valued random variable which encodes the
decision taken at timg i.e., ifU, =¢,i=0,1, ..., M — 1,
In this FSMC model, we allow transitions from a given statghen the rateR; will be used during the time slét, ¢ + 1). We
to its two adjacent states only. The transition probabilities set7, = U/,_; which denotes the bit rate at which the packets
in Fig. 2 can be determined using the following equations [144re transmitted during the time sfot- 1, ¢). Now let us define

k

[15]: the aggregate state of the systeni$is I,) which takes values
N(T T in{0, 1, ..., K —1} x{0,1, ..., M — 1}. Suppose that for
Ph kbl = w, k=0,1,...,K—2 (5) timeslot[t, t+1)the mobile chooses the action (ratg)while
Tk the aggregate state of the systeniSs, ;). Then we incur an
Ph k1 = N(Fk)TP7 k=1,2 ..., K—1 (6) instantaneous cogt(S;, I;, U;), which is a bounded mapping
Tk fromthe finite spacé?: {0, 1,2 ..., K—1}x{0, 1, ..., M—

1} x {0,1,..., M — 1} — R, whereR denotes the set of
real numbers. We define a Markov poliey, as a mapping for
choosing the sequence of decisiénst = 0, 1, . ... Therefore,

a policyw is a mapping from the aggregate state space to the ac-
tionspace,i.eq:{0,1,2 ..., K—1}x{0,1, ..., M—1} —

whereT,, = L, /R, is the packet transmission time, whetg

is the symbol rate in the system aig is the packet size (in
our system model botl®, and L, are fixed for all modula-
tion schemes). In (5) and (6)(.) is the level crossing function

given by {0, 1, ..., M — 1}. Given the evolution of the aggregate state
of the system{S;, I;}:2,, we are interested in the solution of
N() = 2rI’ faexp <_£) (7) the following problem. Choose such that
7o 7o -
s Y — s t
wheref, is the maximum Doppler frequency defined as V(s 4) = EG, ) Z PR(S, I, Ur) ©)

t=0

fa= Y (8) is minimized, wherés, ) is the initial state of the system, and

A E’;y 0 denotes the expectation under the poticyvith I being
wherer is the mobile’s speed, antlis the wavelength. Equa- arbitrary, and) < 8 < 1 is the discount factor. This problem is
tions (5) and (6) are used in Section VI to compute the transiti6alled an infinite horizon discounted cost problem. The above
probabilities of the FSMC model. From this model, we procee@®st reflects the fact that, while choosing the ratefor time
to obtain an optimal policy for the rate control problem oveslot[t, ¢ + 1), we would like to take into account the effect of

Rayleigh fading wireless channels. this decision on the future behavior of the system. For the case
where0 < /3 < 1, the use of the discount factor is motivated by
. DYNAMIC PROGRAMMING the fact that a cost to be incurred in the future is less important

) ) ) than one incurred at the present time instant.
In this section, we review some of the relevant results from the|t is important to mention that has a nice practical meaning

theory of dynamic programming [16]-[19] which will be useq, the system. A sessioninitiated at time: 0 will last a random
subsequently to derive the nature of optimal policies for a clag§mberr of time slots. We may interpret- /3 as the probability

of rate control problems. The stochastic model of the wireleg$yi 5 session is terminated in a time slot and therefdeethe
channel is such that the states of the underlying Markov modghhapility that a session continues in a time slot. Consequently,

of the channel evolve according to a time-invariant Markov traldgssjon duration random varialfiés geometrically distributed
sition rule independent of past and present rate control decisiQy)g,

made by the mobile. LetS,, t = 0, 1, ...} be a discrete time
process. At any given time, the state of the charthebkes its P[T=t+1]=(1-73)5" (20)
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Fig. 3. Delay functionsgl,, d;, d5, andds in a multirate system with four admissible rat®s, R,, R, andR3 (for four different modulation schemes QPSK,
8-PSK, 16-PSK, and 32-PSK, respectively) versus SNR.

IV. OPTIMAL DATA RATE CONTROL admissible rate®y, R1, R2, andR3s, respectively. As expected,

t very low SNRs, QPSK has the minimum delay among these

In order to formulate the optimal rate control problem as astf . .
chastic optimization problem, we need to define a cost struct &l njo_dulat|on schemes, and at very high SNRs 32-PSK has
minimum delay response.

which quantifies the cost associated with operating the syst .
In order to have a reasonable cost-per-stBggach time the

under any policy. Obviously there is no unique way of definin bi , tches f her. this should b
the cost function. The choice of cost function clearly affects t obile unit switches from one rate to another, this should be

optimization problem and the structure of the optimal poIic;Ren‘"‘“Zed by a cost associated with rate switching.d.ede-

We attempt to choose the cost function in such a way that tﬂgte_ th? cost of t_he rate swﬁchmg. On the other_ hand, a_reward
incurred cost makes physical sense in the actual network. (which is a function representing the transmission quality) en-
courages the mobile unit to switch the rate in order to minimize

A. Cost Function Structure for Optimal Rate Control the delay in the network.
Let d;(s) denote the delay for the current rate afjds) de-

In this section, we introduce a cost function _Wh'Ch Caqiote the delay for the candidate rate to switch tod;{fs) <
tures the desired tradeoff between data transmission quaet s), thendi(s)
r 1 T

o . ) s)—d;(s) represents the reward for not switching
and switching cost, in an appropriate balanced manner

. : ) e rate but ifd;(s) > d;(s), thend;(s) — d;(s) represents the
the.optlmal rate contrql (qllocaﬂor_\) problc_am. First we neeﬁlissed opportunity for improving the transmission quality (re-
to introduce a transmission quality metric. We define th

. ) &ucing the transmission delay) by not switching the rate. Since
transmission delay functions,.: {0, 1’_ o, K =1} = R, there is a costC,; associated with switching the rate, our op-
m=0,1,..., M -1, as follows [20]: timal rate control policy captures a tradeoff between data trans-

L, mission quality and switching cost, in an appropriate balanced
, m=0,1,...,M—1 - - i
R T5(1 = Pepn(s)) manner. In a multirate system, we must ensure that if the op
(11) timal policy chooses to switch the rate at a given state of the
whereL, is the packet size in symbols per packgy, is the bit  system, then it must select the rate which has the minimum
rate in bits per second (b/s); is the symbol time in secondsdelay among all admissible rates. From Fig. 3, it is clear that,
(which is fixed in the system)R,,T. is in b/s/Hz which for any given SNR and current ratevith delayd;(s), the best
represents the number of bits transmitted per symbol (a.kcandidate ratg with delayd,(s) to switch to is the one that
spectral efficiency, for example for 32-ary PSK modulatiomax g, ¢; j—o, 1, ..., m—1}(di(s) — d;(s)). The “max” operator
schemeR,, T, = 5), and ., is the symbol error rate (SER) here forces the optimal policy to switch to the rate with min-
for 28=Ts_ary PSK modulation which is a function of channelmum delay among all admissible rates, if it decides to switch
state (symbol SNR) [21]. Fig. 3 illustrates delay functielys the rate (given the state of the system). For example, in Fig. 3,
di, d2, andds for four different modulation schemes QPSKat low SNRs the optimal policy must choose to stay with rate
8-PSK, 16-PSK, and 32-PSK, in a multirate system with fouk, with associated delagy(s). In this case, as SNR increases,

d(s) =
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the best candidate rate to switch to would be rdtewith as- In the sequel, we attempt to find the solution of (15) using
sociated delayl; (s), and the reward (or missed opportunity tan iterative method. For this purpose, we define the following
improve the call quality) for staying with rafé, would be equal quantity:

to do(s) — dy(s). This is consistent with our proposed reward .

function that, for the given rate, it selects the maximum delay Vi1(s, ) =Y PosrVaoa (s, ). (16)
difference with other available rates in the system as the reward s’

for staying with the current rate. Having discussed the apprphen the DP equation is simply

priate structure of the cost function for our optimal rate control

problem, we are now ready to introduce the cost-per-stage funcy; (s ;) = min {R(& i) + BV (s, u)} ]

tion R(.) as follows: {u=0,1, .., M—1}
17

Cs, if i £ u Equations (12), (16), and (17) are used in our computer sim-
[di(s) — dicj(s)], fi=mu ulations to find the solution for (15) in the general case. This
(12) method is called value iteration or successive approximation. In
. . . . order to understand the structure of optimal policy, from now
\Ilzvg:] tfedsenggir;lg Crzgguvlv%ﬂ? d_'t'gn (alg? fgr?’_l’ z;'r'e: dJL\J/[ce_sl';o on, we would like to restrict our attention to the mathematically
do— d V\E)henz‘ w =0 and_togl d whgni y — | more tractable case. Therefore, without loss of generality, in the
0 — 01 =u = 1 — Qo t=u =1

Therefore, if there are only two admissible ratés andR; in L(;Ig)c;’vr:]?gs\i’gleeor;}ég%nz?gr aqe(ggﬁis\lvgﬁn: ,{2 d?an;jnt(;l}e; ?et
the system, then the cost functi®{.) is simplified to . P g1t 1

In this case, (17) can be rewritten as

max
(5=1,2, ..., M—1}

R(s, i, u) = {

) Cs, if i £u .
R(s, 1, u) = { (—1)i(do(s) — du(s)), ifi=u. (13) V,.(s, ) = min {CS +BV,_1(s, i 1),
Now the problem at hand is to solve the following infinite (—=1)"(do(s) — di(s)) + BVu1(s, i)} (18)

horizon discounted cost problem:
where® denotes modulo two addition. Moreover, the optimal

N ] N e ) policy n* is a Markov stationary policy which selects to switch
Vs, i) = weo jm B Z P R(s, i u) 14) in state(s, ¢) if and only if
T t=0
for every(s, i)in {0, 1,2, ..., K—1} x{0,1, ..., M—1} Cs + BV 1(s,i @ 1) < (1) (do(s)—du(s)) + AV -1(s, ).
and policyn. In order to ensure the existence of the expected (29)

infinite horizon discounted cost, it suffices to have a uniformly

bounded cost functioR(S;, I;, U;) forallt € {0, 1, ...} and An important observation regarding the solution of the dis-
0 < 8 < 1.In our rate control problem, the state and accounted DP problem given by (17) is that it can be interpreted
tion spaces are finitg R(S;, I+, U:)| < B < oo forVt, € as the fixed point of a well-defined operatbmwhereT’V = V.

{0, 1, ...}, and with the interpretation gfin a practical system Motivated by the form of the dynamic programming equation
we always havé® < /3 < 1. This set of conditions ensures ex{17), we associat&-valued mappingd’y andZ,p, v = 0, 1

istence of a solution for our optimal rate control problem. Théefined on{0, 1, 2, ..., K — 1} x {0, 1} by setting

policy = satisfying the problem cast in (14) is called the optimal ~

policy *. Below we state a well-known result [17], [18] which (Lp)(s, i) = Z pssp(s’, 1) (20)

yields an implicit equation satisfied by the optimal discounted s

cost functionV (s, ). and )

Theorem 1: V(.) satisfies the optimality equation: (Tup)(s, 1) = R(s, i, u) + B(T)(s, u) (21)

. ) . for(s,¢)€{0,1,2,..., K—1}x {0, 1}. Next, we introduce
o , ! bl |~y Ly & bl , |~

V(s,4) = min | R(s,i,u) + /3 Z pss V(s u)| the operatofl” by setting

(s,4) € {0,1,..., K—1} x {0,1,...,M—1}

(Te)(s, 4) = min (Tup)(s, 1),

(s,4)€40,1,2, ..., K -1} x {0, 1}
where (s, 4) is the initial state of the system, ang, is the (22)
state transition probability of the finite-state Markov model
of the wireless channel given by set of equations (5) and (6pr every . Now, using the important properties given in [10],
In effect, (15) provides that the cost incurred by choosifd7], and [18], we state the following important results.
an actionu at some time instant is the sum of the instanta- Proposition 1: Under the model assumptions [stationary
neous costR(s, ¢, u), and the expected cost for the futurévlarkov model for the channel, bounded cost-per-stage func-
> pser V(s w) multiplied by the given discount factgs. tion R(.), and0 < 3 < 1, wherel — f is the probability of
The optimal policy chooses that actiarwhich minimizes this terminating a session in a time slot], the following statements
sum. hold.

(15)
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1) The operatof’ is a strict contraction mapping. or, equivalently, if and only if
2) Thevalue functiof¥ is the only solution of the fixed point ‘ ~ ‘
equation Cs + (=1)'B(ATV)(2) < (=1)*2, z€eER (28)
w="Tep. (23) where
3) Moreover, for every elemeny, the recursive scheme (Afv)(z) = (Tv)(z, 1) — (Tv) (2, 0). (29)
0o =@, Pr+1 = Ty, k=0,1,... (24) Fori = 0 (i = 1), the left-hand side of the inequality (28) is

) ) a monotone nonincreasing (nondecreasing) function while
converges to the value functioki in the sense that ji right-hand side is a strictly increasing (decreasing) function
liny, [|ox — V|2 = 0, wherelimy, ¢ (s, ) = V(s, §) for  o¢ - "It is now a simple matter to conclude that the switching
all(s,9) €40, 1,2, ..., K =1} x {0, 1} ge56,(2) = {2 € RB: O, + (1) BATV)(2) < (—1)iz}, i =

Now we will use the results of the theorems given in [10}; 1 are nonempty closed and connected sets which are disjoint
[17], and [18] to investigate the structure of the optimal policyowing to the conditior, > 0). In fact, So(z) = [r2, oo) with
Infact, itturns out that the optimal rate control policybelongs -+ — inf (), andS; (z) = (—oo, 7] with 71 = sup S1(2),
to the class of threshold policies. A rate switching policys  and the optimal policy is of threshold type. Beca$séz) and
said to be a threshold policy with threshold functiefis= 0, 1, g, (;) are disjoint sets, we see thgt < 7¢ and this concludes
if it is a Markov stationary policy such that the proof ofProposition 2 O

It is easy to see that the method describe®ioposition 2,

(s, 0) =1 iff 2(s) = 70 (25)  under a certain condition, can be used in multirate systems also
and to determine the optimal rate switching thresholds in such sys-
(s, 1) =0 iff 2(s) < (26) tems. In fact, in multirate system&,; must be upper bounded
by a positive numbe€,,., i.e.,0 < C, < Cp.x to be able
wherez(s) = do(s) — di(s), with : {0, 1, 2, ..., K — 1} — to use (27) in such system&,,.x depends on system param-

R. First we use Fig. 3 in an attempt to illustrate the optimaters, and it can be easily determined through simulations. We
threshold policy given by (25) and (26). From Fig. 3, we focugse Fig. 3 to illustrate how the optimal thresholds can be deter-
our attention to the intersection point of the delay cudieand mined in a multirate system, usifgoposition 2 For example,

di, so wWith do(sg) — d1(so) = 0. The optimal threshold policy for the delay curved; andd, associated with rate®; andR.

(25) simply states that if the current ratefig, then there exista in Fig. 3, given thall < C; < Ci.x, One can apply (27) to
7o, @and ans > sq such that thely(s) > di(s) + 79 and the rate these two delay functions to determine the optimal thresholds
must be switched fronk, to R;. Otherwise, if the current rate to switch betweer;, and R,. This point will become clear in

is Ry, the optimal threshold policy (26) states that there exist$ection VI where we provide our simulation results for the op-
71 and ans < sg such thatdy(s) < di(s) + =1 and the rate timal threshold policy in a multirate system.

must be switched fronR; to Ry. Now we are ready to discuss

the following important result about the structure of the optimal V. AVERAGE DELAY AND RATE SWITCHINGS

rate contr_o_l policy for the problem at hand. . . Once a rate control (allocation) policy (be it optimal or not)

Proposition 2: Under the model assumptions (statlonar%as been selected, it is of interest to compute the average delay
Markov model for the channel, bognded cost—p(_er-stage fun,Ct'8ptransmitting the packets over the wireless channel and the
R('.)’ ando < ./3 < L wherel — fisthe probablhty of termi- . expected number of rate switchings that the mobile experiences
nitl_ng a session in a_t|me .SlOt)' the optimal rate ‘control p()I'Whilethe optimal policy is in effect. These two quantities consti-
roisa thres_hold policy W!th thresholdg' € £, =01 e good measures of the effectiveness of a rate control policy.
which are uniquely determined through the equations We define the average deldy, of the policyr to be the mean
value of the delay of the selected rate to receive the packets from
the base station under the polieyduring the packet transmis-
sion, namely

Cs + (=1 BATV)(rF) = (=)', 17 €R, i=0, 1.
(27)
Furthermorey{ < 7§.
Proof: Fix (s, ¢)in{0, 1, ..., K—1}x{0, 1},andz =
do(s) — di(s) in R. We begin by rewriting the dynamic pro- D (s, i) = EJ ;
gramming equation (18) in the following form:

> AU Ldi(S) + (1 - It)do(st))] :

t=0

(30)
N ~ ; Onthe other hand, the expected number of rate switchings under
Viz, i) = Cs+8(TV)(z i 1), . . :
(2 4) mm{ ATV i@ ) the policy~ is defined by
(—1)iz + B(TV)(2, i)} . .
Se(s, i) =ET, B[ #£ U, 31
The optimal policyn* is the Markov stationary policy which (s, o ; AL £ U] 1)

selects to switch in statg, ¢) if and only if
wherel(.) is the indicator function and it is equal to one if the

Co+ BIV)(z, i@ 1) < (=1)'2+ B(IV) (2, 1) condition(.) is met. Therefore bott,. andS; can be written
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as discounted cost functions. For any Markov stationary poli
7, and in particular for any threshold policy, this fact can be e:
ploited for numerical purposes by interpretihg, and S, as

fixed points for suitably defined contraction mappings. Mor a8 o
precisely, to evaluate the average delay, for each Markov s L >
tionary policyr, we consider an operatéf,. of the form > — 4
3
(Erp)(s, 9) = (Knr(s,iye) (5, 9) (32) C, Cs
for every(s, i) € {0, 1, 2, ..., K — 1} x {0, 1}, where for Fig.4. Atypical graph foD, andC- versus switching cosf..

eachu = 0, 1 the operatots,, is defined by
random variable§l;, ¢ = 0, 1, ...} form a Markov chain on
(Ku©)(s, 1) = di(s) + B(To)(s, u). (33) {0, 1} with the following transition probabilities:

. . . . Poy = Plly41 = 1|1, = 0] = P[Z; > 0] (41)
As in Proposition 1 the operato¥,,, « = 0, 1, is a contraction
mapping and so i&’. It follows from the Markov property that Pro = Plltyy = 0 = 1] = P[Z, < 7. (42)
the average dela¥,. is the unique fixed point of(,; and can Using (41) and (42), we obtain
be evaluated through the recursion Py
po=Pl;=0= ———+—.
0o =0, i1 =Ko, k=0,1,.... (34) Por + Pio B
L Now (43) can be used along with (39) to compii?e and
To compute the expected number of rate switchings, we use 1€, o fixed(, . Intuitively, asC, increases, the average delay
operatork; which is of the form D increases while the expected number of rate switchihgs
* N e . decreases. Our simulation results in Section VI confirms this
(), 8) = (K’T“:”(p) (s, 9) (35) observation.

(43)

];O;Ci\;ez E)?l?ttfe E)Oéelréfékg' }sfge;ir};rdxb;Q L}, where for A. A Heuristic Approach for Selecting the Switching Cost
. One of the critical parameters on which the optimal rate con-
(Koe)(s, ©) = Lu # i + B(T)(s, w). (36) trol policy clearly depends is the value of the rate switching
costC,. Given a rate switching cosl,, we can compute an op-
timal rate control policy which solves the minimization problem
posed in (14). Based on our previous discussiop,is an in-
creasing function of”,, while S is a decreasing function of
wo=0, @rt1 =Ko, k=0,1,.... (37) C,, similar to the graphs shown in Fig. 4. As a design proce-
dure, we can start from a desired valueldf and use the graph
. in Fig. 4 (the actual graph is obtained in Section VI) to find
Flons of channel state € {0,1,..., K — 1} and rate the respective value af; and from there the respective value
i€ {0, 1,..., M~ 1} It WOU|d. be.useful to calculate the.o S. If the resulting value of . is satisfactory, then the rate
average delay and average switching rate over all poss@ trol policy is acceptable, otherwise the procedure has to be

channel states and admissible rates for a fiked Therefore, restarted by choosing a largBx,.. The above mentioned proce-

This time, the operator&}, « = 0, 1, are contraction map-
pings, and so ig(*. The unique fixed point ok * is S and is
obtained through the recursion

It is clear that both D.(s,4) and S(s,?) are func-

we have dure is summarized by a flowchart in Fig. 5.
M-1 K-1
Dr= > pr > 7uD(s, ) (38) VI. SIMULATION RESULTS
/=0 s/ =
M—1  K—1 In the preceding sections, we studied the rate control problem
S, = Z Pir Z 7o Sr(s, 1) (39) in wireless networks and offered a novel method based on DP
pra o= to obtain an optimal rate control policy. In this section, our sim-

ulations results for the solution of rate control problem posed
in (15) are presented. In these simulations, successive approxi-
mation method (a.k.a., value-iteration method) is used to solve
(15). Our simulation results indicate that the optimal strategy for
electing the rates is indeed a threshold policy. This corroborates
he results of Proposition 2 presented in the previous section.
The wireless channel is modeled as a finite-state Markov

wherer, is the steady-state probability given by (4), and
is the probability of selecting rat&; under the adopted rate
control policy and channel model, i.e;, = Pr[l; = i],¢ =
0,1,..., M — 1. For the special case whel¢ = 2, we have
po = 1 — p1, and the threshold policy given by (25) and (26
can be rewritten as

1, ?f Zt 2 7o chain [14], [15]. The parameters for the simulations are as
Up =1l = ét’ :;TZl 5<Zt < 7o (40)  follows: symbol rateR, = 500 Ks/s, packet size,, = 200
) t > T1-

symbols (i.e..l}, = 0.4 ms), and Doppler frequencfy = 10
Using (40) and the i.i.d. assumption on the random variablelz. We consider a 15-state Markov model for the fading
{Z,t = 0,1, ...}, it can be shown that the sequence ofhannel, with average SNig, = 12 dB, and SNR thresholds
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( ) TABLE |
START STATE TRANSITION AND STEADY-STATE PROBABILITIES OF THE FSMC WITH
T, =04ms,fqs =10 Hz, AND 7o = 12 dB

>

state index & Tk Pik—1 Pk k Phk+1

Choose 0 3.9029¢-002 - 9.5074e-001 | 4.92586-002

a desired 1 2.2118-002 | 8.6920e-002 | 8.0617e-001 | 1.0691e-001

Average Delay 2 3.40160-002 | 6.95126-002 | 8.4615e-001 | 8.4340e-002

3 5.1405-002 | 5.5810e-002 | 8.7792e-001 | 6.6269¢-002

1 7 55560-002 | 4.5087¢-002 | 9.0318e-001 | 5.1735¢-002

5 1.0629¢-001 | 3.67786-002 | 9.2325¢-001 | 3.9974e-002

Find corresponding 6 1.3951e-001 | 3.0455e-002 | 9.3917e-001 | 3.0376e-002

C, from average 7 1.6420-001 | 2.58080-002 | 9.5173-001 | 2.2463¢-002

delay graph 8 1.62916-001 | 2.2642¢-002 | 9.6148¢-001 | 1.5882e-002

9 1.23856-001 | 2.0889¢-002 | 9.68706-001 | 1.0407e-002

10 6.24490-002 | 2.06416-002 | 9.73386-001 | 5.9795¢-003

11 1.68476.002 | 2.2165-002 | 9.75126-001 | 2.7191e-003

%°rr;‘t%“;‘3vﬁ(‘:’r?i%gse 12 1.77346-003 | 2.58306-002 | 9.73360-001 | 8.11706-004

from rate Sw[tchu’]g 13 4.5269¢-005 | 3.1798e-002 | 9.6809¢-001 1.1541e-004
graph using C 14 1.30886-007 | 3.99200-002 | 9.6008¢-001 =

180 T T T

==
—%- 16-PSK
R|
Fig. 5. Flowchart of the design procedure to select an appropriate switching
costC,.
40 A
I'n =-2dBandl’; =T',_1 + A4 = 2,3, ..., 14, where
A = 2 dB. Table | shows the state transition and steady-state ,__. . o - < 1
agege . . 0 5
probabilities for this channel. Table | entries are calculated SNR (d8)
using (4)—(6).
First we consider the optimal rate control policy in a system [ " " " i
-+~ 16-PSK

with two admissible rates, i.eld = 2. In this case we assume

that packets are transmitted in the downlink using either a QPSK ™
modulation or a 16-PSK modulation (.2, = 2R, b/s, and

R, = 4R, bls, whereR, is the symbol rate). The simulation ™
results for optimal thresholds for two values @f are shown

in Fig. 6. These optimal thresholds along with the transmission §
delay curvesd, andd,, are plotted in the same figure for com- 3
parison purposes. The optimal poliey (s, ¢) for C, = 45,
plotted in Fig. 6, is illustrated in Table Il. The optimal policy
7*(s, i), essentially dictates the rate to be used if the system
is in state(s, ¢). This notion is demonstrated in a matrix form

given by Table II. - M
As we discussed earlier, if there is no cost for switching the ) i

rates, i.e.(C; = 0in (13), the optimal policy for the rate control e s 18 2 >
problem is simply to switch to the rate with smaller delay. There-

fore, in this case, the optimal thresholgisandr; are equal to Fig. 6. Optimal rate control policy in a system with two admissible rétgs
zero(ry = r; = 0). Our simulations results confirms this obsera"d%:. ina Rayleigh fading channel, f6r. = 0 (top) andC’, = 45 (bottom).
vation. Fig. 6 illustrates this case, which is obtained®r= 0

in the cost function given by (13). The optimal threshold rateecomes more sluggish. Our simulation results shown in Fig. 6
control policy is also obtained faf, = 45 which is demon- clearly supports this claim.

strated in Fig. 6. It is worth mentioning that, &5 increases, = We should mention that both optimal policy and convergence
70 — 71 increases as well, in other words, the optimal policsate of the value-iteration method depend®bms /3 decreases,

4

100

10
SNR (dB)
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300 1 T |l 1 T 1
—— QPSK
—*- 8-PSK
= 16-PSK
— 32-PSK

250

200

Delay (Rate)
o
o
T

100}

Fig. 7. Optimal rate control policy in a multirate system with four admissible Btes?,, R., andR5 in a Rayleigh fading channel, far, = 40.

TABLE I a parameter in system design has to be adjusted accordingly. As
OPTIMAL PoLICY @*(s, #) INA SYSTEM WITH TwO ADMISSIBLE RATE 0: R, ; ; ; :
(QPSK)AND RATE 1: R, (16-4RY PSK),FORC, — 43 aresult, in our S|_muIaF|ons we have flxﬁd:. 0.8, gnd only the
effect of increasing’; is studied through simulations.

state index k || 7*(sk,0) | 7*(s, 1) Next we consider the optimal rate control policy in multirate
0 0 0 systems. So far we have only considered the optimal rate control
1 0 0 policy for the systems with two admissible raf@sandRz,. The
2 0 0 important feature of our proposed optimal rate control method
3 0 0 is that, with a well-defined cost function, it can be generalized
4 0 1 . .
5 o 1 to more than two rates. Now we consider the cost function pro-
6 0 1 posed in (12) and attempt to find the solution of (15). The next
7 1 1 set of simulations is performed to obtain the optimal rate control
8 1 1 policy for a system with\ = 4, i.e., there are four admissible
9 1 1 ratesRy, 1, R2, andR3 in the system. In this case, we assume
10 1 1 that packets are transmitted in the downlink using one of the fol-
11 1 1 lowing four modulation schemes: QPSK, 8-PSK, 16-PSK, and
12 1 1 32-PSK modulations. The optimal rate control policy for such a
iz i i system is illustrated in Fig. 7. As we expect again, the optimal

rate control policy in a multirate system is also a threshold policy
as shown in Fig. 7, where the delay curdgsd; , d», andds, as-

the value-iteration method converges faster to the final optinsdciated with each modulation scheme, are plotted in the same
rate control policy. A detailed analysis of the value-iteratiograph along with the optimal rate control policy (this way we
method and the effect gf on its convergence is provided incan compare the thresholds against intersection points of delay
[17, Vol. 1l]. The effect of3 on the optimal policy is as follows: graphs).

as/3 decreases, the probability that the session is terminated in #&inally, Figs. 8 and 9 illustrate hoW,. and S, vary as the
time slotincreases. Since in this case it would be more probablgitching costC; increases. We assess the effectiveness of the
to terminate a session in the next time slot, the optimal poliproposed method by comparing the average délayand ex-
tends to stay with the current rate for wider range of states (ected number of rate switchings for different values of the
avoid unnecessary switching costs, since it is more probablesteitching costC,. From Fig. 8,D,. = 210.5 whenC, = 0,

end the session in next slot), i.e., the optimal policy becomasd it isD,. = 213.25 whenC, = 45, which represents only a
more sluggish. Consequently decreasihbas a similar effect 1.3% increase in average delay. On the other hand, from Fig. 9,
on optimal policy as increasing,. Since in practical systems S, = 0.235 for C, = 0, and it isS, = 0.145 for C, = 45,

[ is dictated by the traffic behavior in the systef, which is  which represents more than a 38% decrease in rate switchings.
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Fig. 8. Average delay) . versus rate switching coét;.
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Fig. 9. Expected number of rate switchings versus rate switching coét; .
(11]

Therefore, with sacrificing only a 1% increase in average dela¥12]
in the system, we can save almost 40% in rate switchings.
[13]

[14]
VII. CONCLUSION

In this paper we have studied the problem of optimal raté ™!
control in wireless networks with Rayleigh fading channels. A
stochastic optimization technique based on the dynamic prdi6l
gramming method was used to obtain the optimal rate contrqh]
policy in such networks. Using the results from the theory of dy-
namic programming, it was shown that the optimal rate controi'l
policy is in the form of athreshold policy—a property of sig- 19]
nificance both from the analytical and implementation points ot[
view. Simulation results confirmed that the optimal rate controf20]
policy is indeed a threshold policy. These results also demoqm
strated the effectiveness of our optimal rate control policy in

493

optimizing the overall delay and number of rate switchings in
the network. Simulation results indicate that by sacrificing only
1% of transmission quality in terms of the average delay one can
achieve almost 40% reduction in rate switchings in the network.
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