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Abstmct- The potential for capacity increase in multi- 
antenna wireless communication systems has drawn con- 
siderable attention to space-time codes. In this work, we 
propose a systematic code construction method that jointly 
considers diversity advantage and coding advantage for an 
arbitrary number of transmit antennas and any memoryless 
constellation. Due to the special structure of the channel 
symbol difference matrix, the code construction problem is 
reduced to a combinatorial optimization problem and a com- 
putationally efficient suboptimal solution is proposed. The 
simulations show that our design procedure results in codes 
that outperform the ones constructed by previously existing 
methods. In certain cases, as much as 2-2.5 dB coding gain 
can be observed. 

Keywonls-space-time codes, trellis codes, transmit diver- 
sity, wireless communication 

I. INTRODUCTION 
The design of mobile communication systems that of- 

fer reliable transmission a t  high data rates is a challenging 
task. The transmitted signal undergoes multipath fading 
and interference from other users. Moreover, there are s e  
vere limitations on the available resources such as band- 
width and battery power. Therefore, future wireless sys- 
tems are likely to employ diversity techniques to increase 
the data rate of the communication links. 

Information-theoretic works [l], [2] have shown that the 
capacity of flat fading channels is substantially increased 
when using multiple transmit and/or receive antennas. If 
the path gains between the transmit and receive antennas 
are assumed to be known at the receiver side, the channel 
capacity is approximately proportional to the minimum of 
the number of transmit and receive antennas. 

Spacetime (ST) trellis codes have been proposed as a 
means to exploit the potential for capacity increase in 
multi-antenna systems. The performance criteria were d e  
rived in [3] and [4], characterizing the ST codes with two 
quantities: the diversity advantage, which describes the 
asymptotic error rate decrease as a function of the signal 
to noise ratio (SNR), and the coding advantage, which d e  
termines the vertical shift of the error performance curve. 
In [4], the authors proposed design rules for two transmit 
antennas to achieve maximum diversity advantage. They 
also derived a lower bound on the complexity of the en- 
coder and the decoder for the desired diversity advantage 
and data throughput. This lower bound states that in or- 
der to achieve a diversity advantage of K and transmit one 
B-ary source symbol per state transition, the encoder and 
the decoder must have at least N,,, = BK-' states. 

The repetition coded delay diversity scheme described in 
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[5] was the first systematic design rule for ,trbitrary num- 
ber of transmit antennas. Using this method, ST codes 
achieving full diversity advantage can be designed for any 
memoryli:ss constellation. 

In [6],  the design problem was transformed into the bi- 
nary domain. The authors proposed design methods for an 
arbitrary number of transmit antennas, but only for BPSK 
and QPSK constellations. Moreover, the code construction 
methods in [5] and [6] for full diversity advantage uniquely 
determine the ST codes. 

The design of ST codes that achieve full spatial diversity 
for any number of transmit antennas and any constella- 
tion was also considered in [7]. An important feature of 
this code construction method is that it does not specify 
the ST codes completely, leaving room for additional opti- 
mization for coding advantage. However, the authors did 
not present a systematic design method to take advantage 
of the additional freedom. 

In this paper, we develop a code construction procedure 
that join1,ly considers diversity advantage and coding ad- 
vantage E x  an arbitrary number of transmit antennas and 
any memoryless constellation. We describe a method to 
maximize the coding advantage based on the design rules 
of [7] for (diversity advantage. The code construction prob- 
lem is forinulated as a combinatorial optimization problem, 
and a coniputationally efficient suboptimal solution is pro- 
posed. 

The paper is organized as follows. Section I1 will intro- 
duce the mathematical model of the communication sys- 
tem. The relevant results of previous works will be briefly 
restated in Section 111. The code construction method will 
be developed in Section IV. Section V will describe a spe- 
cific ST code design example. The simulation results will 
be provided in Section VI, and some conclusions will be 
drawn in Section VII. 

11. SYSTEM MODEL 

Consider a wireless communications system with K 
transmit and L receive antennas. The input bit stream 
is divided! into b bit long blocks, forming B-ary ( B  = 2 b )  
source symbols. The ST encoder works as a finite state 
machine with N states: it takes the current isource symbol, 
bt (bt  E {0,1, ..., B -  1)) at discrete time t ,  and governed by 
this input, and the current state, St (St E {0,1, ..., N- 1}), 
it moves to the next state, &+I.  During this state transi- 
tion, the encoder outputs K B-ary channel symbol indices. 
We denot,e by i k ( ( s t ,  b t )  the channel symbol index for an- 
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tenna k, k = 0,1,  ..., K - 1, generated during the state 
transition from St when the current source symbol is bt. 
We will also use the channel symbol index vector, defined 
as : 

i(St, bt) = [ i0(st, b t ) ,  i'(st, b t ) ,  ..., iKp1(St, bt)  I T .  
These channel symbol indices are mapped onto channel 
symbols (or constellation points) by the modulators and 
transmitted through the transmit antennas. In the sequel, 
c(i) will represent the constellation point corresponding to 
channel symbol index i. (For example, in case of B-ary 
PSK, c( i )  = exp(j27ri/B), where j = a.) All the con- 
stellations are assumed to be normalized so that the av- 
erage energy of the constellation is unity (if the channel 
symbols are equally likely). c(i'(St, b t ) )  will denote the 
constellation point output by antenna IC when the current 
state is St and the current input is bt. In vector notation: 

4% bt)  = [ C(i0(St, b t ) ) ,  c(i'(St, b t ) ) ,  ... , C(iK-l(St, b t ) )  IT. 

The transmission medium is assumed to be flat (fre- 
quency nonselective), quasi-static Rayleigh fading channel. 
The quasi-static property means that the channel remains 
constant over a certain time, called the frame period, and 
changes independently from one frame to the other. The 
path gains are assumed to be known by the receiver. They 
are modeled as independent, complex, zero mean, circularly 
symmetric Gaussian random variables with unit variance. 

At the receiver side, the received signals at each receive 
antenna are demodulated, and the ST decoder produces 
the decoded bit stream. The receiver noise is modeled 
as independent, complex, zero mean, circularly symmetric 
Gaussian random variables. 

111. DESIGN FOR DIVERSITY ADVANTAGE 

Assume that the previously described transmitter sends 
T (T > K )  B-ary source symbols to the receiver. The ST 
encoder, while encoding the source symbol sequence { b t } ,  
goes through the sequence of states {St}, and produces C ,  
the K by T channel symbol matrix: 

The decoder, due to decoding errors, goes through a dif- 
ferent sequence of states, {Si}, producing the erroneously 
decoded source symbol sequence { bi}  and the K by T chan- 
nel symbol matrix C': 

Define D, the channel symbol difference matrix, as 
D = C - C', and a K by K matrix A as A = DDH. The 
design criteria [4] were derived to minimize the probability 
that the decoder erroneously decodes C' if C was sent: 

1. Design for f.11 spatial diversity (rank criterion): The 
matrix A (or equivalently, the matrix D) must be of full 
rank for any distinct C and C' matrices. 

2. Design for coding advantage (determinant criterion): 
The minimum determinant of A taken over all distinct C 

and C' matrices must be as large as possible. If the mini- 
mum determinant is y, then a coding advantage of "& has 
been achieved. 

Without loss of generality, we can assume that the first 
decoding error occurs at SO, so the correct and decoded 
paths diverge at this point (i.e. SO = SA and bo # bh). 
The code construction method proposed in [7] ensured full 
spatial diversity by making the matrix 

D1 = [ .(So, bo) - c(S6, bb), . . . 
. . 1 C(SK-1, bK-1) - C(Sk-1, bk-1) I ,  

which consists of the first K columns of the code difference 
matrix D, upper triangular for any possible correct and 
erroneous paths through the trellis. The design method is 
based on the following definitions: 

Definition 1 : A level t group is a collection of all destina- 
tion states that can be reached at state transition t from a 
given SO starting state through all possible bo, b l ,  . . . , bt-1 

input sequences. 
Definition 2 : A subgroup of a level t group is a collec- 

tion of all destination states that can be reached at state 
transition t from a given SO starting state and a given bo 
starting branch through all possible bl, bz,  . . . , bt-1 input 
sequences. 

It can be shown that the above definitions have the fol- 
lowing properties for t = 1 , 2 , .  . . , K - 1: 

1. Any level t group starts at state m such that m mod 
Bt = 0 and consists of Bt consecutive states. 

2. Any subgroup of a level t group starts at state m such 
that mmodBt-' = 0 a nd consists of Bt-' consecutive 
states. 

3. Every level t group consists of B disjoint subgroups. 
4. St and Si belong to the same level t group. 
5. For some 1 # m (1,m E { O , l , .  . . B - l}, St belongs 

to the lth and Si belongs to the mth subgroup of the same 
level t group. 

The code construction rules are [7]: 
(la) The 0th indices of the channel symbol index vectors 

at the same state must be different. 
(Ib) The remaining indices of the channel symbol index 

vectors at the same state must be the same. 
(2a) For t = 1 , 2 , .  . . , K - 1, the tth indices of the chan- 

nel symbol index vectors at states belonging to the same 
subgroup of any level t group must be the same, and they 
must be different from the tth indices of the channel sym- 
bol index vectors at states belonging to any other subgroup 
of that group. 

(2b) For t = 1 , 2 , .  . . , K - 2, the (t + l)st, (t + 2)nd ,..., 
( K  - 1)st indices of the channel symbol index vectors at 
states belonging to the same level t group must be the 
same. 

I v .  DESIGN FOR CODING ADVANTAGE 

In general, finding the best way to assign channel symbol 
indices to antennas and states is not a simple task. How- 
ever, in the N = Nmin case, we can find an efficient method 
to maximize the coding gain, so from now on it is assumed 
that the encoder has Nmin states. 
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The channel symbol difference matrix corresponding to 
the first K long segment of the error paths of the first 
decoding error event is the matrix D1. It is square and 
upper triangular, so its determinant is the product of its 
diagonal elements. Let us define the K by K matrix A1 as 
A1 = DIDIH. Then the determinant of A1 is 

K-l 

k=O 

The matrix D can be decomposed as: 

D = [ D i , D z ] ,  

where Dz is a K by (T - K )  matrix. The matrix A = 
DDH, whose minimum determinant is to be maximized, 
can be expressed as: 

A = D ~ D ~ ~  + D ~ D ~ ~  = + A ~ ,  (2) 

where Az = D2DzH. By construction, both A1 and Az 
are Hermitian and nonnegative definite, so the eigenvalues 
of A are lower bounded by the eigenvalues of A l .  There- 
fore, the determinant of A satisfies the inequality 

det(A) 2. det(A1). (3) 

We can fix an arbitrary correct path and pick an arbi- 
trary error path that is longer than K state transitions. 
Both this error path and the error path corresponding to 
the K long error event that starts from the same SO start- 
ing state and the same bb starting branch go through states 
that belong to the same subgroups of the same groups, re- 
sulting in D1 matrices with the same diagonal elements. 
Therefore, for any error event that is longer than K state 
transitions, it is possible to find a K long error event with 
the same det(A1) value. As a consequence of this observa- 
tion and (3), ymin, the minimum determinant of the code 
can be expressed as: 

K-1 

t S t . b i ) . t S ; , b ; )  k=O 
1=0.1.. . . IC-1 

T~~~ = min n I c ( i k ( S k ,  bk)) - c(ik(sL, bk)) lz.  

(4) 
The minimum is taken over all possible K long correct and 
incorrect path segments. 

The { S k }  and {S;}  state transition sequences can also 
be described by making use of the group/subgroup struc- 
ture of the trellis. The results of Section I11 allow us t<o 
map the first K long segment of the correct and erroneous 
paths of the first decoding error event onto different groups 
and subgroups of states. Toward this end, we introduce a 
channel symbol index based notation that does not explic- 
itly depend on the state transition sequence. 

Let i?, i? E {0,1,. . . , B - 1}, be the 0th indices of the 
channel symbol index vectors at the same state correspond- 
ing to source symbol 1 (1 E {0,1,. . . , B - 1)). For simplic- 
ity, it is assumed that the 0th indices of the channel sym- 
bol index vectors a t  different states corresponding to the 
same source symbol values are the same. Moreover, let if, 

k = 1,2 ,  , , .  . , K - 1, i; E {0,1,. . . , B - 1}, denote the kth 
indices of the channel symbol index vectora a t  the states 
belonging to the lth subgroup of the same level IC group 
(1 E {0,1, .  . . , B - 1)). According to design rules (la) and 
(2a), the relation if # ih must hold for any 1 # m. There- 

an (arbitrary) permutation of the numbers 0,1,. . . , B - 1. 
Using Property 5 from Section 111, we can make the fol- 

lowing substitutions: 

fore, the B-tuple (26, it,. . . , z B p 1 ) ,  .k k = 0,1, .  . . , K - 1, is 

and the expression for the minimum determinant becomes: 

K-1 

The 1 <: m condition can be used since the squared dis- 
tance function is symmetric in its arguments. The goal 
is to maximize the minimum determinant. Therefore, if 
OB deno1;es the set of all permutations of the numbers 
0,1, .  . . ,13 - 1, and ck E OB (k = 0 , 1 , .  . . , K - 1) stands 

the optimal minimum determinant, can be expressed as: 
for a pariicular permutation (i,”, it, . . . , z B p 1 ) ,  .k then yAzn, 

(7) 

Because the numbers 0 ,1 , .  . . , B - 1 can be arranged in B! 
different ways, the size of the search space is (B!)K.  This 
means that exhaustive search may be impractical in certain 
cases. To get around this complexity growth, we propose a 
suboptimd approach that offers a practical solution. The 
basic idea, of the method is to restrict the search space in 
such a wa,y that the resulting complexity is not prohibitive. 

The parametric permutation function is a function that 
generates a subset of all possible permutations of the num- 
bers 0,1, , . . , B - 1. Different parameters produce different 
permutations, so the problem will be reduced to a search 
for the best parameter. 

In the ;sequel, we will use the notation i:! = $g(n,il) 
for one possible realization of the parametric permutation 
function. The value n is the parameter to be optimized 
( n e  {1,2,  ..., B-l}) ,andi l  andizarethejnputandout- 
put indices, respectively (il, i 2  E {0,1, .  . . , i? - 1)). Note 
that the obvious $B(n,il) = (nil) mod B ,  for odd n, is 
not a good choice because it does not “shuffle” the indices 
well enough. 

The oultput index is generated according to the follow- 
ing description. The input index il and the parameter n 
are treated as binary vector representations of two field 
elements in GF(B)=GF(2’). These field elements are mul- 
tiplied tog;ether according to field arithmetic, and the out- 
put index i2 will be the binary vector representation of the 
product. 

Replacing the permutation operation by the parametric 
permutation function, the optimization problem reduces 
to: 

€ ( l , Z ,  ..., B - l }  
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TABLE I 
THE GENERATED PERMUTATIONS 

where ymzn is: 
K-1 

= L , m € { O , l ,  min ..., E-1) n Ic(+B(nk, 1 ) )  - c ( $ B ( n k ,  m))I2. 
l<m k=O 

(9) 
To find the maximum of ~ ~ i ~ ,  we only have to search over 
( B  - l )K possibilities. Once the nc, n;, . . . , ny(--l param- 
eter values that maximize the minimum determinant have 
been calculated, the channel symbol indices can be d e  
termined as i! = $ ~ ( n z ,  I ) ,  for 5 = 0,1, ..., K - 1 and 
1 = 0 , 1 ,  ..., B-1. 

The delay diversity scheme [5] is a special case of our 
design method. For B = 2, the two methods are equivalent. 
For B > 2, the delay diversity scheme corresponds to 2: = 
1 .  In [ 5 ] ,  it was shown that, if A denotes the minimum 
Euclidean distance of the chosen constellation, then the 
minimum determinant of the resulting delay diversity ST 
code will be 7gin = AZK. 

v. A CODE DESIGN EXAMPLE 

In this section, we provide a ST code construction exam- 
ple for 3.transmit antennas and QPSK modulation. 

The parametric permutation function is calculated using 
the field arithmetic in GF(4). The field is built up using a, 
a root of the primitive polynomial p(x) = x2+x+1. In this 
case, the function $4(., .) will generate the permutations 
given in Table I. The table entries are the function values 
for different input index and parameter values. 

The minimum determinant of the code can be expressed 
as : 

l < m  

If the optimization procedure described in Section IV is 
used, then the result will be ng = 1, n; = 2 and n; = 3 
with = 16. Note that this maximum is not unique: 
several other sets of {n;} values exist. This is not surpris- 
ing because of the symmetry of the QPSK constellation 
and the commutativity of multiplication. The obtained 
permutations are: (i:, iy, is, Z;)=(O, 1,2,3), (zi, ii, i i ,  i:)= 
(0,2,3, l), and ( i ~ , z ~ , i ~ , i ~ ) = ( O ,  3,1 ,2) .  These permuta- 
tions generate the ST code depicted in Figure 1. The min- 
imum determinant of the corresponding delay diversity ST 
code is 7Zin = A6 = 8. 

VI. SIMULATION RESULTS 

To illustrate the performance of the codes designed us- 
ing the above described method, we show some simula- 

000,100,200,300 

020,120,220,320 

030,130,230,330 

010,110,210,310 

003,103,203,303 

023,123,223,323 

033,133,233,333 

013,113,213,313 

00 1,101,201,301 

02 1,121,221,32 1 

031,13 1,23 1,33 1 

01 1,111,211,311 

002,102,202,302 

022,122,222,322 

032,132,232,332 

012,112.2 12.3 12 

state 0 

state 1 

state 2 

state 3 

state 4 

state 5 

state 6 

state 7 

state 8 

state 9 

state 10 

state 11 

state 12 

state 13 

state 14 

state 15 

Fig. 1. Example ST code for 3 antennas and QPSK constellation 

tion results. We compare our method with the delay di- 
versity scheme of [5] since, to our knowledge, this is the 
only method that can be used to construct ST codes for 
any number of antennas and any constellation. The simu- 
lated communication system had one receive antenna. The 
source symbols were transmitted in frames of length 130, 
and the Viterbi algorithm with decoding depth of 20 state 
transitions was used to decode the received signals. For 
each frame, the path gains between the transmit anten- 
nas and the receive antenna were modeled as independent, 
complex, zero mean, circularly symmetric Gaussian ran- 
dom variables with unit variance. 

Since the frame error probability depends on the length 
of the frame and it does not seem very informative, we 
present probability of bit error curves as functions of the 
average signal to noise ratio (SNR) per source symbol at 
the receive antenna. In the sequel, the expression coding 
gain will refer to the difference (in dB) of transmit energies 
to achieve the same probability of bit error value. 

Figure 2 depicts the performance of the example ST code 
for 3 antennas and QPSK modulation. Approximately 0 . 4  
0.5 dB coding gain is observed over the delay diversity 
scheme. 

Figure 3 shows the bit error rate curves of a 3 trans- 
mit antenna system with 8PSK modulation. The mini- 
mum determinant of the code is $& = 0.6863. The min- 
imum determinant of the delay diversity scheme with the 
same design parameters is ygin = 0.2010. The simulation 
also shows that the performance improvement is more pro- 
nounced; at higher SNR, more than 1 dB coding gain can 
be achieved. 
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Fig. 2. 3 transmit antennas with QPSK 
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Fig. 3. 3 transmit antennas with BPSK 

The performance of the ST code for 3 antennas and 
16PSK constellation can be observed in Figure 4. The min- 
imum determinant of this code is rAin = 0.110105, while 
the delay diversity construction gives 7gin = 0.003529. 
Our ST code yields 2-2.5 dB coding gain compared to the 
delay diversity scheme. 

Figure 5 depicts the bit error rate curves for the 4 an- 
tenna ST code using 4ASK modulation. To normalize the 
constellation, the distance between the neighboring signal 
points was set to A = m. The minimum determinant of 
the code is rAin = 1.6384, and the delay diversity method 
yields 7gin = 0.4096. The figure shows approximately 2 
dB coding gain over the delay diversity construction. 

VII. CONCLUSION 
Exploiting the special structure of the code difference 

matrix, we developed a systematic method to design ST 
codes for both diversity advantage and coding advantage 
for an arbitrary number of transmit antennas and any 
memoryless constellation. Based on the theoretical cod- 
ing advantage values and the simulation results, we can 
draw the following conclusion. If the maximum distance 
of the chosen constellation is much larger than the min- 

l 0 . L '  " " " ' 
10 11 12 13 14 15 16 17 16 19 20 

w e w e  SNR IdEl 

Fig. 4. 3 transmit antennas with 16PSK 

I..... i 
10 15 

BYORD~ SNR [dEI 

Fig. 5. 4 transmit antennas with 4ASK 

imum distimce, our design method can exploit the addi- 
tional degrees of freedom effectively, producing ST codes 
that perform much better than the delay diversity scheme. 
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