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A subspace based approach for the blind multiple signal separation and recovery for MIMO systems is proposed in this paper.
Instead of using the statistics of the received signal, the proposed algorithm exploits the received signal structure and the finite
alphabet property of the desired signals. The finite alphabet property is used to remove the unknown unitary matrix that is
associated with most of the statistics-based MIMO system identification algorithms. The proposed algorithm also incorporates an
error-correcting procedure; therefore, it has more accuracy than the existing algorithms. Computer simulation results demonstrate
that the algorithm can detect the signals and estimate channel parameters accurately with very few symbols, even under high noise
and bad channel conditions.
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1. INTRODUCTION

Multiple transmit and receive antennas can be used in wire-
less communications to form multiple-input and multiple-
output (MIMO) systems to improve transmission capacity
and performance. The first problem that we have to address
before using MIMO communication systems is to identify
and equalize MIMO systems, that is, to find system parame-
ters, separate and recover signals. In this paper, we present
blind subspace algorithm for MIMO system equalization.
Since almost all MIMO systems can be modeled or approx-
imated as FIR systems, we limit ourselves to linear FIR sys-
tems.

A number of algorithms have been proposed for blind
identification and equalization of channels with only one
input. Traditionally, most blind equalization algorithms for
single-input and single-output (SISO) systems have been
based on higher-order statistics [1, 2, 3, 4]. In the last
few years, a number of second-order statistics based algo-
rithms have been proposed in [5, 6, 7] to exploit the cyclo-
stationarity of oversampled continuous SISO communication

systems. Since an oversampled continuous SISO system is
equivalent to a discrete single-input and multiple-output
(SIMO) system, these algorithms can be regarded as address-
ing the SIMO system identification problem as well. Recently,
a number of subspace-based algorithms have been proposed
in [8, 9, 10, 11, 12] for blind system identification. In partic-
ular, we have proposed a new deterministic subspace-based
algorithm in [11, 12] which addresses blind equalization
of oversampled continuous SISO (or equivalently discrete
SIMO) systems. Compared with other algorithms in the liter-
ature, this algorithm has much better performance. However,
it requires that the number of outputs equal to the FIR chan-
nel length, which is very restrictive in reality. In Section 2,
we generalize this algorithm, remove this restriction, and
study the performance of the algorithm under different over-
sampling rates. The approach used to generalize the SIMO
identification algorithms can be also used to generalize the
MIMO identification algorithm developed in Section 3.

Compared with the number of algorithms that exist for
the single-input systems, there are very few algorithms which
address the MIMO channel equalization. This is because the
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Figure 1: (a) SIMO System, (b) MIMO System.

MIMO problem is much more difficult to deal with. For ex-
ample, it can be shown that by using only the structure and
no other extra information (like quantized inputs or knowl-
edge of the statistics), we can only identify the system up to
a unitary matrix. Nevertheless, a few algorithms that equal-
ize MIMO systems have been discovered [10, 13, 14]. In
particular, [10, 14] are subspace-based methods which use
the ILSP method described in [15] and are iterative. The
statistics-based algorithm in [13], like other statistics-based
algorithms, needs a very long observation interval to equalize
the system and is therefore not suited to fast changing envi-
ronments, such as wireless communications. It is becoming
greater to find MIMO system blind equalization algorithms
that use smaller observation intervals, work well at high noise
conditions, and give more accurate estimates. In Section 3,
we develop an algorithm for MIMO systems that requires a
small observation interval. The effectiveness of the proposed
algorithms is demonstrated through computer simulation in
Section 4.

2. GENERALIZED SUBSPACE ALGORITHM
FOR SIMO SYSTEMS

In [11, 12], we presented an algorithm for blind identifica-
tion of oversampled continuous SISO systems under certain
conditions. However, that algorithm requires that the over-
sampling rate should be exactly the same as the length of the
FIR channel. Although in most cases this constraint will not
create any problems. In some cases, too high oversampling
rates will cause the impulse response matrix to become very
ill-conditioned, which leads to poor channel estimates. Af-
ter describing the mathematical model of SIMO systems, we
will present a generalized subspace algorithm that does not
require the constraint.

2.1. Problem statement

The mathematical model of 1-input and K-output systems
can be illustrated as in Figure 1a. The sequence s(n) is sent

through K linear channels hi(n), i = 1, . . . , K . In the noiseless
case, the channel outputs xi(n), 1 ≤ i ≤ K , can be expressed
as

xi(n) =
J−1∑
j=0

s(n − j)hi( j), (1)

where J is the maximum length of hi(·)’s. The problem we
propose to tackle here is the blind identification and equal-
ization of SIMO systems, that is, to find an algorithm to es-
timate the sequence s(n) given only the outputs xi(n). The
solution we presented in [11, 12] assumed that K = J . Here
we will derive a more general algorithm without using the
assumption.

For a given n, define for 1 ≤ i ≤ K ,

xi(p) =
[
xi(p) xi(p + 1) · · · xi(p + n − 1)

]T
,

s(p) =
[
s(p) s(p + 1) · · · s(p + n − 1)

]T
,

hi =
[
hi(0) hi(1) · · · hi(J − 1)

]T
.

(2)

With the above definitions, equation (1) can be expressed as,

xi(p) =
[
s(p) s(p − 1) · · · s(p − J + 1)

]
hi, (3)

or
[
x1(p) x2(p) · · · xK (p)

]

=
[
s(p) s(p − 1) · · · s(p − J + 1)

]
H,

(4)

where H is a J × K matrix defined as

H =
[
h1 h2 · · · hK

]
. (5)

When developing the subspace algorithms in [11, 12], we
have assumed that the matrix H is square (i.e., J = K) and
invertible.
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Unfortunately, H need not be a square matrix (and hence
will not be invertible). Therefore, we are going to introduce
a generalized algorithm to deal with the situation.

2.2. Generalized subspace algorithm

The algorithm developed in [11, 12] requires that H be a
square matrix. When H is not square, the generalized algo-
rithm is to modify this matrix to get a square, invertible ma-
trix, without substantially changing (4). Without loss of gen-
erality, we assume K ≤ J .

Let O j×k be a j × k matrix of zeros. Define Ĥ1 = H and
Ĥ j+1 recursively as,

Ĥ j+1 =




O j×K
Ĥ j

H
O1× jK



. (6)

From the definition, Ĥ j is a (J + j − 1) × jK matrix and it
has more columns than rows when j ≥ (J − 1)/(K − 1). Let
j ′ = �(J − 1)/(K − 1)� and Ĥ be a (J + j ′ − 1) × (J + j ′ − 1)
square matrix consisting of the first (J + j ′ − 1) columns of
Ĥ j ′ .

Now, define the following:

X(p) =
[
x1(p) x2(p) · · · xK (p)

]
,

X̂(p − j ′ + 1)

=
[
x1(p− j ′+1) x2(p− j ′+1) · · · xK+(J−1)−(K−1) j ′(p− j ′+1)

]
,

X(p) =
[
X(p) · · · X(p − j ′ + 2) X̂(p − j ′ + 1)

]
,

S(p) =
[
s(p) · · · s(p − J + 1) · · · s

(
p − J + 1 − ( j ′ − 1)

)]
.

(7)

With the above definitions, we have the following equation:

X(p) = S(p)Ĥ. (8)

Now define the matrix Φ as

Φ=




X(p + 1) −X(p) 0 · · · 0 0

0 X(p + 1) −X(p)
. . . 0 0

0 0 X(p + 1)
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · X(p + 1) −X(p)




(9)

with the number of block-rows being J + j ′ − 1 and 0 repre-
senting a matrix of zeros.

We can show that Φ can be factored as

Φ = ΨH̃, (10)

where

H̃ =




Ĥ 0 · · · 0

0 Ĥ
. . . 0

...
. . .

. . .
...

0 0 · · · Ĥ



,

Ψ =




S(p + 1) −S(p) 0 · · · 0 0

0 S(p + 1) −S(p)
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · S(p + 1) −S(p)



.

(11)

From [11, 12, Lemma 3.2], we know that the probability that
Ψ has a one-dimensional null-space tends to 1 exponentially
with increasing n. We also know that the one-dimensional
null space is given by �(Ψ),

�(Ψ) =
{
c
[
e1 e2 · · · eJ+ j ′−1

]T
: c ∈ �

}
, (12)

where ei is a 1 × (J + j ′ − 1) vector given by

ei =


0 · · · 0 1︸︷︷︸

ith

0 · · · 0

. (13)

So for all practical purposes we can assume that Ψ has a one-
dimensional null space. If we further assume that Ĥ is invert-
ible, it is easily seen that Φ has a one-dimensional null-space
and that the null space of Φ is given by

�(Φ) =



c




Ĥ−1eT1
Ĥ−1eT2

...
Ĥ−1eTJ+ j ′−1


 : c ∈ �




. (14)

Note that Φ is a matrix whose elements are the actual chan-
nel output samples—so we can apply some of the standard
algorithms to find its null space—let the null space be

�(Φ) =
{
c
[
λ1 λ2 · · · λJ+ j ′−1

]T
: c ∈ �

}
, (15)

where λi is a 1 × (J + j ′ − 1) vector. We therefore have,

Ĥ−1
[
eT1 eT2 · · · eTJ+ j ′−1

]
=Ĥ−1=c

[
λT1 λT2 · · · λTJ+ j ′−1

]
.

(16)

From the null space of Φ we can get Ĥ and hence H,
the channel response matrix, up to a multiplication factor.
Thus, in the noiseless case we have identified the channel
exactly.

The same algorithm can be used for noisy case. Instead
of finding a null vector of Φ, we find the smallest singu-
lar vector of Φ. To obtain a better estimate of the channel,
we can also apply the error-correcting least-squares (ECLS)
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algorithm discussed in [11, 12]. Here we have a choice of
several sampling rates (or equivalently several channels) un-
like [11, 12] where the sampling rate was fixed at J—by
choosing an appropriate sampling rate, it may be possible
to overcome the problem of ill-conditionedness that is al-
ways faced in blind equalization algorithms. In [11, 12],
the ill-conditionedness problem was overcome by choos-
ing the effective channel length to be smaller than J . Here
the ill-conditionedness can be overcome by reducing the
sampling rate itself. In Section 4, we present some simula-
tion results comparing the performance of this algorithm
at different sampling rates. From the simulations we can
see that at least for very ill-conditioned matrices, the per-
formance becomes better as the rate of over-sampling de-
creases. The reason for this counter-intuitive result1 is that,
in very ill-conditioned matrices, increasing the sampling
rate does not really increase the information content in the
samples.

3. THE SUBSPACE ALGORITHM FOR THE MIMO
SYSTEMS

In Section 2, we looked at the SIMO channel equalization
problem. In this section, we tackle the MIMO channel case.
The mathematical model of d-input/K-output MIMO sys-
tems can be illustrated as in Figure 1b. The d sequences
s1(n), . . . , sd(n) are sent through linear channels hi j(n) for
i = 1, . . . , K and j = 1, . . . , d and hence, the channel outputs
xk(n), 1 ≤ k ≤ K , can be expressed as

xk(n) =
d∑
i=1

J∑
m=0

hk,i(m) · si(n −m), (17)

where J is the maximum length of hi, j(·). The solution we
present below assumes that K = Jd. By using the approach
that was presented in Section 2 for the SIMO case, this algo-
rithm can also be extended to K �= Jd case.

3.1. The MIMO subspace approach

First we define some matrices and derive some basic relations
between them, and then prove Theorem 1. Based on these
relations and Theorem 1, we then derive the MIMO subspace
algorithm.

For a given n, for 1 ≤ i ≤ d and 1 ≤ j ≤ Jd, define

si(p) =
[
si(p) si(p + 1) · · · si(p + n − 1)

]T
,

Si(p) =
[
si(p) si(p − 1) · · · si(p − J + 1)

]T
,

S(p) =
[
ST

1 (p) ST
2 (p) · · · ST

d (p)
]T

,

x j(p) =
[
xj(p) xj(p + 1) · · · xj(p + n − 1)

]T
,

X(p) =
[
x1(p) x2(p) · · · xdJ(p)

]
,

hi, j =
[
hi, j(0) hi, j(1) · · · hi, j(J − 1)

]T
,

1Intuitively, higher sampling rate implies more information, which in
general should lead to better performance.

H =




h1,1 h2,1 · · · hdJ,1

h1,2 h2,2 · · · hdJ,2
...

...
...

...
h1,d h2,d · · · hdJ,d


 .

(18)

We then have the following equation:

X(p) = S(p)H. (19)

Now construct the matrix Φ as

Φ=




X(p + 1) −X(p) 0 · · · 0 0

0 X(p + 1) −X(p)
. . . 0 0

0 0 X(p + 1)
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · X(p + 1) −X(p)




(20)

with the number of block-rows being J , 0 representing a ma-
trix of zeros. Using (18) and (19), it is easy to see that the
following identity holds:

Φ = ΨH̃, (21)

where

Ψ =




S(p + 1) −S(p) 0 · · · 0 0

0 S(p + 1) −S(p)
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · S(p + 1) −S(p)



,

(22)

and H̃ = diag(H,H, . . . ,H) and the number of block matrices
H is J .

Below we prove that Ψ has a d-dimensional null space.

Theorem 1. If the vectors si( j) for 1 ≤ i ≤ d and (p − J + 1) ≤
j ≤ (p+1) are independent, then Ψ has the d-dimensional null
space given by

�(Ψ) =



c1




e1

e2
...

eJ


 + c2




eJ+1

eJ+2
...

e2J




+ · · · + cd




e(d−1)J+1

e(d−1)J+2
...
edJ


 : ck ∈ �




,

(23)

where ei = [0 · · · 0 1︸︷︷︸
ith

0 · · · 0].

The proof of the theorem will use the following lemma,
which is proved in the appendix.
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Lemma 1. If the J + 1 vectors �0, �1, . . . ,�J are linearly in-
dependent, the n × n matrix, Γ, with zero elements everywhere
except the following elements:

Γii = �1�2 · · ·�J ,

Γi,i+1 = �0�1 · · ·�J−1
(24)

has a one-dimensional null space and

�(Γ) =
{
c
[
e1 e2 e3 · · · eJ

]T
: c ∈ �

}
. (25)

With the above lemma, we can now prove the theorem.

Proof of Theorem 1. Let On×k be an n × k matrix of zeros,
Ŝi(p) =

[
On×(i−1)J Si(p + 1) On×(d−i)J

]
, and

Ψi =




Ŝi(p + 1) −Ŝi(p) 0 · · · 0 0

0 Ŝi(p + 1) −Ŝi(p)
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · Ŝi(p + 1) −Ŝi(p)



.

(26)

Now, Ψ can be written as

Ψ =
d∑
i=1

Ψi. (27)

Let

λ =
[
λT1,1 · · · λTd,1 λT1,2 · · · λTd,2 · · · λT1,J · · · λTd,J

]T
(28)

be a dJ2 × 1 vector in the null space of Ψ (where λi, j is a J × 1
vector). Now for 1 ≤ i ≤ d, define βi as the vector obtained
by replacing all elements in λ, except λi,1, λi,2, . . . , λi,J , by zero.
Therefore, βi is given by

βi =
[
θi,1 θi,2 θi,3 · · · θi,J

]T
, (29)

where θi,k =
[
O1×(i−1)J λTi,k O1×(d−i)J

]
.

It can be seen that the following relation holds:

Ψiβi = 0 for 1 ≤ i ≤ d. (30)

Using Lemma 1 it can be seen that (30) implies that

βi = ci
[
eT(i−1)J+1 eT(i−1)J+2 eT(i−1)J+3 · · · eTiJ

]T
(31)

for some ci ∈ �. Since λ =
∑d

i=1 βi, the theorem follows.

Assuming further that H is invertible, we can conclude
that Φ also has a d-dimensional null space if the vectors si( j),
for 1 ≤ i ≤ d, (p − J + 1) ≤ j ≤ (p + 1), are independent.
But it is easy to see that as n increases, the probability that
these vectors are not independent goes to zero exponentially
[11, 12]. Therefore, we conclude that as n increases, the prob-
ability that Φ has a d-dimensional null space increases expo-
nentially to 1.

Also from the expression for the null space of Ψ in

Theorem 1, it follows that the null space of Φ can be writ-
ten as

�(Φ) =
d∑
i=1

cibi, (32)

where the basis vectors bi are

bi =
[
eT(i−1)J+1Λ

T eT(i−1)J+2Λ
T eT(i−1)J+3Λ

T · · · eTiJΛ
T
]T

,

(33)
where Λ = H−1.

Note that the d basis vectors {bi} have all the re-
quired information about H as well as about the transmitted
sequences, for

Λ =
[
Λe1 Λe2 Λe3 · · · ΛedJ

]
, (34)

S(p) = X(p)Λ. (35)

Another important observation is that just the knowl-
edge of bi is enough to determine the ith transmitted se-
quence. The reason is that the J columns (from columns
(i − 1)J + 1 to iJ) of Λ are from bi and the information
about the ith transmitted sequence can be obtained by post-
multiplying X(p) by these J columns of Λ.

3.2. The problem caused by the d-dimensionality
of the null space

From the above relations, it is clear that if we have the ba-
sis vectors, then we have solved the MIMO problem. Un-
fortunately, the basis vectors are unknown. In the SIMO
case, this problem does not arise since the null space is one-
dimensional. Here the null-space is d-dimensional and stan-
dard algorithms (like the SVD algorithm) can give us the null
space, but not the basis vectors that we need. Just arbitrary d
basis vectors for the null-space will not be enough—the basis
vectors we need are special as given by (33). If we just choose
a basis for the null space, what we end up with is a linear
combination of the basis vectors, that is, vectors of the form∑d

i=1 kibi, where ki ∈ �. The problem that we therefore have
to address can be stated as follows: given the null space (and
some basis for it), find the d basis vectors {bi}.

To solve this problem, we now make use of the discrete
nature of the transmitted sequence. In what follows, for the
sake of simplicity in presentation, we focus only on the d = 2
case. The points discussed below can be easily generalized to
arbitrary d.

Our two basis vectors b1 and b2 lie in the null space. So if
we have any other two independent vectors which belong to
the null space, then our basis vectors are just linear combina-
tions of those two vectors. We write this mathematically. Let
γ1 and γ2 be any two vectors in the null space obtained from
Φ, then

b1 = xγ1 + yγ2, b2 = zγ1 + wγ2, (36)

for some x, y, z, w ∈ �. The problem now reduces to finding
x, y, z, and w.
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Table 1: Procedure for finding x and y.

Step 1. Choose two independent vectors, γ1 and γ2, in the
null space.
Step 2. Choose some x and y.
Step 3. Substitute these values of x, y, γ1, and γ2 in (36).
This gives us an estimate of b1.
Step 4. Using this estimated b1 and (35) obtain an estimate
for the transmitted sequence.

We had previously made the observation that just the
knowledge of b1 is enough to determine the first sequence.
This now boils down to the statement that just the knowledge
of x and y, the weighting factors of γ1 and γ2, is enough to
determine the first sequence. We will make use of this obser-
vation below to solve for x and y and hence the transmitted
sequence. Table 1 describes the procedure to find x and y.

The big question is of course: what if the estimate of x
and y is wrong? What criterion should be used to find out
whether our estimate for x and y is correct? One reasonable
criterion is the following: whenever the transmitted sequence
obtained from x and y is a proper transmitted sequence, then
we can assume that the estimate of x and y is correct. Note that
we do not know the exact transmitted sequence but we do
know the symbol constellation of the transmitted sequence.
So we can define a proper transmitted sequence to be any se-
quence with elements from the signal constellation.

Using the idea presented above to check whether any as-
sumed x and y is correct, we have Table 2 for estimating the
transmitted sequence (and the channel responses).

Here are some comments on Table 2.
(1) To find x and y in Step 3 in the algorithm, two-

dimensional search over real numbers is required. The proper
transmitted sequence criterion defines the correct estimate by
the fact that at the correct estimates of x and y, all the ele-
ments of the estimated transmitted sequence will lie in the
signal constellation. In a noisy situation, instead of the cor-
rect estimates of x and y, we will have the optimum estimates
of x and y and the condition that the estimated transmit-
ted sequence should lie in the signal constellation will be re-
placed by the following: denote the estimated transmitted se-
quence to be v. Find the constellation-sequence u closest2 to v,
that is, to find x and y that minimize ‖u − v‖.

(2) If signal constellation is the same for both the se-
quences, there will be two sets of x and y at which the es-
timated transmitted sequence will lie in (or in the noisy case
be very close to a sequence with elements in) the signal con-
stellation. These represent the two transmitted sequences and
with one search we can find both the transmitted sequences.

(3) As we can see in Section 3.3, the two-dimensional
search can actually be reduced to a one-dimensional search.

2We can choose any sensible criterion for closeness—for most practi-
cal cases, we can either use the nearest neighbor rule or more simply just
perform an element by element quantization. In our simulations we have
adopted the later approach of element by element quantization.

Table 2: MIMO-subspace algorithm (without error correction).

Step 1. Construct the matrix Φ.
Step 2. Find any two linearly independent vectors, γ1 and
γ2, in the null space of Φ.
Step 3. Using the procedure described above and using
the proper transmitted sequence criterion for correctness,
search for the correct x and y over all possible values they
can take.

3.3. Complexity reduction

To reduce the computational complexity, it would be better if
we could manage with just a one-dimensional search instead
of a two-dimensional search over reals. It is in fact possible
to reduce the two-dimensional search to a one-dimensional
search. Furthermore, it does not involve any loss in accuracy
of estimate.

There are many ways in which this can be done. For ex-
ample, we can just set x = 1 and search over all values of y
from −∞ to ∞. We can normalize each vector obtained and
this gives all possible3 normalized vectors in the null space.
But we end up with problems if for example b1 = γ2, for then
y will have to be ∞ which is not practically reachable through
any search algorithm. So from a practical point of view this
approach and other similar approaches are not very effective.
We found the following procedure most advantageous from
a computational angle.

(1) Perform Gram-Schmidt orthonormalization proce-
dure on the two vectors, γ1 and γ2 and obtain the two or-
thonormal vectors δ1 and δ2. Let τ1 and τ2 be the first 2J ele-
ments of δ1 and δ2, respectively.

(2) Minimize the following over 0 ≤ θ ≤ 2π,
∥∥a − quant(a)

∥∥, (37)

where a is the estimate of the transmitted sequence given by

a = X(p + 1)
(

cos(θ)τ1 + sin(θ)τ2
)

(38)

and quant(x) is the element by element quantization of x,
where the quantization maps each element of x to its nearest
point in the signal constellation. Figure 2 shows a sample plot
of ‖a − quant(a)‖ versus θ (in the noisy case).

The actual estimates of the two transmitted sequences are
the quantized versions of the estimated sequences obtained
from the two values of θ at the two minima.

3.4. Error-correcting least squares MIMO algorithm

We have so far made substantial use of the structure inher-
ent in the output samples. Although we have also used the
fact that the transmitted sequence is quantized, we have not

3It is important not to lose track of the essence behind all these
manipulations—our aim is to search over all the vectors in the null space—
because we know that one (or more accurately one pair) of the vectors is the
correct one. All these tricks we are employing are just ways of making this
search systematic.
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Figure 2: One sample plot of ‖a − quant(a)‖ versus θ.

exploited it fully. The ECLS algorithm discussed in [11, 12]
does this very effectively and we can apply it here as well.

The crucial point in the ECLS algorithm is the observa-
tion that in almost all practical cases, if the initial estimate is
close enough to the desired optimum, then we can reach the
optimum by searching over a smaller area around initial es-
timate. The great reduction in the computational complexity
comes from the fact that n small searches is just linear com-
plexity whereas one search over the whole area4 will have a
complexity of np, where p is the dimension in which we are
searching.

By applying this same idea here, we can reduce the search
complexity greatly. The only problem is that we have two es-
timated sequences rather than one. So there are many ways in
which we can do a smaller search. We can at each stage search
over all possible one-element deviations for each transmitted
sequence and then choose those one-element deviations for
each sequence which corresponds to the overall optimum.
The algorithm which does this is shown in Table 3.

But since we are only dealing with finite sequences, there
is an even more simpler way of using error-correction. Con-
catenate the two sequences and apply the error correcting
procedure on the combined 1D sequence. This is clearly only
a subset of the previously described algorithm and so the
performance of this will be degraded compared to the pre-
vious. But the importance of this approach lies in the fact
that it reduces the complexity substantially. In the case that
the two transmitted sequences are independent, the assump-
tion that we can search over the two sequences independently
(which is what we are doing here) instead of a joint search
for the best sequence-pair, is quite reasonable. Because of
these advantages, in our simulations we use this approach.
Although the ECLS-MIMO algorithm improves the perfor-
mance in all cases, the improvement is especially important

4The word area has been used as a general term for the region of search,
not to denote the two-dimensionality of the search region.

Table 3: ECLS-MIMO algorithm.

Step 1. First let the search area be all the sequence-pairs
which differ from the current sequence-pair in at most one
position for each sequence in the pair.
Step 2. Find the best sequence-pair in this area. The best
sequence-pair is the one which has the smallest least-
squares error, that is, minimizes ‖Ŝ(p)H − X(p)‖ over all
possible H matrices, where Ŝ(p) is the S(p)-matrix that
would be used in (21) if the actual transmitted sequences
were the sequence-pairs in question.
Step 3. If this sequence is the same as the current sequence-
pair then stop and decide that this is the best estimate.
Step 4. If this sequence is not the same as the current
sequence-pair then replace the current sequence-pair by
this sequence-pair and start all over again from Step 1.

when the matrix H is ill-conditioned because the channel
and sequence estimates are not very accurate.

4. SIMULATION RESULTS

In this section, we present some simulation results for the
two algorithms presented in this paper—the generalized
SIMO and MIMO-subspace algorithms—and compare it
with other algorithms, under the same channel and noise
conditions.

4.1. Simulations results for the generalized
SIMO algorithm

First, we present the results for the generalized SIMO-
subspace algorithm and compare it with the results in [8,
9, 10]. Here we do not present the results for [11, 12] since
the algorithm in [11, 12] assumes that the “numerical” chan-
nel length is smaller than the actual channel length and uses
the shorter channel length for its computation which leads
to its better performance. This approach to overcome the
ill-conditionedness of the channel is complimentary to the
lower sampling rate approach we have proposed in this pa-
per and both the approaches can be used simultaneously to
even further improve the performance.

For these simulations, we used a channel with J = 4.
Oversampling it at four times the baud rate, the channel ma-
trix H which we used is given by

H =




0.04142 0.0216 −0.01959 −0.06035
−0.07025 −0.0241 0.08427 0.2351

0.3874 0.4931 0.5167 0.4494
0.3132 0.152 0.01383 −0.06754


 . (39)

To quantify the ill-conditionedness or well-conditioned-
ness of a matrix we will use RCOND(X). RCOND(X) is an
estimate for the reciprocal of the condition of X in the 1-
norm. If X is well conditioned, RCOND(X) is near 1.0. If X
is badly conditioned, RCOND(X) is near 0.0. For the ma-
trix H above, RCOND(H) = 0.0027. It is therefore clearly a
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Figure 3: Generalized subspace algorithm, (a), (b) 2-oversampling, (c), (d) 3-oversampling, and (e), (f) 4-oversampling. SNR = 25 dB. (a),
(c), and (e) 40 symbols, (b), (d), and (f) 100 symbols.
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Figure 4: Algorithms (a), (b) in [8], (c), (d) in [9], and (e), (f) in [10]. SNR = 25 dB. (a), (c), and (e) 40 symbols, (b), (d), and (f) 100
symbols.
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Figure 5: 20 estimates of the channel for (a) SNR = 20 dB, (b) SNR = 15 dB, (c) SNR = 10 dB, and (d) SNR = 5 dB for the oversampling
twice-subspace algorithm. 40 symbols.

very ill-conditioned matrix. If we oversample the channel at
only twice the baud rate (as opposed to the four times over-
sampling done above) and create a square matrix using the
method presented in Section 2, the RCOND of the matrix
thus obtained is 0.0123. This is still an ill-conditioned ma-
trix but the condition number is five times better. By choos-
ing the sampling instants appropriately we can even make
the RCOND = 0.0186—but since we have no hold over the
sampling instants, for our simulations we assume a sampling
such that we get a lower condition number. Similarly, de-
pending on the sampling instants, sampling at three times
the baud rate can give us square matrices with RCOND num-
bers 0.0021, 0.0046, or 0.0134. For our simulations we have
assumed the sampling rates to be such that the RCOND
number is the worst of the possible values, that is, RCOND =
0.0021. Since the matrices are so ill-conditioned, it is neces-
sary to use error-correction and all results presented below
are with error correction.

To obtain a performance measure of the channel estima-
tion, the normalized root-mean-square error (NRMSE) of
the estimator is defined by

NRMSE =
1

‖h‖

√√√√ 1
M

M∑
i=1

∥∥ĥ(i) − h
∥∥2
, (40)

where M is the number for independent trials, and ĥ(i) is the
estimate of the channel from the ith trial. Figure 6a shows
the NRMSE versus SNR for different algorithms. In Figure 6b
we have shown the bit error rate (BER) in estimating the
transmitted sequences for the different algorithms. Figure 6c
shows the computational complexity of different algorithms
(measured by the number of floating point operations—
FLOPS in MATLAB). As we can see from these figures, the
BER is quite small and drops very sharply for all the sub-
space algorithm with an increase in the SNR. Also we can
clearly see that the values of both the NRMSE and the BER
for the generalized subspace algorithms presented here are
lower than for other algorithms in the literature in the low
SNR situation. In particular, the twice baud rate sampling
case consistently outperforms the rest.

Figures 3a and 3b show 20 channel estimates obtained
by oversampling at twice the baud rate (the observation in-
terval is 40 and 100 symbols for the two figures and SNR in
both cases is 25 dB). Figures 3c, 3d, 3e, and 3f show 20 esti-
mates obtained by oversampling at 3 and 4 times the baud
rate. Figures 4a, 4b, 4c, 4d, 4e, and 4f show the 20 channel es-
timates obtained using the algorithms in [8, 9, 10]. From the
figures we can see that the generalized subspace algorithms
presented in this paper perform better than the other algo-
rithms in the literature. Figures 5a, 5b, 5c, and 5d show 20
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channel estimates using the 2-times oversampling subspace
algorithm with only 40 symbols for 20, 15, 10, and 5 dB SNR,
respectively.

The figures clearly demonstrate how as the condition
number of the matrix becomes better (with lower sampling
the condition number can get better), the performance im-
proves. Sampling at twice the baud rate improves the con-
dition number and hence the performance as compared to
sampling at 4 times the baud rate. Also, just reducing the
sampling rate also improves the performance—even though
we chose the worst cases of sampling at thrice baud rate, still
the performance is better than the 4-times baud rate sam-
pling case.

Figure 6c is the computational complexity plot. It shows
that the complexity of the generalized subspace algorithm
presented here is comparable to those of the other algorithms
in the literature. As should be expected, lowering the sam-
pling increases the complexity—the reason being that the
lower the sampling rate, the bigger the effective H (with zero-
paddings) becomes. Since the complexity of the subspace
approach (because of the singular value decomposition for
finding the null space) depends on the size of this matrix, as
this size increases, we can expect the complexity to also in-
crease.

4.2. Simulations results for the MIMO algorithm

We will now present the results for the MIMO-subspace algo-
rithm and compare it with the MIMO equalization algorithm
presented in [14]. We will present the results first without
using error-correction and then with error-correction and
demonstrate the algorithm’s effectiveness in both cases.

The simulation study presented here is for the case when
d = 2, K = 4, and J = 2. The impulse responses used in the
simulation for both the algorithms is given as

H =




0.1667 0.1057 −0.0665 0.3232
0.4813 0.5333 0.4369 0.3846
0.2804 −0.0505 0.2208 −0.0067
0.3730 0.4744 0.4296 0.5090


 . (41)

Figures 7a and 7b show the estimates5 of the channel re-
sponse using the algorithm in [14] for SNR = 25 dB. In both
cases, the length of the observation interval covers 100 sym-
bols. Figures 7c and 7d show the estimates obtained by using
the subspace algorithm without error correction and using
an observation interval of only 50 symbols. The SNR in this
case is also 25 dB. These figures show that the subspace algo-
rithm (even without error correction) performs much better
than the algorithm in [14].

Figures 8a and 8b show the NRMSE of the algorithm
versus SNR for the two input sequences. In Figures 9a and
9b we have shown the BER in estimating the two input se-
quences. As can be seen from the figure, the BER drops very

5We have combined the channel responses of the four channels hi,1(n),
1 ≤ i ≤ 4, and the four channels hi,2(n), 1 ≤ i ≤ 4, to form the two channel
responses shown in the figures.
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Figure 7: (a), (b) Algorithm in [14], 100 symbols, SNR = 25 dB. (c), (d) MIMO subspace algorithm without error correction, 50 symbols,
SNR = 25 dB.
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sharply for the proposed subspace algorithm (for both—
with and without error correction) with an increase in the
SNR. Also we can clearly see that both the values of the
NRMSE and BER for the subspace algorithm are much lower
than their values for the algorithm in [14]. Figure 10 shows
the computational complexity of this algorithm (using er-
ror correction) and the algorithm in [14]. As the number of
symbols increases, the complexity of the algorithm in [14]
rapidly increases and becomes much more computation-
ally intensive than the MIMO subspace algorithm presented
here.

5. CONCLUSIONS

In this paper, we generalized the basic subspace algorithm
presented in [11, 12]. This generalization allows us to use it
even in cases when the sampling rate cannot be chosen to be
equal to the FIR channel length. We compared this result to
other algorithms and found that this algorithm is more gen-
eral than the one in [11, 12] and performs much better than
other algorithms in the literature [8, 9, 10]. The simulation
study also showed that for ill-conditioned channels as the
sampling rate is reduced, the performance becomes better.

In this paper, we have also proposed a new algorithm for
the blind equalization and identification of MIMO systems.
This algorithm uses a subspace based approach in combina-
tion with a searching procedure based on the finite alpha-
bet property of the input sequence. As the simulation results
show, this algorithm needs fewer symbols than the algorithm
in [14] for obtaining a good estimate of the MIMO channel
response as well as the transmitted sequences. The accuracy
of the channel estimate is also better than [14]. Finally, this
algorithm is quite robust to noise and computationally also
more efficient than the algorithm in [14].

APPENDIX

Proof of Lemma 1. Let the vector β be a vector in the null
space of Γ where

β =
[
β1,1, β2,1, . . . , βJ,1, β1,2, β2,2, . . . ,

βJ,2, . . . ,β1,J , β2,J , . . . , βJ,J
]T
.

(A.1)

Then

Γβ = 0. (A.2)
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From this equation, and, using the fact that since the vectors
�0, �1, . . . ,�J are linearly independent, a linear combina-
tion of them cannot be zero unless all the corresponding co-
efficients are zero, we get the following equations:

β1,i = 0 ∀i = 2, 3, . . . , J − 1, J,

β1,i − β2,i+1 = 0 ∀i = 1, 2, 3, . . . , J − 1,

β2,i − β3,i+1 = 0 ∀i = 1, 2, 3, . . . , J − 1,

...

βJ−1,i − βJ,i+1 = 0 ∀i = 1, 2, 3, . . . , J − 1,

βJ,i = 0 ∀i = 1, 2, 3, . . . , J − 1.

(A.3)

From these equations it can be concluded that βi, j for i �=
j are all zero and β1,1 = β2,2 = · · · = βJ,J . This means that
the vector β is fixed up to a multiplication factor and since
β is an arbitrary vector in the null space of Γ, we infer that
Γ has a one-dimensional null space generated by the vector
[e1 e2 e3 · · · eJ]T .
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communication, and interaction. Analysis covers both preprocessing
of sound signals and extraction of information from the environment.
Communication covers the transmission path/network, coding tech-
niques, and conversion between spatial audio formats. The final area
involves intelligent interaction with the audio/speech/music environ-
ment based on the users’ location, signal information, and acoustical
environment.

This special issue includes a variety of intelligent devices and ap-
plications working together to create an integral audio experi-
ence/environment for the users. A vision of intelligent signal process-
ing environments and applications can also be proposed and describe
how new audio/speech/music applications can enhance everyday en-
tertainment as well as human communication experiences.

Topics of interest include (but are not limited to):

• 3D and spatial audio
• Automotive audio
• Audio/speech installation
• Audio network
• Audio/speech delivery
• Audio/speech for mobile and handheld/wearable devices
• Environmental noise controlactive & passive
• Embedded audio/speech intelligence
• Intelligent speech communication
• Coding techniques
• Music processing
• Personal soundscape/personal audio space
• Speech enhancement
• New applications/domains

Authors should follow the EURASIP Journal on Audio, Speech, and
Music Processing manuscript format described at the journal site
http://www.hindawi.com/journals/asmp/. Prospective authors should

submit an electronic copy of their complete manuscript through the
journal Manuscript Tracking System at http://mts.hindawi.com/, ac-
cording to the following timetable:
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Recent advances in genomic studies 
have stimulated synergetic research 
and development in many cross-

disciplinary areas. Genomic data, especially 
the recent large-scale microarray gene 
expression data, represents enormous 
challenges for signal processing and statistics 
in processing these vast data to reveal the complex 
biological functionality. This perspective naturally 
leads to a new field, genomic signal processing (GSP), which studies 
the processing of genomic signals by integrating the theory of signal 
processing and statistics. Written by an international, interdisciplinary 
team of authors, this invaluable edited volume is accessible to students 
just entering this emergent field, and to researchers, both in academia 
and industry, in the fields of molecular biology, engineering, statistics, 
and signal processing. The book provides tutorial-level overviews and 
addresses the specific needs of genomic signal processing students and 
researchers as a reference book.

The book aims to address current genomic challenges by exploiting 
potential synergies between genomics, signal processing, and statistics, 
with special emphasis on signal processing and statistical tools for 
structural and functional understanding of genomic data. The book is 
partitioned into three parts. In part I, a brief history of genomic research 

and a background introduction from both biological and signal processing/statistical perspectives are provided so that readers 
can easily follow the material presented in the rest of the book. In part II, overviews of state-of-the-art techniques are provided. 
We start with a chapter on sequence analysis, and follow with chapters on feature selection, clustering, and classification of 
microarray data. The next three chapters discuss the modeling, analysis, and simulation of biological regulatory networks, 
especially gene regulatory networks based on Boolean and Bayesian approaches. The next two chapters treat visualization 
and compression of gene data, and supercomputer implementation of genomic signal processing systems. Part II concludes 
with two chapters on systems biology and medical implications of genomic research. Finally, part III discusses the future 
trends in genomic signal processing and statistics research.

GENOMIC SIGNAL PROCESSING
AND STATISTICS
Edited by: Edward R. Dougherty, Ilya Shmulevich, Jie Chen, and Z. Jane Wang

EURASIP Book Series on Signal Processing and Communications

Limited-Time Promotional Offer. Buy this title NOW at 20% discount plus Free Shipping.
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