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Abstract— In this paper, we consider the outage probability
analysis of multi-node amplify-and-forward relay network
with N relay nodes helping the source. We consider a system
in which each relay node amplifies the source signal only. We
obtain an approximation for the outage probability which is
tight at high signal-to-noise ratio (SNR). This tight outage
approximation shows that the system can achieve a maximum
diversity of order N +1. For the case of N = 1, our approach
gives the same result obtained previously by Laneman et. al.
for the single relay scenario.

I. I NTRODUCTION

Severe attenuation, due to fading, in wireless networks
causes a high degradation in the received signal quality.
This makes diversity achieving techniques crucial for the
future wireless services. Diversity can have a lot of forms
such as spatial diversity, temporal diversity, etc. Spatial
diversity has gained much more interest because it can be
easily achieved without any delay or rate loss. Achieving
the transmit diversity at the mobile users is limited by their
space limitations, which makes it difficult to have more than
one antenna at the mobile units. In this case, the transmit
diversity can be achieved throughnode cooperation[1], [2],
in which the nodes try to form a virtual multiple element
transmit antenna. In [3], the classical relay channel model
based on additive white Gaussian noise (AWGN) channels
was presented. The techniques of cooperative diversity have
been introduced, for example, by Sendonaris in the context
of CDMA systems [4], [5]. In [2], different protocols were
proposed to achieve spatial diversity through node cooper-
ation. Among those protocols was the amplify-and-forward
protocol, which has the advantage of simple processing of
the received signal at the relay node. It was shown in [2] that
the single relay amplify-and-forward protocol will achieve
full diversity of order two in terms of outage probability.

In this paper, we consider the outage probability for
more general multi-node amplify-and-forward relay net-

1This work was supported in part by CTA-ARL DAAD 190120011.

works with N relay nodes in which each node helps the
source by amplifying the the signal it receives from the
source only. In [2], the outage probability of the single relay
amplify-and-forward network was obtained by considering
the high SNR behavior of the outage probability based on
the limiting behavior of the cumulative distribution func-
tion (CDF) of certain combinations of exponential random
variables. We use a simpler approach to find the outage
probability of amplify-and-forward relay network withN
relay nodes. We also consider the high SNR behavior of
the outage probability. The case analyzed in [2] can be
considered as a special case of our system withN = 1
and our result is consistent with that in [2] for that simple
case. We will prove that the system in which each relay
amplifies only the source signal will achieve full diversity
of order (N + 1) in this case.

Notations. Lower case and upper case bold letters stands
for vectors and matrices, respectively. An exponential ran-
dom variable z with rate λ is a random variable with
probability density function (pdf) given by pz(a) =
λe−λa, a ≥ 0.

II. SYSTEM MODEL

In this section, we introduce the multi-node source-
only amplify-and-forward system model. The time frame
structure of that system is shown in Fig. 1. We consider
a cooperative strategy with two phases, In phase 1, the
source transmits its information to the destination, and
due to the broadcast nature of the wireless channels the
neighbor nodes receive the information. In phase 2,N
users help the source by amplifying the source signal.
In both phases, we assume that the users transmit their
information through orthogonal channels (refer to Fig. 1)
and perfect synchronization between the cooperating nodes.
We focus on one cooperation scenario, however, nodes can
interchange their rules as source, relay or destination.
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Fig. 1. Time frame structure for the multi-node amplify-and-forward relay
network.

In phase 1, the source broadcasts its information to the
destination andN relay nodes. The received signalsys,d

and ys,ri
at the destination and theith relay can be written

respectively as

ys,d =
√

Pshs,dx + ηs,d, (1)

ys,ri
=

√
Pshs,ri

x + ηs,ri
, ∀i ∈ {1, 2, ..., N}, (2)

where Ps is the transmitted source power,ηs,d and ηs,ri

denote the additive white Gaussian noise (AWGN) at the
destination and theith relay respectively, andhs,d and hs,ri

are the channel coefficients from the source to destination
and the ith relay, respectively. Each relay amplifies the
received signal from the source and re-transmits to the
destination. The received data at the destination in phase
2 due to theith relay transmission is given by

yri,d = hri,dβiys,ri + ηri,d, (3)

and βi satisfies the power constraint, that is

βi ≤
√

Pi

Ps|hs,ri |2 + N0
, (4)

where Pi is the ith relay power. The channel coefficients
hs,d , {hs,ri}N

i=1 and {hri,d}N
i=1 are modeled as zero-

mean complex Gaussian random variables with variances
δ2
s,d, {δ2

s,ri
}N

i=1 and {δ2
ri,d
}N

i=1 respectively. The channel
coefficients are assumed to be available at the receiving
nodes but not at the source. The noise terms are modeled
as zero-mean complex Gaussian random variables with
variance N0/2 per dimension.

III. M ULTI -NODE AMPLIFY-AND-FORWARD RELAY

NETWORK MUTUAL INFORMATION

In this section, we find the mutual information between
the source signal and the signals received during the dif-
ferent phases. Let us define an(N + 1) × 1 vector y =
[ys,d, yr1,d, ..., yrN ,d]T . We apply a simple trick to get the
mutual information betweenx and y by applying maximal
ratio combiner (MRC) detector ony which is different from

Fig. 2. The multi-node amplify-and-forward relay network system model.

the matrix approach in [2]. The system is shown in Fig. 2.
The output of the MRC detector can be given by

r = αsys,d +
N∑

i=1

αiyri,d, (5)

where αs =
√

Psh
∗
s,d/N0 and

αi =

√
Psβih

∗
ri,d

h∗s,ri

(β2
i |hri,d|2 + 1)N0

.

We can now write r in terms of x as

r = (
Ps|hs,d|2

N0
+

N∑

i=1

Psβ
2
i |hri,d|2|hs,ri |2

(β2
i |hri,d|2 + 1)N0

)x +

√
Psh

∗
s,d

N0
ηs,d

+
N∑

i=1

√
Psβih

∗
ri,d

h∗s,ri

(β2
i |hri,d|2 + 1)N0

(ηri,d + hri,dβiηs,ri).

(6)

The SNR at the MRC detector output is [7]

SNRMRC = γs +
N∑

i=1

γi (7)

where γs = Ps|hs,d|2/N0, and

γi =
Psβ

2
i |hri,d|2|hs,ri |2

(β2
i |hri,d|2 + 1)N0

. (8)

It can be easily shown thatr is a sufficient statistics for
x, that is

py/x,r(y/x, r) = py/r(y/r), (9)

where py/x,r(y/x, r) is pdf of y given x and r, and
py/r(y/r) is the pdf of y given r.

Since r is a sufficient statistics forx, then the mutual
information betweenx and y equals the mutual information
between x and r [11], that is

I(x; r) = I(x; y). (10)



Then the average mutual information satisfies

IAF ≤ I(x; r)

≤ log(1 +
Ps|hs,d|2

N0
+

N∑

i=1

Psβ
2
i |hri,d|2|hs,ri |2

(β2
i |hri,d|2 + 1)N0

),

(11)

with equality for x zero-mean, circularly symmetric com-
plex Gaussian [6].

It is clear that (11) is increasing in terms ofβi’s, so
to maximize the mutual information, the constraint in (4)
should be satisfied with equality [2], yielding

IAF = log(1 + |hs,d|2SNRs,d

+
N∑

i=1

f(|hs,ri
|2SNRs,ri

, |hri,d|2SNRri,d)),
(12)

where SNRs,d = SNRs,ri
= Ps/N0 ∀i ∈ [1, N ] and

SNRri,d = Pi/N0 ∀i ∈ [1, N ] and

f(v, u) =
uv

u + v + 1
.

Let Ps = Pi = P, ∀i ∈ [1, N ] and defineSNR = P/N0,
then we can write

IAF = log(1 + |hs,d|2SNR

+
N∑

i=1

f(|hs,ri |2SNR, |hri,d|2SNR)). (13)

IV. OUTAGE ANALYSIS OF THE MULTI -NODE

AMPLIFY-AND-FORWARD RELAY NETWORK

In this section, we perform the outage probability analysis
of the multi-node amplify-and-forward relay network with
N relay nodes helping the source by amplifying the source
signal only. The outage probability for spectral efficiency
R is defined as

P out
AF (SNR,R) = Pr[

1
N + 1

IAF < R], (14)

and the 1/(N + 1) factor comes from the time frame
structure in Fig. 1. Equation (14) can be rewritten as

P out
AF (SNR, R) = Pr[(|hs,d|2SNR +

N∑

i=1

f(|hs,ri |2SNR, |hri,d|2SNR)) < (2(N+1)R − 1)].

(15)

At high SNR we can neglect the 1 term in the denominator
of the f(., .) function [8]; So we can write the outage
probability as,

P out
AF (SNR, R) ' Pr[(|hs,d|2SNR+
N∑

i=1

(|hs,ri |2SNR)(|hri,d|2SNR)
|hs,ri |2SNR + |hri,d|2SNR

) < (2(N+1)R − 1)].

(16)

Define w1 = |hs,d|2SNR and wi+1 =
(|hs,ri

|2SNR)(|hri,d|SNR)

|hs,ri
|2SNR+|hri,d|SNR , ∀i ∈ [1, N ]. The outage

probability is now given as

P out
AF (SNR, R) ' Pr[

N+1∑

j=1

wj < (2(N+1)R − 1)]. (17)

The random variablew1 is an exponential r.v. with rate
λ1 = N0

Psδ2
s,d

. To calculate the outage probability in (17),
it is quite challenging to follow the approach in [2]. We
consider an alternative approach based on approximating
the harmonic mean of two exponential random variables to
be exponential random variable.

The wj ’s for j ∈ [2, N + 1] are the harmonic mean of
two exponential random variables. The CDF forwj , j =
2, ..., N + 1 is given by [8]

Pwj
(w) = Pr {wj < w}

= 1− 2w
√

ζj1ζj2e
−w(ζj1+ζj2)K1(2w

√
ζj1ζj2),

(18)

where ζj1 = N0
Psδ2

s,rj−1
, ζj2 = N0

Pj−1δ2
s,rj−1

and K1(.) is

the first order modified Bessel function of the second kind
defined in [13]. The functionK1(.) can be approximated
as K1(x) ' 1

x for small x [13] from which we can
approximate the CDF ofwj at high SNR as

Pwj (w) = Pr {wj < w} ' 1− e−w(ζj1+ζj2), (19)

which is the CDF of an exponential random variable of rate
λj = N0

Psδ2
s,rj−1

+ N0
Pj−1δ2

rj−1,d
. We will check the validity of

this approximation in the simulation section by comparing
the exact moment generating function (MGF) expressions
for both random variables at high SNR.

Define the random variableW =
∑N+1

j=1 wj , the CDF
of W , assuming theλi’s to be distinct, can be obtained
to be

Pr[W ≤ w] =
N+1∑

k=1




N+1∏

m=1,m6=k

λm

λm − λk


 (1− e−λkw).

(20)
The outage probability can be expressed in terms of the
CDF of W as

P out
AF (SNR, R) ' Pr[W ≤ (2(N+1)R − 1)]. (21)

The CDf of W can now be written as

Pr[W ≤ w] =
N+1∑

k=1


N+1∏

m=1,m6=k

λm

λm − λk


 (

N+1∑
n=1

(−1)n+1λn
k

wn

n!
) + H.O.T.

(22)



where H.O.T. stands for the higher order terms. Rearrang-
ing the terms in (20) we get

Pr[W ≤ w] =
N+1∑
n=1


N+1∑

k=1




N+1∏

m=1,m6=k

λm

λm − λk


λn

k


 (−1)n+1 wn

n!
+ H.O.T.

(23)

To prove that the system has diversity order on(N + 1)
we need to have the coefficients ofwn to be zero for n ∈
[1, N ]. This requirement can be reformulated in a matrix
form as




λ1 . . . λN+1

λ2
1 . . . λ2

N+1
...

...
...

λN+1
1 . . . λN+1

N+1




︸ ︷︷ ︸
V




∏N+1
m=2

λm

λm−λ1∏N+1
m=1,m6=2

λm

λm−λ2
...∏N

m=1
λm

λm−λN+1




︸ ︷︷ ︸
q

=




0
0
...
c1


 .

(24)
To prove (22), consider the following system of equations

Va = [0, 0, ..., 1]T︸ ︷︷ ︸
c

, (25)

and prove thatq = c1a for some constantc1. Noting that
the columns of the V matrix are scaled versions of the
columns of a Vandermonde matrix, i.e., it is a nonsingular
matrix, the solution for the system of equations in (23) can
be found as

a = V−1c =
1

det(V)
adj (V)c. (26)

The determinant of a Vandermonde matrix is given by [12]

det




1 1 . . . 1
λ1 λ2 . . . λN+1

...
...

...
...

λN
1 λN

2 . . . λN
N+1


 =

N+1∏

k=1

N+1∏

m>k

(λm − λk),

(27)
from which we can express the determinant of theV matrix
as

det(V) =




N+1∏

j=1

λj




N+1∏

k=1

N+1∏

m>k

(λm − λk). (28)

Due to the structure of thec vector, we are only interested
in the last column of theadj (V) matrix. Theith element

of the a vector can be given as

ai =

(−1)N+i−1
(∏N+1

j=1,j 6=i λj

) ∏N+1
k=1,k 6=i

∏N+1
m>k,m 6=i(λm − λk)

(∏N+1
j=1 λj

) ∏N+1
k=1

∏N+1
m>k(λm − λk)

=
(−1)N

λi

N+1∏

j=1,j 6=i

1
(λj − λi)

.

(29)

From (27), it is clear thatq = c1a where

c1 = (−1)N
N+1∏

i=1

λi. (30)

The outage probability can now be expressed as

P out
AF (SNR,R) ' Pr

[
W < (2(N+1)R − 1)

]

=
1

(N + 1)!

(
N+1∏

i=1

λi

) (
2(N+1)R − 1

)N+1

+ H.O.T.

(31)

Substituting for theλi’s, we have

P out
AF (SNR, R) ∼ 1

(N + 1)!
.

1
δ2
s,d

.

N∏

i=1

δ2
s,ri

+ δ2
ri,d

δ2
s,ri

δ2
ri,d

(
2(N+1)R − 1

SNR

)N+1

.

(32)

For the special case of single relay node (N = 1) we have

P out
AF (SNR, R) ∼1

2
.

1
δ2
s,d

.
δ2
s,r1

+ δ2
r1,d

δ2
s,r1

δ2
r1,d

(
22R − 1
SNR

)2

,

(33)

which is consistent with the result obtained in [2] for single
relay amplify-and-forward network.

From the expression in (30), it is clear that the multi-node
amplify-and-forward network withN relay nodes helping
the source by amplifying the source signal only will achieve
full diversity of order N + 1.

V. SIMULATION RESULTS

In this section, we present simulations to prove the theo-
retical analysis presented in the previous sections. First, we
compare the exact expression of the MGF of the harmonic
mean of two exponential random variables in [9] with the
MGF of an exponential random variable. In Fig. 3, all the
channel variances are taken to be 1 and the SNR is taken
to be SNR = 10, 20 and30 dB. From Fig. 3 it is clear
that approximating the harmonic mean of two exponential
random variables to be an exponential random variable is
tight at high SNR.
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Fig. 4 shows the outage probability for one and two relay
nodes helping the source versusSNRnorm defined as [10]

SNRnorm =
SNR

2R − 1
, (34)

which is the SNR normalized by the minimum SNR
required to achieve spectral efficiencyR for complex
additive white Gaussian noise (AWGN) channel [10]. In
the simulations, we usedR = 1 (small R regime). For
the single relay case all the channel variances are taken to
be 1, i.e., δ2

s,d = 1, δ2
s,r1

= 1 and δ2
r1,d = 1. For the

case of two relay nodes all the channel variances are taken
to be 1 except for the channel between the source and the
second relay for which the channel variance is taken to be
δ2
s,r2

= 10, which means that the second relay is close to
the source. From Fig. 4 it is clear that the obtained outage

probability bound is tight at high SNR and that the multi-
node amplify-and-forward system, in which each relay only
amplifies the source signal, will achieve the full diversity
offered by the system which is(N + 1) in the case ofN
relay nodes helping the source.

VI. CONCLUSION

In this paper, we have performed the outage analysis for
the multi-node amplify-and-forward relay networks withN
relay nodes helping the source. We considered a system in
which each relay node amplifies only the source signal. We
found an outage probability bound which is tight at high
SNR. From the obtained bound, it is clear that the system
can achieve a maximum diversity orderN + 1, without
the need o use other relays forwarded copies of the source
signal. We have used a simple approach by approximating
the harmonic mean of two exponential random variables
to be the minimum of the two random variables (that it
is approximating the harmonic mean to be an exponential
random variable) to prove that the multi-node amplify-and-
forward system, in which each relay only amplifies the
source signal, can achieve full diversity. The result obtained
by Lanemanet. el. for the simple case of single relay node
helping the source can be considered as a special case of
our approach and can be obtained by substitutingN = 1
in the outage probability bound we derived.
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