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Abstract—Many group communications require a security
infrastructure that ensures multiple levels of access control for
group members. While most existing group key management
schemes are designed for single level access control, we present a
multi-group key management scheme that achieves hierarchical
group access control. Particularly, we design an integrated key
graph that maintains keying material for all members with dif-
ferent access privileges. It also incorporates new functionalities
that are not present in conventional multicast key management,
such as user relocation on the key graph. Analysis is performed
to evaluate the storage and communication overhead associated
key management. Comprehensive simulations are performed for
various application scenarios where users statistical behavior is
modelled using a discrete Markov chain. Compared with applying
existing key management schemes directly to the hierarchical
access control problem, the proposed scheme significantly reduces
the overhead associated with key management and achieves better
scalability.

Index Terms—Access control, communication system privacy,
system design.

I. INTRODUCTION

THE ubiquity of communication networks facilitates the de-
velopment of wireless and Internet applications that allow

users to communicate and collaborate among themselves. In
the future, group-oriented applications, such as video confer-
ences, will be important services that facilitate real-time in-
formation exchange among a large number of users [1]. Most
group-oriented applications require mechanisms that guarantee
information security [2]. Among all security requirements of
group communication, access control is paramount as it is the
first line of defense that prevents unauthorized access to the
group communication and protects application data.

Group access control is usually achieved by encrypting the
content using an encryption key, known as the session key (SK)
that is shared by all legitimate group members. Since the group
membership will most likely be dynamic with users’ joining and
departure, the encryption keys should be updated to prevent the
leaving/joining user from accessing the future/prior communi-
cations [3]. The issues of establishing and updating the group
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keys are addressed by Group Key Management schemes [3]–[5].
Encryption and key management together ensure data confiden-
tiality. Unauthorized entities do not possess the group key and
cannot decrypt group communication.

Existing key management schemes, such as those in [4]–[22],
[32], [33], address the access control issues in one multicast ses-
sion. They focus on establishing and updating keys with dy-
namic membership and provide all group members the same
level of access privilege. That is, the users who possess the de-
cryption keys have the full access to the content, and the users
who do not have the decryption keys cannot interpret the data.
In practice, many group applications contain multiple related
data streams and group members have different access privi-
leges. These applications are prevalent in various scenarios.

• Multimedia applications distributing data in a multi-layer
coding format [23]. For example, in video broadcast, users
with a normal TV receiver can receive the normal format,
while others with HDTV receivers can receive the normal
format and the extra information needed to achieve HDTV
resolution.

• Multicast programs containing several related services,
such as weather, news, traffic and stock quote.

• Communications in hierarchically managed organizations
where participants have various access authorization.

Since group members subscribe to different data steams, or
possibly multiple of them, it is necessary to develop an access
control mechanism that supports multi-level access privilege,
which is referred to as the hierarchical group access control.

Traditional multicast key management schemes are not de-
signed to handle key management issues associated with mul-
tiple services occurring concurrently with correlated member-
ships. Although access control for individual data stream can be
managed separately using existing key management schemes,
this leads to inefficient use of keys and does not scale well when
the number of data streams increases, as we will demonstrate in
the later sections.

In this work, we develop a multi-group key management
scheme that addresses the generalized hierarchical group ac-
cess control problem. Particularly, we design an integrated
key graph that maintains keying material for all members with
different access privileges. It also addresses new functionalities
that are not present in conventional multicast key manage-
ment, such as user relocation on the key graph. The proposed
multi-group key management scheme achieves forward and
backward secrecy [20] when users (1) join the group communi-
cation with certain access privilege; (2) leave the group; and (3)
add or drop subscription to one or several data streams (change
access privilege). The idea of the integrated key graph can be
used in both centralized and contributory environments. This
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paper will focus on the centralized multi-group key manage-
ment scheme and then discuss its extension in the distributed
scenarios. Compared with using the single-session access con-
trol solutions, such as a variety of tree-based key management
schemes [6], [20], the proposed scheme reduces the usage of
the communication, computation and storage overhead, and is
scalable when the number of access levels increases.

The rest of the paper is organized as follows. Section II
discusses related work. The hierarchical group access con-
trol problem is formulated in Section III. The centralized
multi-group key management is presented in Section IV–VI.
Section IV describes the integrated key graph and the rekey
algorithm. Section V analyzes the performance of the proposed
scheme. Section VI provides the simulation results. The con-
tributory key management scheme using the integrated key
graph is discussed in Section VII, followed by the conclusion
in Section VIII.

II. RELATED WORK

Popular key management protocols can be divided into two
categories: centralized and contributory [9]. The centralized key
management relies on a centralized server, referred to as the
key distribution center (KDC), which generates and distributes
encryption keys. In the contributory key management, there is
no explicit KDC, and group members contribute independent
keying materials and all participate in group key establishment.
Besides specific key management protocols, decentralized key
management architectures are also developed. In decentralized
architecture, such as [12], the group is divided into subgroups
and the task of key management is divided among subgroup
managers.

In the current literature, key management schemes are de-
signed for a single multicast session, where all group members
have the same access privilege. For the group applications con-
taining multiple related data streams and members with various
access privileges, directly applying the existing schemes can
lead to inefficient solutions. In the rest of the section, we briefly
review some representative key management schemes. Among
them, tree-based schemes will serve as a basic building block in
developing the proposed hierarchical access control solution.

An important class of centralized key management protocols
employ logical tree structures to maintain keying materials and
coordinate key generation [4]–[10], [33]. This type of protocols
are considered to be scalable in terms of communication, com-
putation and storage overhead. In [4], the logical key hierarchy
(LKH) is introduced. The KDC maintains a key tree, where each
node on the tree corresponds to a user’s privacy key, the group
key, or a key-encrypted-key (KEK). This work achieves scal-
able rekeying, which requires rekeying overhead for
user joining and departure, where is the group size. Later, an
algorithm proposed in [6] improves the user joining operation
such that new keys can be calculated through a one-way func-
tion without sending rekeying messages. Another improvement
is the one-way function tree (OFT) proposed in [24]. In this ap-
proach, the keys on the key tree are generated through one-way
functions, rather than arbitrarily determined by the KDC. This
approach reduces the rekeying overhead from to

. Later, a slightly different approach that achieves the

same communication overhead is proposed in [9]. Instead of
using one-way functions, the ELK protocol, presented in [10],
uses pseudo-random functions to build and manipulate the keys
on key tree. ELK also introduces hints, a small piece of infor-
mation that improves reliability of rekeying.

In many scenarios, it is not preferred to rely on a central server
that arbitrates the establishment of the group key. This might
occur in applications where group members do not explicitly
trust a single entity, or there are no servers or group members
having sufficient resources to maintain, generate and distribute
keys. Thus, the distributed solutions of the key management
problem have seen considerable attention [6], [14]–[22], [32].
Many contributory schemes are inspired by the Diffie–Hellman
(DH) key exchange protocol [25]. To extend two-party DH pro-
tocol to the group scenario, the schemes presented in [20]–[22]
use logical tree structures such that the number of rounds for
the formation of the group key is reduced to the logarithm of
the group size.

Because of their scalability, the tree-based schemes are se-
lected as the basic building blocks to address the hierarchical
group access control problem in both centralized and contribu-
tory environments.

III. HIERARCHICAL GROUP ACCESS CONTROL

There are many specific group applications containing mul-
tiple data streams and users with different access privileges. In
order to develop a generic solution, we formulate the hierar-
chical group access control [26] problem for group communi-
cation in this section.

A. System Description

Let denote the set of resources in the
system. From the resource points of view, a Data Group (DG)
is defined as all users who have access to a particular resource. It
is clear that the DGs may have overlapped membership because
users may subscribe to multiple resources. From access control
points of view, a Service Groups (SG) is defined as a set of
users who can access the exactly same set of resources. SGs do
not have overlapped membership. In this section, the DGs are
denoted by , where is the total number
resources, and the SGs are denoted by , where

is the total number SGs. It is easy to prove that .
The access relationship between the resources and the SGs

can be described by a capability list. Here are two examples
illustrating typical access relationship in group communication.

Example 1: Multimedia applications distributing data in
multi-layer format [23].

• Resources: {base layer , enhancement layer 1 , en-
hancement layer 2 }.

• Service Groups: {users subscribing basic quality ,
users subscribing moderate quality , users subscribing
high quality }.

• Capability lists: access ; access ;
access .

Example 2: Multicast programs containing several related
services.

• Resources: {news , stock quote , traffic/weather
}.
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• Service Groups: users can subscribe to any combination
of the resources. Thus, there are total 7 SGs, denoted by

.
• Capability lists: access ; access ; access

; access ; access ; access
; access .

Besides the capability list, access matrix is also used to de-
scribe access relationship. In particular, the element on the th
row and th column of the access matrix, denoted by , is

if SG can access resource
otherwise

where and .
Based on those definitions, the group size of SGs and DGs

must satisfy

(1)

where is the number of users in SG and is the
number of users in DG .

B. Security Requirements

In the applications containing multiple multicast sessions,
users not only join or leave service, as addressed in the single
multicast session scenario, but also may switch between the SGs
by subscribing or dropping data streams. Thus, the security re-
quirements are more complicated than these for a single multi-
cast session.

We introduce the notation that represents a user
switching from SG to SG . To simplify future notations,

is defined as a virtual service group containing users who
cannot access any resources. Thus, represents a user
joining SG , and represents a user leaving the group
communication from SG .

Similar to the single session access control problem ad-
dressed by traditional key management schemes [3], the
hierarchical group access control should guarantee the fol-
lowing security requirements.

• The users in the SG have and only have access to the
resources .

• When a user ,
— This user cannot access the future content of the re-

sources . This prop-
erty can be referred to as the forward secrecy [20].

— This user cannot access the previous content of the re-
sources . This prop-
erty can be referred to as the backward secrecy [20].

C. Data Encryption and Hierarchical Key Management

To formulate the hierarchical access problem, the ways of en-
crypting multiple data streams need to be clarified first. In the
hierarchical access control scenario, there are two ways to en-
crypt and distribute multicast data. In the first method, resources
are encrypted using separate keys, which are called Data Group
Keys. The data group key used to encrypt resource , denoted
by , is shared among the users in DG . In this case, each
resource is distributed in a single multicast session, and the users

may subscribe to one or several multicast sessions according to
their access privilege. The task of key management is to securely
update and distribute to the users in ,
where .

In the second method, the users in each SG share a secrete
key called the Service Group Key and the multicast sessions are
formed based on SGs. In particular, the users in share the
service group key and form one multicast session. In this
multicast session, the resources are en-
crypted by and transmitted to the users in . In this case,
one resource may be distributed in several multicast sessions
while being encrypted by different service group keys. The task
of key management is to securely distribute and update for
the users in SG .

We compare these two methods using Example 1 in
Section III-A.

In the first method, data are transmitted in three multicast
sessions. The first session contains all users, and distributes
resource encrypted by . The second session contains
users in and , and distributes resource encrypted by

. The third session contains users in , and distributes
resource encrypted by . The communication overhead
of a multicast session can be described as ,
where denotes the data rate of resource , and

is the cost of sending unit data to users through
multicast. The first method has communication overhead as

.
When using the second method, there are three multicast ses-

sions also. The first session contains users in , and distributes
resource encrypted by . The second session contains users
in , and distributes resource and encrypted by . The
third session contains users in , and distributes all three re-
sources encrypted by . The communication overhead is

Using the fact the in multicast
communications, it can be seen that

.
On the other hand, users in the second method only subscribe

to one multicast session. Thus, the task of key management for
the second method can be solved by applying traditional key
management for each SG separately.

In this work, we adopt the first encryption method because
of its low data communication overhead. In order to guarantee
forward and backward secrecy, when a user switches from SG

to , the proposed key management scheme should
• update , such that

this user cannot access the previous communication in cor-
responding DGs;

• and update , such
that this user cannot access the future communication in
corresponding DGs.

The focus of this work is to solve this hierarchical group key
management problem efficiently.
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Fig. 1. Typical key management tree.

IV. CENTRALIZED MULTI-GROUP KEY MANAGEMENT SCHEME

Hierarchical group access control can be achieved in either
centralized or contributory manner. While the contributory so-
lution will be discussed in Section VII, this section and the fol-
lowing two sections are dedicated to the centralized schemes.

A. Employing Independent Key Trees to Achieve Hierarchical
Access Control

One way to solve the hierarchical access control problem is
to use the existing tree-based key management schemes. Those
schemes use a logical tree structure to maintain keying mate-
rials.

As illustrated in Fig. 1, each node of the key tree is associ-
ated with a key. The root of the key tree is associated with the
session key (SK), , which is used to encrypt the multicast
content. Each leaf node is associated with a user’s private key,

, which is only known by this user and the KDC. The inter-
mediate nodes are associated with key-encrypted-keys (KEK),
which are auxiliary keys and only for the purpose of protecting
the session key and other KEKs. To make concise presentation,
we do not distinguish the node and the key associated with this
node in the remainder of the paper.

The key tree represents the ownership of the keys. The KDC
knows all keys on the key tree. Each user knows his private key,
the session key, and a set of KEKs on the path from himself to
the root of the key tree. In the example shown in Fig. 1, user 16
possesses .

Each key contains the secrete material that is the content of
the key and a key selector that is used to distinguish the key. The
key selector consists of: 1) a unique ID that stays the same even
if the key content changes and 2) a version and revision field,
reflecting update in the keying material. The version number is
increased whenever new keying material is sent out by the group
manager upon user departure, while the revision number is in-
creased whenever the key is passed through a one-way function.
The usage of the version and revision numbers will be explained
in the description of the key updating process.

When a user leaves the service, all his keys need to be
updated in order to prevent him from accessing the future
communication. Here we use the scheme presented in [6]
to demonstrate the key updating process. When user 16
leaves, the KDC generates new keys and conveys new keys
to the remaining users through a set of rekeying messages
as: , , , ,

, , , . Here,
the notation represents the old version of key ,
represents the new version of key , and represents the
key encrypted by key . The version numbers are increased
for all new keys. This key updating procedure guarantees that
all remaining users obtain the new session key and KEKs,
while user 16 is unable to acquire the new keys. Since the
rekeying messages are transmitted in the multicast channel [4],
every user receives all rekeying messages. The session key,
KEKs and users’ private keys usually have the same length.
The communication overhead associated with key updating can
be described by rekeying message size, defined as the amounts
of rekeying messages measured in the unit as the same size as
the SK or KEKs. In this example, the rekeying message size is
8 when user 16 leaves the service.

When a user joins the service, the KDC chooses a leaf posi-
tion on the key tree to put the joining user. The KDC updates the
keys along the path from the new leaf to the root by generating
the new keys from the old keys using a one-way function and
increasing the revision numbers of the new keys. The joining
user obtains the new keys through the unicast channel. Other
users in the group will know about the key change when the
data packet indicating the increase of the revision numbers first
arrives, and compute the new keys using the one-way function.
No additional rekeying messages are necessary.

When using tree-based schemes to achieve hierarchical group
access control, a separate key tree must be constructed for each
DG, with the root being the data group key and the leaves being
the users in this DG. This approach is referred to as the Inde-
pendent-tree key management scheme. This scheme does not
exploit the relationship among the subscribers and makes ineffi-
cient use of keys because of the overlapped DG membership. As
an extreme example, if a user who subscribes to all data streams
leaves the service, key updating has to take place on all key trees.

B. Multi-Group Key Management Scheme

We propose a multi-group key management scheme that em-
ploys one integrated key graph accommodating key materials
of all users. This key graph consists of several subtrees, and is
constructed in three steps.
Step 1) For each SG , construct a subtree having the leaf

nodes as the private keys of users in and the root
node as the service group key . These subtrees
are referred to as the SG-subtrees.

Step 2) For each DG , construct a subtree whose root is
the DG key and whose leaves are

. These subtrees are referred to as the
DG-subtrees.

Step 3) Generate the key graph by connecting the leaves of
the DG-subtrees and roots of SG-subtrees.

This 3-step procedure is formally described in Procedure 1
and illustrated in Fig. 2 for the service containing 3 layers and
4 users in each SG. In the first and the second step, there is
no constraint on the tree structures that can be used for the
SG- and DG-subtrees. Binary subtrees are used in this paper
to demonstrate the performance of the multi-group key man-
agement, while there is a lot of flexibility in subtree design.
For example, when considering the heterogeneity among SGs,
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Fig. 2. Multi-group key management graph construction.

the DG-subtrees can be designed as unbalanced trees similar to
those proposed in [22]. In the third step, some duplicated struc-
tures may appear on DG-subtrees. In Fig. 2, the DG-subtrees of

and have the same structures that connect and .
Duplicated structures can be merged. In this example, the parent
node of and on DG-subtree of are merged with .
This merging operation can further reduce the number of keys
on the key graph, but the effect of merging is very small espe-
cially when the group size is large. Therefore, the performance
analysis in Section V does not consider the positive effect of
merging, and thus provides the performance upper bound.

This multi-group key graph can also be interpreted as over-
lapped key trees, each of which has as the root and the users
in DG as the leaves. Obviously, these key trees can be
used in the independent-tree scheme. This reveals the fact that
the multi-group key graph removes the “redundancy” presented
in the independent-tree scheme. Therefore, it can reduce over-
head.

As another example, Fig. 3 shows a multi-group key graph
for the multiple service scenario described in Example 2 in
Section III. It is noted that neither the design of the DG-sub-
trees nor the merging operation is unique. Although the graph

Fig. 3. An integrated key graph for multiple service scenario (example 2, Sec-
tion II-A).

between the DG keys and the SG keys can be optimized to
minimize the number of keys on the graph, this optimization
introduces little gain but high computational complexity.
Therefore, the proposed scheme does not specify how to merge
the DG-subtrees. As we will show in the performance analysis,
the proposed scheme can significantly reduce key management
overhead even without removing redundance on the DG-sub-
trees.

Procedure 1 Integrated Key Graph Generation

for do

Construct a tree, called SG-subtree of , with
leaf nodes.

Assign users in to leaf nodes.

end for

for do

Construct a tree, called DG-subtree of , with
leaf nodes.

Assign key to leaf nodes, and
to the root node.

end for

for do

Search all leaf nodes of DG subtrees and find these
are associated with

Merge these nodes and the root of the SG-subtree
of into one node.

end for

As defined in [4], keyset refers to the set of keys associated
with an edge node on the key graph and possessed by the user
located at this edge node. In our key graph, the keyset of a user
in SG is the keys on the paths from itself to the roots of the
DG-subtrees of for . It is noted that the
keyset of users in is an empty set.

Besides user join and departure, the rekey algorithm in the
multi-group key management scheme must address users’ relo-
cation on the key graph. We describe the rekey algorithm for

, which includes the cases for user join, departure, and
switching. First, the switching user is moved from the SG-sub-
tree of to a new location on the SG-subtree of . Let
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Fig. 4. User relocation on the key graph.

denote the keyset associated with the user’s previous position,
and denote the keyset associated with the user’s new posi-
tion. Then,

• the KDC updates the keys in using one-way func-
tions, similar to the procedure for user join described in
Section IV-A,

• and the KDC generates new versions of the keys in
and distributes these new keys encrypted by their children
node keys from bottom to up, similar to the procedure for
user departure described in Section IV-A.

We illustrate this rekey algorithm based on the sample key
tree shown in Fig. 4. Let user 8 switches from SG to .
The key tree is updated as shown in Fig. 4. On the SG-subtree
of , the leaf node associated with user 4 is split in order to
accommodate user 8. Then, user 4 and 8 share a new KEK,
denoted by . On the SG-subtree of , user 7 is moved up
and occupies the node that is previously associated with .
In this case, is and is

.
The KDC generates the new keys, and , from

the old keys using a one-way function, and increases the revi-
sion numbers of those new keys. Thus, the user 1, 2, 3, 4 will
know about the key change when the data packet indicating the
increase of the revision numbers first arrives, and compute the
new keys using the same one-way function. No rekeying mes-
sages are necessary for and .

Then, the KDC generates new keys, , , ,
and , and distributes them through a set of rekeying mes-
sages as: , , , ,

, , . In this
case, the rekeying message size is 7.

It is noted that may contain the new KEKs that are cre-
ated for accommodating the switching user. These new KEKs
are encrypted by users’ private keys and distributed through
rekeying messages. In addition, may contain KEKs that
do not exist any more after the relocation of the switching user.
Obviously, these keys are discarded.

V. PERFORMANCE MEASURES AND ANALYSIS

Communication, computation and storage overhead associ-
ated with key updating are major performance criteria for key

management schemes [3]–[5]. To measure the performance of
hierarchical access control schemes, we define the performance
measures as:

• Storage overhead at the KDC: denoted by and de-
fined as the expected number of keys stored at the KDC.

• Rekey overhead at the KDC: denoted by and de-
fined as the expected amount of rekeying messages trans-
mitted by the KDC.

• Storage overhead of users: denoted by and defined
as the expected number of keys stored by the users in SG

.
• Rekey overhead of users: denoted by and defined

as the expected amount of rekeying messages received by
the users in SG .

Here, and describe the storage overhead, whereas
and reflect the usage of communication and com-

putation resources. For example, given the group size and net-
work topology, is proportional to the total amount of key
management data forwarded on the network.

A. Storage Overhead

We first consider the storage overhead of a single key tree.
Similar to most key management schemes [3]–[6], [9], the key
tree investigated in this work is fully loaded and maintained as
balanced as possible by putting the joining users on the shortest
branches.

Let denote the length of the branches and de-
note the total number of keys on the key tree when the key tree
has degree and accommodates users. Since the key tree is
balanced, is either or , where .
Particularly,

• the number of users who are on the branches with length
is ,

• and, the number of users who are on the branches with
length is .

Thus, the total number of keys on this key tree is calculated as:
.

Using the fact that
, we have

(2)

where the expectation, , is taken over the distribution of
and the length of the branches on the key trees. The

left-hand-side equality is achieved when is an integer.
In addition, since is a concave function and

, we see that

(3)

With (2) and (3), we are ready to analyze the storage over-
head. When using the separate key trees, the KDC stores all keys
on total key trees, and users in store subsets of keys on
the key trees that are associated with , for .
Thus,

(4)
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(5)

In the multi-group key management scheme, the DG-subtree
of has leaf nodes. Before removing the
redundancy on DG-subtrees, there are in total
keys on DG-subtrees. Also, the total number of keys on the
SG-subtrees is . Merging duplicated structures
on DG-subtrees only reduces the number of keys on the key
graph. Therefore, the storage overhead at the KDC is

(6)

A user in SG stores keys on the SG-subtree and up
to keys on the DG-subtrees. Therefore,
the users’ storage overhead of the multi-group scheme is

(7)

We next investigate the storage overhead of the inde-
pendent-tree and the multi-group key management in the
applications containing multiple layers, as described in Ex-
ample 1 in Section III-A. In this case, for
and for . We also assume that each layer
contains the same amount of users, denoted by .
Thus, . Using (5) and (7), the users’
storage overhead is calculated as:

(8)

(9)

When the group size is large, i.e. , (3), (8) and (9) lead
to

(10)

Using (4) and (6), the storage overhead at the KDC is calculated
as

(11)

(12)

From (2), it is seen that . Thus,

(13)

By using the integrated key graph instead of the separate
key trees, the multi-group key management scheme reduces the
storage overhead of both the KDC and the users. As indicated

in (13), the storage advantage of the proposed scheme becomes
larger when the system contains more SGs, i.e. requiring more
levels of access control. The proposed scheme in fact scales
better when the number of layers increases.

B. Rekey Overhead

In this section, we calculate the amount of rekeying messages
transmitted by the KDC when one user switches from to ,
denoted by . It is noted that the rekey overhead, and

, can be calculated from , as long as the users’ statis-
tical joining/leaving/switching model is given.

Switching from to is equivalent to adding the subscrip-
tion to and dropping the
subscription to . When
using the tree-based key management schemes, the rekeying
message size is

(14)

We can see that the term equals to 1
only when and . When this term equals to 1,

rekeying messages are necessary to update keys
on the key tree associated with the DG .

In the multi-group key management scheme, when a user
switches from to and , the amount of messages
needed to update keys on the SG-subtree of is up to

. The amount of messages needed to convey the
KEK created for accommodating the switching/join user on the
SG-subtree of is no more than 2. If this user drops the sub-
scription of the DG , i.e. , the
amount of rekeying messages that update keys on the DG-sub-
tree of is up to . If this user remains the
subscription of the DG , i.e. , we need up
to rekeying messages to update keys on the DG-sub-
tree of . Therefore, when using the multi-group scheme and

, we have

(15)

Similar to that in Section V-A, we analyze the rekey overhead
in a multi-layer scenario with . In this case, the
rekeying message size for one user departure, i.e. ,
is computed from (14) and (15) as

(16)

(17)

When , we can see that

(18)



SUN AND LIU: HIERARCHICAL GROUP ACCESS CONTROL FOR SECURE MULTICAST COMMUNICATIONS 1521

The comprehensive comparison between the proposed
scheme and the independent-tree scheme will be presented
in Section VI.

VI. SIMULATIONS AND PERFORMANCE COMPARISON

A. Statistical Dynamic Membership Model

Before performing simulations, it is important to model the
dynamic behavior of group users.

In [27], [28], it has been shown that the users’ arrival process
and membership duration of MBone multicast sessions can be
modelled by Poisson and exponential distribution respectively,
in a short period of time. In this work, we use this Poisson arrival
and exponential distribution duration model, and assume that
when a user switches between SGs, the SG that he switches to
depends only on his current SG.

Therefore, the users’ statistical behavior can be described by
an embedded Markov chain [29]. Particularly, there are a total
of states, denoted by , . When a user is in
the SG , he is in the state . After a user enters state , i.e.
subscribes or switches to SG , this user stays at state for
time , which is governed by an exponential random variable.
When time is up, the user moves to state . The selection of

only depends on the current state and is not related to
previous states.

In practice, it is usually not necessary to update keys imme-
diately after membership changes. Many applications allow the
join/departure users receive limited previous/future communi-
cations [30]. For example, in video streaming applications, a
joining user may receive a complete group-of-picture (GOP)
[23] although partial of this GOP already been transmitted be-
fore his subscription. Those situations prefer batch rekeying [30]
that postpones key updating such that the rekeying overhead is
reduced by adding or removing several users altogether.

In this work, batch rekeying is implemented as updating keys
periodically. The time between key updates is fixed and denoted
by . For the users who join/leave/switch SGs in the time in-
terval , the key updating will take place at time

, where is a positive integer. From the key updating points
of view, with batch rekeying, we can prove that the previous con-
tinuous Markov model can be simplified as a discrete Markov
chain model [29]. In this model:

• The transition matrix is denoted by ,
where is the probability that one user moves from SG

to in the time interval given that
this user is in at time .

• The n-step transition probability matrix is denoted by
, and obviously, . The element at the th

row and th column of is denoted by .
• The stationary state probability is a 1-by- vector,

denoted by .
In practical group applications, users can subscribe to (or

leave from) any SGs and the expected time for a user staying
in the group communication is finite. Thus, we can prove that
this Markov chain is irreducible, aperiodic and positive recur-
rent. As a result, the stationary state probability mass function
(pmf) exists [29] and is the unique solution of and

.

B. Simulation Flow

A simulator based on C is built to study the performance of
the multi-group scheme and the independent-tree scheme. The
simulation is performed according to the following procedure.

1) Initialization determines the number of data groups, the
number of service groups, access relationship, and the tran-
sition matrix. Then, the stationary state probability is cal-
culated based on . The initial group size is set as for
SG , where is the total number of potential users.

2) Construct the integrated key graph using Procedure 1.
3) Simulate user joining/departure/switching according to the

transition matrix, and obtain storage and rekey overhead.
One round of key updating is performed in one time unit.
In each round,
— According to the rekeying protocol proposed in

Section IV-B, update the key graph structure by re-
moving departure users, adding joining users and
relocating switching users on the key tree. Meanwhile,
mark the intermediate keys that need to be updated.
In particular, if a key needs to be updated due to user
departure or switching out of a SG, it is marked as
‘L’. If a key needs to be updated due to user joining or
switching into a SG, it is marked as ‘J’. For the same
key, an ‘L’ mark can overwrite a ‘J’ mark.

— Update the keys with ‘J’ marks using one-way function.
Create rekeying messages according to ‘L’ marks, and
update corresponding keys.

C. Performance With Different Group Size

We first study the applications containing multiple layers (see
Example 1 in Section III-A) where users in SG can access
DG . In the simulation, the transition matrix is
chosen as follows.

• Users join different SGs with the same probability, i.e.
, .

• Users leave different SGs with the same probability, i.e.
, .

• While a user is in the service, he adds/drops only one DG
at a time, i.e. , and . Also,
users switch between SGs with the same probability, i.e.

, and .
Thus, the transition matrix is described by only three variables.
In all simulations, batch rekeying is applied and the key trees
are binary.

In Fig. 5, 6, 7 and 8, the multi-group scheme and the indepen-
dent-tree scheme are compared. The horizontal axis is the total
number of potential users, . The vertical axis is the storage
overhead or rekeying overhead defined in Section V. The results
are averaged over 300 realizations, and the number of layers is
4. In those simulations, we chose , , and

.
Fig. 5 shows that the number of keys stored at the KDC,

, increases linearly with the group size. This result can
be verified by (2), (4) and (6). In the case when , the
multi-group scheme reduces by more than 50%. For ex-
ample, when the group size is 3000 and the key size 128 bits,
the independent-tree scheme requires about 160 Kbyte secure
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Fig. 5. Storage overhead at the KDC.

Fig. 6. Storage overhead at the users in each SG.

Fig. 7. Rekey overhead at the KDC.

Fig. 8. Rekey overhead at the users in each SG.

storage at KDC, while the multi-group scheme requires about
64 Kbyte.

Fig. 6 shows that the users’ storage overhead, , in-
creases linearly with the logarithm of the group size. This can be
verified by (8) and (9). The users who subscribe only to one layer
have the similar storage overhead in both schemes. For the uses
who subscribe to multiple layers, the multi-group scheme results
in less storage overhead than the independent-tree scheme. For
example, when the group size is 3000, a layer-4 user needs to
store 656 byte keys in the independent-tree scheme and to store
240 byte keys in the multi-group scheme.

Since secrete keys need to be stored in a secure storage space,
the reduction in key storage is desirable. More importantly,
when the secure storage space is limited, the multi-group
scheme can support more users.

The KDC’s rekey overhead, and the users’ rekey over-
head, are shown in Fig. 7 and 8, respectively. In both
cases, the multi-group scheme reduces the rekey overhead by
more than 50%.

In some group communications, the rekeying messages only
contribute to a small percentage of the overall data rate, as long
as the group size is not overwhelmingly large. Thus, reducing
rekey overhead has limited advantage of saving bandwidth. The
major advantage, however, is to improve reliability.

The rekeying messages must be transmitted reliably and
in a timely manner. If a user does not receive keys correctly,
he cannot decrypt the content even if he receives the content
correctly. Assume there are users in a multicast group,
rekeying packets need to be transmitted, packet loss among
different users is independent, and packet loss ratio is . Then,
the reliability of rekeying protocol can be described by the
probability that all users receive all rekeying packets correctly.
This can be calculated as , which approximately
equals to . Therefore, from the reliability points of
view, a 50% reduction in rekeying overhead (i.e. reduction in

) is significant.

D. Scalability

Next, we change the number of layers while maintaining
roughly the same number of users in the service by choosing
the join probability as . The values of and are the
same as those in Section VI-C.

Fig. 9(a) and Fig. 10(a) show the storage and rekey overhead
at the KDC, respectively. When increases, the storage and
rekey overhead of the multi-group scheme do not change much,
while the overhead of the independent-tree scheme increases
linearly with . It is clear that the multi-group scheme scales
better when increases. By removing the redundancy in DG
membership, the scale of the key graph mainly depends on the
group size, not the number of layers or services. On the other
hand, by constructing separate key trees, the independent-
tree scheme requires larger storage and rekey overhead when

increases even when is fixed.
Fig. 9(b) shows that the ratio between and in-

creases linearly with , which agrees with (13). Similarly, the
ratio between and increases linearly with , as
shown in Fig. 10(b).
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Fig. 9. Storage overhead at the KDC with different number of SGs.

Fig. 10. Rekey overhead at the KDC with different number of SGs.

E. Performance With Different Transition Probability

In the previous simulations, we set , which means
that the users are more likely to leave the service than to switch
SGs. Fig. 11 shows the rekey overhead with different values of

. Remember that describes the probability of user switching
between SGs. In this simulation, , , and
the values of and are the same as those in the previous
experiments.

When is very small, the multi-group scheme reduces the
rekey overhead by about 50%, as we have shown in the pre-
vious simulations. When is less than , the advantage of the
multi-group scheme decreases with the increase of . This is be-
cause the multi-group scheme introduces larger rekey overhead
when users switch SGs by simply subscribing more DGs. To see
this, let a user move from SG to SG . When using the in-
dependent-tree scheme, this user only needs to be added to the
key tree associated with the DG and no rekeying messages
are necessary. When using the multi-group scheme, we need to
update keys on the SG-subtree of and the DG-subtree of .

Fig. 11. Rekey overhead at the KDC with different transition probability.

Therefore, the performance gain reduces when more users tend
to switch SGs.

When continues to increase, however, the rekey overhead of
the multi-group scheme decreases. Particularly, when ,
which describes the scenario where users are much more likely
to switch SGs than to stay in the current SG or leave the service,
the performance gain of the multi-group scheme is about 50%
again. This phenomena is due to the fact that the size of the
SG-subtree is greatly reduced when a significant potion of users
are switching away from this SG. In this case, removing a large
potion of users from the key tree using batch rekeying requires
less rekeying messages than just removing several users.

F. Simulation of Multi-Service Applications

We simulated the multi-service scenario illustrated in Ex-
ample 2 (Section III-A). In the first experiment, there are 3 DGs
and 7 SGs. The users can subscribe to any combination of DGs
and switch to any SGs. Here, the transition matrix is 8 by 8,
with , and ,
and . is fixed to be 1500. The values of , ,
are adjusted such that the SGs contain varying number of users
while is maintained to be the same. The horizontal
axis in Fig. 12 is the ratio between the number of users sub-
scribing more than one DGs and the number of users subscribing
only one DG. This ratio describes the overlap in DG member-
ship. Larger is this ratio, more overlap is in DG membership.
It can be seen that when there is no overlap, the performance
of the proposed scheme is slightly worse than that of the inde-
pendent-tree scheme. This is because additional tree structure
connecting the SG subtrees and the DG keys is used in the pro-
posed scheme. When the overlap increases, the overhead of the
proposed scheme remains almost the same, but the overhead of
the independent-tree scheme increases greatly. Thus, the advan-
tage of the multi-group scheme is larger when more users sub-
scribe to multiple DGs.

In the second experiment, we test different multi-service ap-
plications by varying the number of DGs . Given , the
number of SGs is and the potential group size is
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Fig. 12. Rekey overhead at the KDC with unevenly loaded SGs in multi-service
applications.

Fig. 13. Rekey overhead and storage overhead at the KDC with the different
number of DGs in multi-service applications.

chosen as . The transition matrix is chosen similar to that
in Section VI-C, with , , and .
Fig. 13 shows the rekey overhead and the storage overhead at
KDC for different values. Three observations are made. First,
the multi-group scheme requires less overhead than the inde-
pendent-tree scheme. Second, the advantage in storage of the
multi-group scheme becomes larger when there are more DGs.
Third, if we divide the rekey overhead of the independent-tree
scheme by that of the multi-group scheme, we can obtain the rel-
ative advantage of the multi-group scheme. This advantage in-
creases with for , but decreases for .
This is because the size of the DG-subtrees is proportional to

, which increases exponentially with . This interesting ob-
servation implies that the proposed multi-group scheme can be
further improved by reducing the complexity of the DG-sub-
trees. This will be investigated in our future work.

Fig. 14. The total number of rounds performed to establish the group key.

VII. EXTENSION TO CONTRIBUTORY HIERARCHICAL

ACCESS CONTROL

In this section, we first briefly introduce tree-based contribu-
tory key management, and then discuss how to extend the multi-
group key management to contributory environments.

A. Tree-Based Contributory Key Management Schemes

The tree-based scheme in [22] is based on applying two-party
DH protocol amongst two subgroups of users. In particular, the
users in the first subgroup, who share a common subgroup key

, send to users in the second subgroup; and the
users in the second subgroup, who share a common subgroup
key , send to users in the first subgroup. Here,

is the exponential base and is the modular base in the DH
protocol [25]. Then, users in two subgroups compute a new key:

. By doing so, these two subgroups can be
merged into a larger subgroup that share the common key .

The key tree used in [20], [22] is similar to that in the cen-
tralized schemes, as shown in Fig. 1. The intermediate keys and
the group key are generated from bottom to up as follows. In the
first round, users are grouped into pairs and perform two-party
DH. Thus, two users form a subgroup. In each of the following
rounds, the subgroups formed in the previous round are paired
up and each pair of subgroups perform DH and are merged into
a larger subgroup with a shared key. Finally, all users are merged
into one group that share the group key . When a user joins or
leaves the service, the group key are regenerated in the similar
fashion except that some existing intermediate keys do not need
to be recalculated [20], [22]. In the example shown in Fig. 1,

is established in 4 rounds. When user 16 leaves the service,
user 15 generates a new private key and 3 rounds should be per-
formed to compute , , and .

B. Contributory Multi-Group Key Management Scheme

The multi-group key management schemes can be extended
to the contributory environment by using the same graph con-
struction procedure presented in Section IV-B. Similar to these
in the centralized environments, separate key trees for each DG
must be constructed when using existing tree-based contributory
schemes [20]–[22], and the multi-group contributory schemes
maintains one integrated key graph for all users.

The key establishment protocols are straightforward exten-
sions from the existing protocols in tree-based contributory
schemes [20]–[22]. When users join/leave/switch, the set of
keys that need to be recalculated is the same as that need
to be updated presented in Section IV-B. The new keys are
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Fig. 15. The number of rounds performed to establish the group key with dif-
ferent number of SGs/layers.

recalculated by applying the DH protocol between the users
who are under the left child node and the users who are under
the right child node from bottom to up.

For contributory key management schemes, the number of
rounds is usually used to measure the communication, compu-
tation, and latency [31] associated with key establishment and
updating [19]–[21].

With the same simulation setup as that in Section VI-C, the
performance of the independent-tree and multi-group contribu-
tory key management schemes are compared for varying group
size. Fig. 14 shows the total number of rounds to establish the
group key, which reflects the latency in key establishment [31].
With the same simulation setup as that in Section VI-C, Fig. 15
shows the number of rounds for key updating for with different
number of layers. Compared with the tree-based contributory
schemes, the multi-group contributory scheme significantly re-
duces the computation and latency associated with key estab-
lishment and updating. The advantage of the multi-group con-
tributory scheme is larger when increases.

VIII. CONCLUSION

This paper presented a multi-group key management scheme
that achieves hierarchical group access control in secure group
communications, where multiple data streams are distributed
to group members with various access privileges. We designed
an integrated key graph, as well as the rekey algorithms,
which allow users to change access levels while maintaining
the forward and backward secrecy. Compared with using the
existing tree-based key management schemes that are designed
for a single multicast session, the proposed scheme can greatly
reduce the overhead associated with key management. In the
multi-layer services containing four layers, we observed more
than 50% reduction in the usage of storage, computation, and
communication resources in the centralized environments, and
the number of rounds to establish and update keys in the con-
tributory environments. More important, the proposed scheme

scales better than the existing tree-based schemes, when the
group applications contain more data streams and require the
mechanism to manage more levels of access control.
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