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   isual sensor technologies have experienced 
 tremendous growth in recent decades, and digi-

tal devices are becoming ubiquitous. Digital 
images taken by various imaging devices have been 

used in a growing number of applications, from mil-
itary and reconnaissance to medical diagnosis and consumer 
photography. Consequently, a series of new forensic issues arise 
amidst such rapid advancement and widespread adoption of 
imaging technologies. For example, one can readily ask what 
kinds of hardware and software components as well as their 
parameters have been employed inside these devices? Given a 
digital image, which imaging sensor or which brand of sensor 
was used to acquire the image? How was the image acquired? 
Was it captured using a digital camera, cell phone camera, 
image scanner, or was it created artificially using an image-
editing software? Has the image undergone any manipulation 
after capture? Is it authentic, or has it been tampered in any 

way? Does it contain any hidden information or steganographic 
data? Many of these forensic questions are related to tracing the 
origin of the digital image to its creation process. Evidence 
obtained from such analysis would provide useful forensic 
information to law enforcement, security, and intelligence 
agencies. Knowledge of image acquisition techniques can also 
help answer further forensic questions regarding the nature of 
additional processing that the image might have undergone 
after capture. 

  There are various ways to address the questions at hand. In 
this article, we survey one of the major class of techniques based 
on  component forensics  that aims to answer these forensic 
questions. Component forensics aims at identifying the algo-
rithms and parameters employed in the various components of 
the device that was used in capturing the data. Component 
forensic analysis works by finding the  intrinsic fingerprint  trac-
es that are left behind in a digital image when it goes through 
 various processing blocks in the information processing chain, 
and uses such traces for estimating component parameters. 
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Building upon component parameter estimation via intrinsic 
fingerprint identification, component forensics provides a 
framework to address a number of larger forensic issues such as 
in discovering device-technology infringement, protecting 
 intellectual property rights, and identifying acquisition devices. 

  Protecting the intellectual property rights of imaging 
devices has been a primary concern in the recent times, and 
fierce competition in the electronic imaging industry has led 
to an increasing number of infringement cases filed in courts. 
The remunerations awarded to successful prosecution have 
also grown tremendously, sometimes in billions of dollars. 
Patents have been known as powerful tools for intellectual 
property protection. However, with the development of mod-
ern sophisticated tools, patent infringement of imaging de-
vices has become easy to perform, difficult to detect, and even 
harder to prove in the court of law. A common way to perform 
infringement analysis is to examine the design and implemen-
tation of a product and to look for similarities with what have 
been claimed in existing patents through some type of reverse 
engineering. However, this approach could be very cumber-
some and ineffective, and in several cases might involve a 
line-by-line comparison of low-level assembly language codes 
that go into the software module of the device. Component fo-
rensics provides a systematic methodology for infringement/
licensing forensics by identifying the algorithms and param-
eters employed in each component of the information process-
ing chain; thus protecting intellectual property rights. 

  Component forensics also serves as a foundation to estab-
lish the trustworthiness of images and imaging devices. With 
the fast development of tools to manipulate multimedia data, 
the integrity of both content and acquisition device has be-
come particularly important when images are used as critical 
evidence in journalism, reconnaissance, and law enforcement 
applications. For example, information about hardware/ 
software modules and their parameters in a device can help 
in building  device identification systems . Such systems would 
provide useful  acquisition forensic  information to law enforce-
ment and intelligence agencies about which device or which 
brand/model of the device was used to acquire an image. Addi-
tionally, component forensics helps establish a solid model for 
defining the characteristics of images obtained directly from 
a device, in turn facilitating  tampering forensics  to determine 
if there has been any additional editing and processing applied 
to an image since it leaves the device. 

  Component forensics can be performed in three major 
types of scenarios depending on the nature of available inputs. 
In  intrusive forensics,  the forensic analyst has access to the 
device; he/she can then break it apart, isolate each compo-
nent, and present methods to compute the individual compo-
nent parameters. In the case of  semi nonintrusive forensics,  
the analyst still has access to the device but is not allowed to 
break it apart; he/she can then design appropriate inputs to be 
fed into the device so as to collect forensic evidence about the 
processing techniques and parameters of the individual com-
ponents. In  completely nonintrusive forensics , the forensic 

analyst  estimates the component parameters just based on the 
sample data available from the device. 

  In this article, we will use visual sensors and images  captured 
by digital cameras to demonstrate component forensics, while 
these techniques can be appropriately modified and extended 
to other types of acquisition models, and sensing technologies. 
We review methods to estimate the parameters of various cam-
era components. We show that the computed parameters can 
be employed to assess the similarity in camera technologies 
for providing tell-tale clues on infringement/licensing, to iden-
tify the type of camera and the brand/model that was used to 
capture an image under question, and to a build ground-truth 
model to assist the detection of content manipulations.    

  SYSTEM MODEL FOR DIGITAL IMAGING DEVICES
  In this section, we review the image capture model in digital 
cameras to examine the various components in its information 
processing chain. As illustrated by the image capturing model in 
 Figure 1 , light from a scene passes through a lens and optical 
filters, and is finally recorded by an array of sensors. Most cam-
eras employ a color filter array (CFA) to capture the information 
from the real-world scene. A CFA is a thin film on the sensors 
that selectively allows a certain component of light to pass 
through them to the sensors  [1] . To facilitate discussions, let S 
be the real-world scene to be captured by the camera and let p
be the CFA pattern matrix. S 1x, y, c 2 represents a three-dimen-
sional (3-D) array of pixel values of size H 3 W 3 C , where H  
and W  represent the height and the width of the image, respec-
tively, and C5 3  denotes the number of color components 
(red, green, and blue). The CFA sampling converts the real-
world scene S  into a 3-D matrix Sp  of the form 

   Sp 1x, y, c 2 5 eS 1x, y, c 2 if  p 1x, y 2 5 c,
0 otherwise.

 
(1)

  After the data obtained from the CFA is recorded, the  intermediate 
pixel values corresponding to the points where Sp 1x, y, c 2 5 0 
in (1) are interpolated using its neighboring pixel values to obtain 
Sp
1I2, by a processing operation popularly known as color interpo-

lation or demosaicking  [2] .  After interpolation, the three images 
corresponding to the red, green, and the blue components go 
through a post-processing stage. In this stage, various types of in-
camera processing operations such as white balancing, color cor-
rection, color  matrixing, gamma correction, bit-depth reduction, 
and compression may be performed to enhance the overall picture 
quality and/or to reduce storage space and the final camera output 
Sd  is created. Sd  may then undergo additional processing opera-
tions using software such as Adobe Photoshop and  Google Picasa   
to further improve the picture quality and/or tamper with the 
image. In our system model, we represent such post-camera pro-
cessing as an additional manipulation block as shown in  Figure 1 . 

  COMPONENT FORENSICS METHODOLOGIES
  As can been seen in the system model discussed in the previous 
section, when a real-world scene is captured using a digital 
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camera, the information about the scene passes through the 
various device components before the final digital image is pro-
duced. Each of these components in the information processing 
chain modify the input via a particular algorithm using a specif-
ic set of parameters, and leave some  intrinsic fingerprint  traces 
on the output. In the following section, we present techniques 
to nonintrusively estimate the parameters of the various in-
camera components using the intrinsic fingerprint traces. 

  ESTIMATING CAMERA RESPONSE FUNCTION
  The camera response function (CRF) maps the incident light 
energy to image intensity values  [3] . Knowledge of the CRF is 
useful in several applications such as in computer vision algo-
rithms for shape from shading and photometric stereo, and in 
authentication algorithms where the CRF can be used as a 
 natural watermark. Estimating the CRF just based on a single 
camera output is an under-constrained problem, and therefore 
most prior work tries to estimate the CRF by assuming a par-
ticular nonlinear model. In  [4] , Farid assumes the CRF to be of 
the form f 1r 2 5 r g, where r  and f 1r 2  represent the incident 
light energy and the image intensity values, respectively, and 
g  is the transformation parameter. Farid shows that the 
 transformations of the form r g  introduce correlations in the 
frequency-domain that can measured using bicoherence (third 
order statistic), without the knowledge of the imaging device 
 [4] . While this bicoherence method can estimate the value of 
g  within an  average accuracy of 7.5%, this approach is limited 
to the use of the g-curve CRF model that is insufficient for 
real-world CRFs. 

  In  [5] , Lin and Zhang propose a method for CRF estima-
tion from a single red, green, and blue (RGB)-color image 
by measuring the effects of a nonlinear response on the im-
age via edge color distributions. The authors assume that 
edge pixels are linear-blended and introduce a method to 
compute the inverse radiometric response that maps the 
nonlinear distributions of the edge colors to linear distri-
butions. Experimental results suggest that the average 
root-means square error (RMSE) of the estimated inverse 
response curves is around 1022. This approach has been 
further extended for gray scale images in  [6]  by using high-
er-order distribution features along image edges giving an 
RMSE close to 1022  for two camera sets. Ng  et al . develop a 
constraint equation to identify the potential locally planar 
irradiance points and then use these points for CRF esti-

mation under the assumption that the 
CRF function follows a first-order gen-
eralized gamma curve model  [3] . The 
authors show through simulations over 
five camera models that the estimation 
algorithm performs well and can be 
used to  estimate the CRF with an aver-
age RMSE close to 1022   using a single 
image; the RMSE can be further low-
ered with additional camera outputs. 

  ESTIMATING COLOR FILTER ARRAY 
AND COLOR INTERPOLATION PARAMETERS
  For components such as CFA and color interpolation modules, 
the knowledge of the component output gives complete 
 information about the input because the input and the output 
correspond to the sampled and the interpolated data, respectively. 
In  [7] , the Popescu and Farid employ expectation/maximization 
(EM) algorithms to estimate the color interpolation coefficients 
for forensic analysis. The authors first assume that the image 
pixels belong to one of the two models: 1) the pixel is linearly 
correlated to its neighbors and is obtained by a linear interpola-
tion algorithm, or 2) the pixel is not correlated to its neighbors. 
Based on this assumption, the authors propose a two-step EM 
algorithm to estimate the CFA coefficients  [7] . In the expecta-
tion step, the probability of each sample belonging to the two 
models is estimated, and the specific form of the correlations is 
found in the maximization step. The EM algorithm generates 
two outputs: a two-dimensional probability map indicating the 
likelihood of the pixel belonging to the two models and the 
weighting coefficients. The authors show through simulation 
results that while the estimated probability maps can be effi-
ciently used to detect if a color image is the result of color inter-
polation or not, the color interpolation coefficients can help 
distinguish between different interpolation algorithms  [7] . 

  Swaminathan  et al . develop an algorithm to jointly esti-
mate the color filter array pattern and the color interpolation 
 coefficients  [8] . This method is schematically illustrated in 
 Figure 2.  A search space P for the CFA patterns is first estab-
lished based on common practice in digital camera design and 
the observation that most commercial cameras use a RGB type 
of CFA with a fixed periodicity of 2 3 2 . For every CFA pat-
tern p  in the search space P, the interpolation coefficients are 
computed separately in different types of texture regions by fit-
ting linear models. Specifically, the image is divided into three 
types of regions based on the gradient features in a local neigh-
borhood, and the image pixel at location 1x, y 2  is classified into 
one of the three categories:  Region  R1  contains those parts of 
the image with a significant horizontal gradient;  Region  R2  
contains those parts of the image with a significant vertical 
gradient; and  Region  R3  includes the remaining parts of the 
image that primarily contains the smooth regions. 

  Using the final camera output Sd  and the assumed sample 
pattern p, the set of pixel locations in Sd  that are acquired di-
rectly from the sensor array and the set of pixel locations that are 
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  [FIG1]  Information processing in digital cameras.  
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interpolated are identified. A linear model is assumed for color in-
terpolation in each of the three types of regions Rm 1m5 1, 2, 3 2  
and three color channels (R, G, B) of the image, and the inter-
polated pixels are represented as a weighted average of the pixels 
assumed to be directly obtained from the sensor. The coefficient 
weights are then obtained by solving these equations. Let the set 
of Ne  equations with Nu  unknowns for a particular region and 
color channel be represented as  Ax 5 b , where  A  of dimension 
Ne 3 Nu  and  b  of dimension Ne 3 1  specify the values of the 

pixels captured directly and those interpolated, respectively, and 
 x  of dimension Nu 3 1  stands for the interpolation coefficients 
to be estimated. To cope with possible noisy pixel values in  A  and 
 b  due to other in-camera operations following interpolation (such 
as JPEG compression), singular value decomposition  [8] , [9 ]  is 
employed to estimate the interpolation coefficients. After the co-
efficients are obtained, they are used to reinterpolate the camera 
output, Sd , to obtain Ŝd

1p2, and the error term e 1p25 Ŝd
1p22 Sd is 

computed. These steps are repeated for all the patterns, p, in the 
search space, P, and the pattern that gives the lowest  interpolation 
error is chosen as the estimate for the CFA. The interpolation 
 coefficients corresponding to the estimated CFA pattern are also 
obtained in this process. Further details can be found in  [8] . 

  ESTIMATING POST-INTERPOLATION PROCESSING
  Such processing operations as white balancing and color correc-
tion are performed by the camera after color interpolation to 
ensure that a white object in the scene appears white in a photo-
graph. White balancing operations are typically multiplicative 
and each color in the photograph is multiplied by an appropri-
ately chosen constant in the camera color space. Due to this 
multiplicative nature of white balancing operations, they cannot 
be nonintrusively estimated with good accuracies just based on 
a single camera output  [10] . However, they can estimated semi 
nonintrusively by a two-step process by first obtaining two 
images under different built-in white balance settings and then 
by solving a set of equations, formulated using the Von-Kries 
hypothesis  [10] . 

  JPEG compression is another popular post-interpolation 
processing component in digital cameras. JPEG compression 
can be considered as quantization in the discrete cosine trans-
form (DCT) domain. In this case, the knowledge of the com-
ponent output does not give complete information about the 
corresponding input; but provides a rough estimate of its input 
within the range of the quantization step size. Based on this 
observation, statistical analysis based on binning techniques 
have been used to nonintrusively estimate the quantization 
matrices in literature  [11] ,  [12] . These algorithms have been 
shown to provide good accuracies in estimating the quanti-
zation step sizes in the low-low, low-high, and the high-low 
bands of images where there are a significant number of non-
zero quantized values. In the case of high-high bands, a sig-
nificant number of coefficients are quantized to zero resulting 
in larger estimation errors. 

  APPLICATIONS OF COMPONENT FORENSICS
  We now look at several applications of component forensics to 
see how the intrinsic fingerprint traces left behind in the digital 
image provide tell-tale clues to help answer a number of ques-
tions related to the origin and authenticity of digital images. 

  CAMERA IDENTIFICATION FORENSICS
  The estimated camera component parameters can be used as 
features for  camera identification forensics  to identify the cam-
era brand and model utilized to capture the digital image. 
Bayram  et al . developed a camera identification method  [13]  
employing the weighting coefficients from the EM algorithm  [7]  
and the peak location and magnitudes of the frequency spec-
trum of the probability map as features. Images captured from 
two cameras under controlled input conditions along with ran-
domly acquired images from the internet for the third camera 
were used in the experiments, and the authors reported accura-
cies close to 84%  on three brands  [13]  when 20%  of the 
images were used in training and the remaining 80%  employed 
in testing. Further improvements to this algorithm were made 
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  [FIG2]  Algorithm to estimate color filter array and color interpolation coefficients.  
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in  [14]  by separately considering smooth and non-smooth 
regions in the image to obtain accuracies close to 96%  for 
three camera brands. 

  Swaminathan  et al.  proposed a joint CFA pattern and in-
terpolation algorithm estimation technique for camera foren-
sics and reported extensive camera identification results over a 
larger database of 19  different camera models in  [8] . The list 
of camera models included in the experiments are shown in  
Table  I . For each of the 19  camera models in the dataset, the 
authors collected about 200  different 512 3 512  images under 
uncontrolled conditions–different sceneries, different lighting 
situations, and compressed under different JPEG quality factors. 
These images in the database were grouped into different classes 
based on the brand or model, and the 7 3 7  filter coefficients es-
timated in each type of region and color channel (a total of 441  
coefficients per image) were employed for camera identification. 
The authors showed through simulations that an average iden-
tification accuracy was around 90%  for classifying the images 
from the nine different camera brands, and close to 86%  for 
distinguishing between images from the 19 camera models from 
nine different brands  [8] . Further, the authors demonstrated that 
these results were robust to post-interpolation processing opera-
tions inside the camera such as JPEG compression, additive noise, 
and nonlinear point operations like gamma correction  [8] . 

  Component forensics techniques, reviewed in this article, 
provide better accuracies over a larger and diverse dataset 
 compared with other related work on camera identification 
 [15] – [17]; they were later extended for cell phone cameras in 
[35] with 98% accuracy.  Kharrazi  et al .  [15]  proposed a set of 34 
features for camera identification aiming to model the image-
capture process in digital cameras. The set of features include: 
average pixel value, RGB pairs correlation, neighbor distribu-
tion center of mass, RGB energy ratio, wavelet domain statistics 
 [18] , and image quality metrics  [19] . The authors employed 
support vector machines (SVM) for classification and reported 
accuracies close to 88%  when tested with pictures captured 
under controlled input conditions from five camera models of 
three different brands. The same set of features were also tested 
for camera identification in  [16]  where accuracies close to 95%  
were obtained over four different camera models from two dif-
ferent models again under controlled input conditions. Another 
related work on camera identification estimated the pixel non-
uniformity noise, which is a dominant component of the photo-
response nonuniformity noise, inherent to an image sensor to 
distinguish between two cameras of the same brand, model, 
and set  [17] . In the training phase of the algorithm, a wavelet 

based denoising algorithm is employed 
to obtain an estimate of the pixel non-
uniformity noise and the random com-
ponent of this noise is eliminated by av-
eraging the estimates from a number of 
images. In the testing phase, to deter-
mine whether a given image is captured 
by a digital camera or not, the noise 
pattern from the image is obtained and 

correlated with the average noise pattern (also called the “refer-
ence pattern”) of the given digital camera. A correlation value 
greater than the prechosen threshold suggested that the given 
image is from the digital camera. The authors showed that such 
an approach can identify the source camera with 100%  accu-
racy when tested with high quality images. Dirik  et al . presented 
a camera identification for digital single lens reflex (SLR) cam-
eras by modeling the dust characteristics in  [20] , and reported 
accuracies close to 92%  over three different camera brands. 
This work’s focus is on extracting representative features for 
camera identification but does not explicitly estimate the vari-
ous components of the information processing chain. 

  INFRINGEMENT AND LICENSING FORENSIC ANALYSIS
  Component forensic analysis can be used for identifying the 
common features tied to imaging devices for applications in 
identifying infringement and licensing of device components. 
In  [8] , a classification based methodology was employed to 
study the similarities in interpolation algorithms used by differ-
ent cameras. The authors first trained a classifier by omitting 
the data from one of the camera models and tested it with the 
coefficients of the omitted camera, to find the nearest neighbor 
in the color interpolation coefficient space. The results reported 
in the paper show that when the SVM is trained using all the 
200  images from 18  cameras except Canon Powershot S410, 
and then tested using the 200  images from Canon Powershot 
S410, 66%  of the Canon Powershot S410 images were classi-
fied as Canon Powershot S400. Furthermore, of the remaining 
images, 28%  of the pictures were classified as one of the 
remaining Canon models; this suggests that there is a consider-
able amount of similarity in the kind of interpolation algo-
rithms used by various models of the same brand. The results 
in  [8]  also indicated a similarity between Minolta DiMage S304 
and Nikon E4300 as around 53%  of the Minolta DiMage S304 
pictures are designated as Nikon E4300 camera model in the 
classification tests. Building upon these results, a new metric is 
defined to study the similarities between two camera brands/
models in  [8] . Such an analysis has applications in identifying 
the similarities in the estimated camera component parameters 
to determine potential  infringement  or  licensing . 

  DETECTING CUT-AND-PASTE FORGERIES BASED ON 
INCONSISTENCIES IN COMPONENT PARAMETERS
  Creating a tampered image by cut-and-paste forgery often 
involves obtaining different parts of the image from pictures 
captured using different cameras that may employ a different 

 [TABLE 1] CAMERA MODELS USED IN THE EXPERIMENTS REPORTED BY  [8].  

 NO.  CAMERA MODEL  NO.  CAMERA MODEL  NO.  CAMERA MODEL 
 1   CANON POWERSHOT A75   8   NIKON E5400   15   CASIO QV 2000UX  
 2   CANON POWERSHOT S400   9   SONY CYBERSHOT DSC P7   16   FUJIFILM FINEPIX S3000 
 3   CANON POWERSHOT S410   10   SONY CYBERSHOT DSC P72  17   FUJIFILM FINEPIX A500  
 4   CANON POWERSHOT S1 IS   11   OLYMPUS C3100Z/C3020Z  18   KODAK CX6330  
 5   CANON POWERSHOT G6   12   OLYMPUS C765UZ   19   EPSON PHOTOPC 650  
 6   CANON EOS DIGITAL REBEL  13   MINOLTA DIMAGE S304  
 7   NIKON E4300   14   MINOLTA DIMAGE F100  
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set of algorithms/parameters for its internal components. 
Inconsistencies in the estimated sensor pattern noise obtained 
from different regions of the image  [17]  or the inconsistencies 
in the estimated intrinsic fingerprint traces (such as color inter-
polation coefficients  [21]  or CRFs  [22] ) left behind by camera 
components can be used to identify such digital forgeries as cut-
and-paste operations. In this survey article, we review the case 
study presented in  [21]  for illustration. In  [21] , the authors cre-
ated a tampered picture of size 2048 3 2036  by combining 
parts of two images taken using two different cameras.  Figure 
3(a ) and (b) shows the tampered picture and its individual parts 
marked with different colors. The regions displayed in white in 
 Figure 3(b)  are obtained from an image taken with the Canon 
Powershot S410 digital camera, and the black parts are cropped 
and pasted from a picture shot using the Sony Cybershot DSC 
P72 model. The combined image was then JPEG compressed 
with quality factor 80% . 

  To identify the intrinsic camera fingerprints in different parts 
of the picture, the image is examined using a sliding window 
of 256 3 256  with step size 64 3 64 , and the color interpola-
tion coefficients are estimated in each 256 3 256  block  [21] . The 
detection results from the 19-camera model classifier are shown 
in  Figure 3(c) . In this figure, the regions marked black denotes 
those classified as the Sony Cybershot DSC P72 model and the 
white areas correspond to the parts correctly classified as the 
Canon Poweshot S410 model. The remaining regions represented 
in grey correspond to the blocks that were misclassified as one of 
the remaining 17  camera models. As shown in  Figure 3(c) , the 
results indicate that the correct camera can be identified with a 
very high confidence in most of the regions in the tampered pic-
ture using the data obtained from each 256 3 256  macro-block. 
In this particular case, the manipulated picture has distinct traces 
from two different cameras and is therefore tampered. 

  COMPONENT FORENSICS AS GROUND-TRUTH 
MODEL FOR TAMPERING DETECTION
  Post-camera processing operations include content-preserving 
and content-altering manipulations such as tampering. Post-
camera processing are generally hard to detect and estimate 

due to the lack of knowledge about the manipulation type 
which leads to incorrect choice of model. To circumvent this 
problem, some prior work in the tampering detection literature 
try to detect tampering by defining the properties of a manipu-
lated image in terms of the distortions it goes through; and 
using such analysis, present methods to both detect manipu-
lated images and identify the manipulation type along with its 
parameters. In  [18] and [23] , features based on analysis of vari-
ance approaches  [23]  and higher order wavelet statistics  [18]  
have been used to detect the presence/absence of image manip-
ulations without focussing on identifying the manipulation 
type and/or its parameters. These methods require samples of 
tampered images (under each type of manipulation) for classi-
fication to distinguish such manipulated images from genuine 
camera-captured ones. Further, these methods may not be able 
to efficiently identify manipulation types that are not modeled 
or considered directly when building the classifier. 

  In  [24] , the authors extend component forensics approach 
to detect the presence/absence of image manipulations by mod-
eling all post-camera processing as a manipulation block  [24] . 
The algorithm works by first assuming that the given test im-
age, St, is a manipulated camera output obtained by process-
ing the actual camera output, Sd, via a manipulation operation. 
Any post-camera processing applied on Sd is then modeled as 
a linear shift-invariant filter and its coefficients are estimated 
by the   iterative   constraint  enforcement   algorithm  [24] .  Figure 
4  shows the schematic diagram of the algorithm introduced in 
 [24]  to estimate the coefficients of the manipulation filter. The 
test image, St, is used to initialize the iterative process. In each 
iteration, the estimated camera output, g,and the estimated 
filter coefficients, h,are updated by repeatedly applying known 
constraints on the image and the filter, both in the pixel do-
main and in the Fourier domain  [25] , [ 26] . In the kth  itera-
tion, pixel-domain constraints are enforced on the image gk  to 
obtain ĝk; the pixel domain constraints represent the camera 
constraints where the camera component parameters ak

i  are 
estimated via component forensic tech niques presented in the 
section “Estimating Color Filter Array and Color Interpolation 
Parameters.” After the  image ĝk is obtained, it is  transformed 

(a) (b) (c)

  [FIG3]  Applications to source authentication showing (a) sample tampered image, (b) regions obtained from the two cameras, and (c) 
CFA interpolation identification results (black: Sony Cybershot DSC P72; white: Canon Powershot S410; grey: regions classified as other 
cameras).  
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by discrete Fourier transform (DFT) to give Ĝk. The frequency 
response of the estimated manipulation filter, Hk,  is then ob-
tained from Ĝk and the Fourier transform of the test image, 
F 1St 2 ,  as shown in  Figure 4 . The estimated response, Hk, 
thus obtained is inverse Fourier transformed to give hk ; and fil-
ter constraints are enforced on hk  to obtain ĥk to be the real 
part of hk. The value of Gk11 is  finally obtained as a function of 
two available estimates: a) previous value, Gk, and b) F 1St 2 /Ĥk, 
where Ĥk5F 1 ĥk 2 . Complete details of this algorithm along 
with its properties can be found in  [24] . Deviation of the estimat-
ed manipulation filter parameters from an identity transform, 
measured via a similarity score, indicates that the test image has 
been manipulated after being captured by the camera. 

  In  [24] , the authors use data from nine different camera 
models (corresponding to camera model numbers 1-7, 10, and 

16 in Table 1) for testing the iterative con-
straint enforcement algorithm. This gives 
a total of 900  different 512 3 512  pic-
tures in the  camera-image database  with 
100  image per camera model. These im-
ages are then processed to generate 21  
tampered versions per image to  obtain 
18,900 manipulated images. The type of 
manipulations considered along with the 
 parameter settings are listed in Table 2. 
For each direct  camera output and its 
 manipulated version, the frequency do-
main coefficients of the estimated ma-
nipulation filter, Ht, are computed and its 
similarity with the chosen reference pat-
tern, Href, is determined using a similarity 
score. The reference pattern, Href, is ob-
tained a priori in the training stage from 
an authentic camera output using the 
same iterative constraint enforcement 
algorithm, and helps compensate for the 
minor deviations due to post-interpola-
tion processing inside cameras. To com-
pute the similarity score, the logarithm of 
the magnitude of the frequency response 
of the test image Ut5 log10 1 |Ht| 2  is ob-
tained and its similarity with log-magni-
tude coefficients of the reference image is 
computed as 

   s 1Ut,Uref 2 5 a
m,n

1Ut 1m, n 2 2mt 2 3 1Uref 1m, n 2 2mref 2 ,  

  where mt  denotes the pixel-wise mean of the Ut  and mref  rep-
resents the pixel-wise mean of the Uref . The test input is then 
classified as unmanipulated if the similarity to the reference 
pattern is greater than a suitably chosen threshold. If, on the 
other hand, the input image has undergone tampering or steg-
anographic embedding operations, the estimated manipulation 
filter coefficients would include the effects of these manipula-
tions and therefore be less similar to the reference pattern 
(obtained from an unmanipulated camera output); thus, result-
ing in a similarity score lower than the  chosen threshold. The 
performance of the iterative constraint enforcement algorithm 
is shown in terms of the receiver operating characteristics 
(ROC) in  Figure 5 . The figure shows that for PF  close to 10%, 

PD  is close to 100%  for such 
manipulations as spatial averag-
ing and additive noise, and 
around 70%280%  for median 
filtering, histogram equalization, 
and rotation. 

  In  [24] , the authors showed 
that the estimated manipula-
tion filter coefficients can also 
be employed to identify the 
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ĥkĤkGk

St

otherwisegk (x, y, c)

( (x − m, y − n,c) { , }
ˆ

i
k

m, n
m, n, c)gk x y Ri

gk (x, y, c)
∀ ∈

=

Pixel Domain Constraints on Image:

Estimating Frequency Response of Filter:

2 2
1

  with 
ˆˆ

*ˆ( )F St Gk H0Hk
G0Gk Hk−1

==
+

Estimating Image in Frequency Domain:

)(
2 2

2 2

if  ( )

ˆˆ(1 ) ( )   if  ( )  and ( )

ˆ ˆ(1 ) ( ) if  ( )  and ( )

F StGk

Gk+1 Gk F St Hk F St F St Hk

Gk Hk F St F St F St Hk

−1

<

= − ≥+ ≤

− + ≥ >

: Color Interpolation
Coefficients Estimated from gk

: Empirical Constants

F(.) : Fourier Transform Operator

i
k

1 2
, ,

Pixel Domain
Constraints
on Image

( )F St

Estimate Image in
Frequency Domain

Estimate Frequency
Response of Filter

α

β β γ

γ

γ

γ

ββ

ββ

β

α

  [FIG4]  Iterative constraint enforcement algorithm to estimate manipulation filter 
coefficients  [24] .  

 [TABLE 2] TAMPERING OPERATIONS INCLUDED IN THE EXPERIMENTS .  

 MANIPULATION 
OPERATION 

 PARAMETERS OF THE 
OPERATION  

 NUMBER OF 
IMAGES 

 SPATIAL AVERAGING   FILTER ORDERS 3-11 IN STEPS OF TWO   5  
 MEDIAN FILTERING   FILTER ORDERS {3, 5, 7}   3  
 ROTATION   DEGREES {5, 10, 15, 20}   4  
 RESAMPLING   SCALE FACTORS {0.5, 0.7, 0.85, 1.15, 1.3, 1.5}  6  
 ADDITIVE NOISE   PSNR 5 dB AND 10 dB   2  
 HISTOGRAM EQUALIZATION   1  
 TOTAL  21 
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type and parameters of post-camera processing operations. 
 Figure 6  shows the frequency response of the estimated 
 manipulation filter coefficients for the different types of ma-
nipulations listed in Table 2. A closer look at the manipulation 
filter coefficients in the frequency domain suggests notice-
able differences for the different kinds of tampering opera-
tions. For such manipulations as average filtering, distinct 
nulls in the frequency spectrum are observed and the gap 
between the nulls can be employed to estimate the order of 
the averaging filter and its parameters. Image manipulations 
such as additive noise result in a manipulation filter with a 
noisy spectrum as shown in  Figure 6(g) , and the strength of 
the noise can be computed from the filter coefficients. Ro-
tation and downsampling can be identified from the smaller 
values in the low-high and the high-low bands of the fre-
quency spectrum of the manipulation filter. Recently, Chuang 
 et al .  [27]  built upon  [24] , and showed that many classes of 
 linear shift invariant (LSI) and non-LSI image processing 
operations, such as resampling, JPEG compression, and non-
linear filtering, exhibit consistent and distinctive patterns in 
their empirical frequency response (EFR). The  identification 
performance for manipulation types based on the EFR is 
around 93% for classifying six types of manipulation. 

  APPLICATIONS TO UNIVERSAL STEGANALYSIS 
AND IMAGE ACQUISITION FORENSICS
  A common challenge for universal steganalysis and for image 
acquisition forensic analysis is how to model the ground truth 
original image data. Using a camera model and its component 
analysis, component forensics provides a framework to distinguish 
between camera-captured images and images with steganographic 
hidden information and images produced by other acquisition 

sources  [24] . Image manipulations such as watermarking and ste-
ganography have been modeled as post-processing operations 
applied to camera outputs and the manipulation coefficients, esti-
mated from the iterative constraint enforcement algorithm, have 
been employed to distinguish them from authentic data. Images 
produced by other types of acquisition sources would result in a 
manipulation filter that is significantly different from an ideal 
delta  function expected for camera outputs and such images can 
be distinguished by comparing the coefficients of the manipula-
tion filter with the reference pattern obtained from direct camera 
outputs. Further details can be found in  [24] . 

  [FIG5]  Receiver operating characteristics for tampering detection 
when tested with all images in the database with 200 images are 
used in training.  
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  [FIG6]  Frequency response of the manipulation filter for camera outputs that are manipulated by (a) 7 X 7 averaging filter, (b) 11 X 11 
averaging filter, (c) 7 X 7 median filter, (d) 20 degrees rotation, (e) 70% resampling, (f) 130% resampling, (g) noise addition with PSNR 20dB, 
and (h) histogram equalization. The frequency response is shown in the log scale and shifted so that the DC components are in the center. 
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  THEORETICAL ANALYSIS OF COMPONENT FORENSICS
  As shown in the previous sections, the intrinsic fingerprint  traces 
left behind in the final digital image by the different components 
of the imaging device can be used as evidence to estimate the com-
ponent parameters and provide clues to answer forensic questions 
related to the origin and authenticity of digital data. However, as 
the intrinsic fingerprint traces pass through the different parts of 
the information processing chain, some of them may be modified 
or destroyed and some others newly created. This observation 
leads to a number of fundamental questions as to what component 
traces are lost or modified? Which components in the information 
processing chain are identifiable and which ones are not? How 
does the identifiability of one component affect the estimation of 
the other? The theoretical framework for component forensics 
presented in  [28] and [29]  focuses on answering such questions 
and examines the conditions under which the parameters of a 
component can be identified or classified accurately. Next, we sum-
marize the main results of this work. 

  THEORETICAL NOTIONS AND FRAMEWORK
  In  [28] and [29] , the authors define a component as the basic 
unit of the information processing chain and represent a 
device to be a cascade of Nc  components represented as 
5C1, C2, c, CNc

6.  The authors denote by u k, the set of param-
eters employed in kth  component Ck of the system, and quan-
tify the goal of component forensic analysis in terms of the 
identifiability or classifiability of the component parameter u k . 
The authors consider two possible scenarios for u k . In the first 
scenario, the authors assume that possible set of algorithm 
space for u k  is known a priori, i.e., u k [ U k5 5u 1

k, u 2
k, c6.  

In this case, the problem becomes a classification problem and 
pattern classification theory has been used to analyze this sce-
nario  [28] . In the second scenario, the authors assume that no 
knowledge about the possible algorithm space is known or 
assumed a priori, and present a framework based on estimation 
theory and Fisher information to analyze this case  [29] . 

  For the scenario where u k  can take a finite number of pos-
sibilities such that u k [ U k, the authors define a component Ck to 
be  intrusively classifiable  or  i-classifiable  if, for all inputs, the 
probability of classifying the component to employ the correct 
algorithm given the input and the output is greater or equal 
to the probability of classifying it to any other class. Further-
more, for at least one input x* and its corresponding output, 
the probability of correct classification is strictly greater than 
the probability of misclassification  [28] , [ 30] . The goodness 
of the parameter identification algorithm under this scenario 
can be measured in terms of the  confidence  in making the 
right decision, and can be defined as the difference between 
the likelihood of the correct decision and the maximum of 
the corresponding likelihood of the making a wrong decision. 
Thus, the confidence score, g i

k 1x 2 , for correctly deciding u i
k 

can be written as 

   g i
k 1x 2 5 f 1u i

k| y, x 2 2 max
u[Uk \ ui

k
  f 1u| y, x 2 ,

  where f 1u| y, x 2  denotes the probability that the component 
employs the parameter u  conditional on the input x  and its 
corresponding output y. 

  The confidence score g i
k 1x 2  is a function of the input x 

and can be improved by selecting proper inputs. For instance, 
consider an example of a component with parameters 5j0, j16 
whose input-output relationship is given by 

   y 1n 2 5j0 x 1n 2 1j1 x 1n2 1 2 .
  Let x 1125 3

c, 1, 1, 1, c 4 and x 1225 3
c, 0, 1, 2, c 4 be 

two possible inputs to the system. The corresponding outputs 
would  be  y 1125 3

c, j01j1, j01j1, j01j1, c 4  and 
y 1225 3

c,2j1, j0, 2j01j1, c 4, respectively. Notice that 
y 112  is a constant sequence with each of its elements being 

equal to 1j01j1 2  and knowledge of the sum would not pro-
vide any indicative of the parameters j0  or j1 . Therefore, x 112  
is not a good input for evaluating the value of the component. 
On the other hand, observing the output y 122 of the system, one 
can formulate a system of linear equations to compute the value 
of j0  and j1; thus, x 122 is a good input to obtain the compo-
nent parameter values. This example illustrates that the confi-
dence score in parameter estimation can be improved by choice 
of inputs, and generalizing on this observation,  [28]  defines an 
 optimal input  as the one that maximizes the confidence score. 

  Notions of  semi nonintrusively classifiable  and  completely 
nonintrusively classifiable  components can be defined similar-
ly  [28] , and these definitions help establish a number of theo-
retical results. For instance, the authors show that if a com-
ponent is nonintrusively classifiable, then its parameters can 
also be identified semi nonintrusively; and if a system is semi 
nonintrusively classifiable, then each of its  components are 
also intrusively classifiable. Moreover, the average confidence 
values obtained using semi nonintrusive analysis is greater 
than or equal to the ones obtained via completely nonintrusive 
analysis, and lower than the ones achieved via intrusive analy-
sis. These results follow from the fact that semi nonintrusive 
forensics provides more control to the forensic analyst who can 
design better inputs to improve the overall performance, and 
intrusive analysis provides the highest control over the experi-
mental setup. The theoretical results also prove that intrusive, 
semi nonintrusive, and completely nonintrusive forensics can 
provide the same confidence scores only when all the compo-
nents of the system are  consistent , meaning that the knowl-
edge of the input provides full information about its output 
and vice versa  [28] . 

  In the second scenario, if no prior knowledge is available 
about the possible algorithm space, then the component fo-
rensics problem becomes an estimation problem and  bias  
and  variance  of the estimates can be employed as metrics to 
theoretically analyze such components as discussed in  [29] . 
For this case, it can be shown that the component parameter 
estimation errors obtained via semi nonintrusive analysis are 
lower than that obtained via completely nonintrusive analy-
sis and greater than the ones for intrusive analysis, and these 
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analysis techniques become equivalent only for  consistent  
components. The details of the definitions and theorems along 
with the sketches of proofs can be found in  [29] . 

  CASE STUDY WITH 
DIGITAL CAMERAS
  We now examine a few case studies that demonstrate the useful-
ness of the theoretical framework. 

   Color Filter Array and Color Interpolation Modules  ■ : In the 
absence of noise or additional processing, for such compo-
nents as CFA and color interpolation modules, the knowledge 
of the component output gives complete information about 
the corresponding input as the input and the output corre-
spond to the sampled and the interpolated data, respectively. 
Therefore, under this scenario, both the CFA and color inter-
polation modules are  consistent  components. From the theo-
retical analysis presented earlier, it can be shown that semi 
nonintrusive forensics would provide the same accuracies as 
completely nonintrusive forensics,  i.e. , even under controlled 
input conditions and well-designed inputs, the component 
estimation accuracies cannot be improved compared to non-
intrusive analysis. 

  However, in the presence 
of additional post-interpola-
tion processing operations, 
the components are not con-
sistent, and semi nonintru-
sive forensics would provide 
better accuracies than com-
pletely nonintrusive forensics 
 [28] , [ 29] . For this case, good 
test conditions and heuristic 
patterns have been designed for semi nonintrusive forensics 
based on common knowledge about these components  [10] , 
and these have been further optimized in  [28]  and [ 29]  to pro-
vide better confidence and accuracy in parameter estimation. 

   Post-Interpolation Processing Modules  ■ : Operations such as 
white balancing and color correction are typically multiplica-
tive in nature. Due to this multiplicative nature, they are not 
nonintrusively classifiable  [10]  as given the output as a prod-
uct of two terms, the individual terms cannot be separately 
resolved unambiguously. In such scenarios, the authors show 
that the knowledge of the camera input can help address this 
issue and semi nonintrusive analysis can be employed to esti-
mate the parameters with very good accuracies  [10] . 

   Post-Camera Processing Modules  ■ : Several post-camera 
processing modules can be similarly analyzed via the theoreti-
cal framework. In literature, methods have been proposed to 
nonintrusively estimate such post-processing operations as 
resampling  [31] , irregular noise patterns  [32] , luminance or 
lighting directions  [33] , chromatic aberration  [34] , nonlinear 
point operations, and gamma correction  [4] . For instance, 
when the image is upsampled, some of the pixel values are 
directly obtained from the smaller version of the image, and 
the remaining pixels are interpolated and thus highly corre-

lated with its neighbors. Thus, resampling parameters can be 
identified by studying the induced correlations for a certain 
range of resampling values  [31] . Image manipulations such as 
contrast changes, gamma correction, and other image non-
linearities have been modeled and higher order statistics such 
as the bispectrum have been used to identify its component 
parameters  [32 ]. Some of these methods assume prior knowl-
edge about the possible algorithm space and may require an 
exhaustive search over all the possibilities. 
  Thus, the theoretical analysis framework surveyed in this 

section provides a systematic methodology to answer what 
components and processing operations in the information 
processing chain are identifiable and what are not, and helps 
quantify the estimation accuracies. These frameworks can 
also be extended to study the interactions between different 
components in a general information processing chain. 

  CONCLUSIONS
  This article considers the problem of component forensics and 
presents a survey of existing literature related to multimedia 
component forensics of visual sensors. The survey is organized in 
three parts. In the first part, several methodologies for compo-

nent forensics of digital cameras 
are discussed and methods to 
estimate such in-camera com-
ponents as the camera response 
function, color filter array and 
color interpolation parameters, 
and post-interpolation process-
ing operations such as white 
balancing and JPEG compres-
sion are reviewed. The second 

part demonstrates that the estimated parameters can be employed 
for a wide range of forensics applications including device brand 
and model identification,  infringement/licensing forensic analy-
sis, building ground-truth model to detect global and local tam-
pering including identifying steganographic embedding, and for 
image acquisition forensics to distinguish between images taken 
from different acquisition sources. The theoretical analysis 
framework for component forensics is presented in the third part 
focused at gaining a concrete understanding about component 
forensics and to answer a number of fundamental questions 
related to what processing operations can and cannot be identi-
fied and under what conditions. In summary, we believe that 
such component forensic analysis would provide a great source of 
information for patent infringement cases, intellectual property 
rights management, and technology evolution studies for digital 
media and push the frontiers of multimedia forensics to gain a 
deeper understanding of information processing chain. 
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